图论及其应用(16)

合集下载

电子科技大学研究生试题《图论及其应用》(参考答案)

电子科技大学研究生试题《图论及其应用》(参考答案)

电子科技大学研究生试题《图论及其应用》(参考答案)考试时间:120分钟一.填空题(每题3分,共18分)1.4个顶点的不同构的简单图共有__11___个;2.设无向图G 中有12条边,已知G 中3度顶点有6个,其余顶点的度数均小于3。

则G 中顶点数至少有__9___个;3.设n 阶无向图是由k(k ?2)棵树构成的森林,则图G 的边数m= _n-k____;4.下图G 是否是平面图?答__是___; 是否可1-因子分解?答__是_.5.下图G 的点色数=)(G χ______, 边色数=')(G χ__5____。

图G二.单项选择(每题3分,共21分)1.下面给出的序列中,是某简单图的度序列的是( A )(A) (11123); (B) (233445); (C) (23445); (D) (1333).2.已知图G 如图所示,则它的同构图是( D )3. 下列图中,是欧拉图的是( D )4. 下列图中,不是哈密尔顿图的是(B )5. 下列图中,是可平面图的图的是(B )AC DA B CD6.下列图中,不是偶图的是( B )7.下列图中,存在完美匹配的图是(B )三.作图(6分)1.画出一个有欧拉闭迹和哈密尔顿圈的图;2.画出一个有欧拉闭迹但没有哈密尔顿圈的图;3.画出一个没有欧拉闭迹但有哈密尔顿圈的图;解: 四.(10分)求下图的最小生成树,并求其最小生成树的权值之和。

解:由克鲁斯克尔算法的其一最小生成树如下图:权和为:20.五.(8分)求下图G 的色多项式P k (G).解:用公式(G P k -G 的色多项式:)3)(3)()(45-++=k k k G P k 。

六.(10分) 22,n 3个顶点的度数为3,…,n k 个顶点的度数为k ,而其余顶点的度数为1,求1度顶点的个数。

解:设该树有n 1个1度顶点,树的边数为m.一方面:2m=n 1+2n 2+…+kn k另一方面:m= n 1+n 2+…+n k -1 v v 13图G由上面两式可得:n 1=n 2+2n 3+…+(k -1)n k七.证明:(8分) 设G 是具有二分类(X,Y)的偶图,证明(1)G 不含奇圈;(2)若|X |≠|Y |,则G 是非哈密尔顿图。

图论及其应用

图论及其应用

图论及其应用班级:图论1班学院:软件学院学号:2014110993姓名:张娇图论从诞生至今已近300年,但很多问题一直没有很好地解决。

随着计算机科学的发展,图论又重新成为了人们研究讨论的热点,图形是一种描述和解决问题直观有效的手段,这里给出图论在现实生活中的一些应用。

虽然最早的图论问题追溯1736年(哥尼斯堡七桥间题),而且在19世纪关于图论的许多重要结论已得出。

但是直到20世纪20年代图论才引起广大学者的注意并得以广泛接受和传播。

图论即形象地用一些点以及点与点之间的连线构成的图或网络来表示具体问题。

利用图与网络的特点来解决系统中的问题,比用线性规划等其他模型来求解往往要简单、有效得多。

图论就是研究图和网络模型特点、性质和方法的理论。

图论在许多领域,诸如物理、化学、运筹学、计算机科学、信息论、控制论、网络理论、社会科学以及经济管理等各方面都有广泛的应用,它已经广泛地应用于实际生活、生产和科学研究中。

下面对最大流问题进行探究。

最大流问题主要探究最大流问题的Ford-Fulkerson解法。

可是说这是一种方法,而不是算法,因为它包含具有不同运行时间的几种实现。

该方法依赖于三种重要思想:残留网络,增广路径和割。

在介绍着三种概念之前,我们先简单介绍下Ford-Fulkerson方法的基本思想。

首先需要了解的是Ford-Fulkerson是一种迭代的方法。

开始时,对所有的u,v属于V,f(u,v)=0(这里f(u,v)代表u到v的边当前流量),即初始状态时流的值为0。

在每次迭代中,可以通过寻找一个“增广路径”来增加流值。

增广路径可以看做是从源点s到汇点t之间的一条路径,沿该路径可以压入更多的流,从而增加流的值。

反复进行这一过程,直到增广路径都被找出为止。

举个例子来说明下,如图所示,每条红线就代表了一条增广路径,当前s到t的流量为3。

当然这并不是该网络的最大流,根据寻找增广路径的算法我们其实还可以继续寻找增广路径,最终的最大流网络如下图所示,最大流为4。

图论及其应用

图论及其应用
χ(G)表示。若χ(G)=k,就称G是k-点可 色图。
顶点染色
定理:对于任何一个图χ(G)≤ω(G)。 ω(G)为图G的团数,用来描述χ(G)的下 界,其中ω(G)=max{k|Kk属于G}。
顶点染色
给定图G=(V,E)的一个k-点染色。用Vi表示G中染以 第i色的顶点集合(i=1,2,…,k),则每个Vi都是G 的独立集。因而G的每一个K-点染色对应V(G)的一个划 分[V1,V2,…,Vk],其中每一个Vi是一个独立集。反之 ,给出V(G)的这样一个划分(V1,V2,…,Vk),其中每 一个Vi均是独立集(1≤i≤k),则相应得到G的一个k点染色,称V(G)的这样一个划分为G的一个色划分,每 一个Vi称为色类。因此,G的色数χ(G)就是使这种划 分成为可能最小自然数k。
推论:若G是p(G) 3且g(G) 3的平图,则 q(G) g(G) ( p(G) 2)。 g(G) 2
平面图的性质
推论:任何一个简单平面图G,有 q(G)≤3p(G)-6
推论:设G是简单平面图,则δ(G)≥6.
定理:仅存在5种正多面体,即正四面体、正 方体、正八面体、正十二面体和正二十面体。
定理:每一个平面的色数不超过5
边染色
定义:无环图G的一个正常染色k-边染色(简 称k-边染色)是指一个映射φ:E(G)→{1,2, …,k},使对G中任意两条相邻的边e1和e2,有 φ(e1)≠φ(e2)。若G有一个正常k-边染色,则 称G是k-边染色的。G的边色数是指G为k-边染 色的最小整数k的值,记为
χ'(G)。若χ'(G)=k,则称G是k-边可色的。
边染色
设G有一个正常k-边染色,置Ei为G中所有染 以第i种颜色的边的全体,则E1,E2,…,Ek 是G的k个边不相交的对集,并且

图论及其应用PPT课件

图论及其应用PPT课件
-28-
图论及其应用第一章
1.2 图的同构
由前已知,同一个图有不同形状的图示。反过来, 两个不同的图也可以有形状相同的图示。比如:
u2
u3
可见 G1 和 G2 的顶点及边之间都一一对应,且连
接关系完全相同,只是顶点和边的名称不同而已。这
样的两个图称为是同构的(isomorphic)。
-29-
图论及其应用第一章
v1
(i=1,2,3,4,5,6)下是同构的。
x1
y1
v6
y3
x2
v2
x3
y2
v4
v3
-31-v5
图论及其应用第一章 画出所有的阶数不大于4,大小为3的所有非同构 简单图:
-32-
图论及其应用第一章 画出阶数为5大小为3的所有非同构简单图
G1
G2
G3
G4
-33-
图论及其应用第一章
无标号的图 注:判断两个图是否同构目前没有好算法。
图论起源于18世纪的一个游戏----俄罗斯的哥尼斯堡七桥问 题。
(1736年 瑞士数学家欧拉——图论之父)
-2-
图论及其应用第一章
七桥问题
C
A
D
B
包含两个要素:对象(陆 地)及对象间的二元关系 (是否有桥连接)
转化
Euler 1736年
C
A
D
B 图论中讨论的图
问题:是否能从A,B,C,D 转化 中的任一个开始走,通过每 座桥恰好一次再回到起点?
从数学上看,同构的两个图,其顶点间可建立一 一对应,边之间也能建立一一对应,且若一图的两点 间有边,则在另一图中对应的两点间有对应的边。严 格的数学定义如下。
定义: 两个图G = (V (G), E(G)) 与H = (V (H), E(H)) , 如果存在两个一一映射:

图论及其应用

图论及其应用

图和子图 图和简单图图 G = (V, E)V ---顶点集,ν---顶点数12ε E ---边集, ε---边数例。

左图中, V={a, b,......,f}, E={p,q, ae, af,......,ce, cf} 注意, 左图仅仅是图G 的几何实现(代表), 它们有无穷多个。

真正的 图G 是上面所给出式子,它与顶点的位置、边的形状等无关。

不过今后对两者将经常不加以区别。

称 边 ad 与顶点 a (及d) 相关联。

也称 顶点 b(及 f) 与边 bf 相关联。

称顶点a 与e 相邻。

称有公共端点的一些边彼此相邻,例如p 与af 。

环(loop ,selfloop ):如边 l 。

棱(link ):如边ae 。

重边:如边p 及边q 。

简单图:(simple graph )无环,无重边 平凡图:仅有一个顶点的图(可有多条环)。

一条边的端点:它的两个顶点。

记号:νε()(),()().G V G G E G ==。

习题1.1.1 若G 为简单图,则εν≤⎛⎝ ⎫⎭⎪2 。

1.1.2 n ( ≥ 4 )个人中,若每4人中一定有一人认识其他3人,则一定有一 人认识其他n-1人。

同构在下图中, 图G 恒等于图H , 记为 G = H ⇔ VG)=V(H), E(G)=E(H)。

图G 同构于图F ⇔ V(G)与V(F), E(G)与E(F)之间 各 存在一一对应关系,且这二对应关系保持关联关系。

记为 G ≅F。

注 往往将同构慨念引伸到非标号图中,以表达两个图在结构上是否相同。

de f G = (V , E )yz w cG =(V , E )w cyz H =(V ’, E ’)’a ’c ’y ’e ’z ’F =(V ’’, E ’’)注 判定两个图是否同构是NP-hard 问题。

完全图(complete graph) Kn空图(empty g.) ⇔ E = ∅ 。

V’ ( ⊆ V) 为独立集 ⇔ V’中任二顶点都互不相邻。

图论及其应用习题答案

图论及其应用习题答案

图论及其应用习题答案图论及其应用习题答案图论是数学的一个分支,研究的是图的性质和图之间的关系。

图是由节点和边组成的,节点表示对象,边表示对象之间的关系。

图论在计算机科学、电子工程、物理学等领域有着广泛的应用。

下面是一些图论习题的解答,希望对读者有所帮助。

1. 问题:给定一个无向图G,求图中的最大连通子图的节点数。

解答:最大连通子图的节点数等于图中的连通分量个数。

连通分量是指在图中,任意两个节点之间存在路径相连。

我们可以使用深度优先搜索(DFS)或广度优先搜索(BFS)来遍历图,统计连通分量的个数。

2. 问题:给定一个有向图G,判断是否存在从节点A到节点B的路径。

解答:我们可以使用深度优先搜索(DFS)或广度优先搜索(BFS)来遍历图,查找从节点A到节点B的路径。

如果能够找到一条路径,则存在从节点A到节点B的路径;否则,不存在。

3. 问题:给定一个有向图G,判断是否存在环。

解答:我们可以使用深度优先搜索(DFS)或广度优先搜索(BFS)来遍历图,同时记录遍历过程中的访问状态。

如果在搜索过程中遇到已经访问过的节点,则存在环;否则,不存在。

4. 问题:给定一个加权无向图G,求图中的最小生成树。

解答:最小生成树是指在无向图中,选择一部分边,使得这些边连接了图中的所有节点,并且总权重最小。

我们可以使用Prim算法或Kruskal算法来求解最小生成树。

5. 问题:给定一个有向图G,求图中的拓扑排序。

解答:拓扑排序是指将有向图中的节点线性排序,使得对于任意一条有向边(u, v),节点u在排序中出现在节点v之前。

我们可以使用深度优先搜索(DFS)或广度优先搜索(BFS)来遍历图,同时记录节点的访问顺序,得到拓扑排序。

6. 问题:给定一个加权有向图G和两个节点A、B,求从节点A到节点B的最短路径。

解答:我们可以使用Dijkstra算法或Bellman-Ford算法来求解从节点A到节点B的最短路径。

这些算法会根据边的权重来计算最短路径。

范更华-图论及其应用

范更华-图论及其应用

旅行推销员问题
问题提出: 一个推销员从公司出发, 访问 若干指定城市, 最后返回公司,要求设计
最优旅行路线。(费用最小)
数学抽象: 城市作为点, 两点间有边相连, 如果对应的城市间有直飞航班。机票价作 为每条边的权。
旅行推销员问题
求解 : 在图中求一个圈过每点恰好一次 ,
且边的权之和最小。(最优哈密顿问题;比
在一个计算机光纤网络中,给传输信道 分配波长,两信道若有公共部分,必须得到 不同的波长。要求使用尽可能少的波长。
波长分配问题转化为图论问题
每条信道看作图的一个点。两点间有边
相连当且仅当它们对应的信道有公共部
分。波长问题等价于所构造图的点着色
问题:
给图的每个点着色,有边相连的点
须着不同的颜色。所用颜色尽可能少。
1735年, 欧拉(Euler) 证明哥尼斯堡七桥问题无 解, 由此开创了数学的一个新分支---图论. 欧拉将哥尼斯堡七桥问题转化为图论问题 : 求 图中一条迹 (walk), 过每条边一次且仅一次 . 后人将具有这种性质的迹称为欧拉迹,闭的欧拉 迹也称为欧拉回路.
欧拉定理 : 连通图存在欧拉迹当且仅当图中奇 度数的点的个数至多为 2( 若为 0, 则存在欧拉回 路,这种图称为欧拉图,也称为偶图)
图的例子
交通网
互联网
计算机处理器连接方式
集成电路板
分子结构图
分子间相互作用及信息传递
具体应用
大型高速计算机:处理器的连接方式
互联网:信息传输及控制管理
大规模集成电路:布局、布线 数据库技术:数据的存储、检索 理论计算机科学: 子图理论对计算机算法研究的应用
具体应用
DNA序列分析:图的欧拉回路问题 机器智能与模式识别:图的同构 通讯网络:连通性,可靠性 印刷电路板检测: 12万5千次降为4次(《美国科学》 Scientific American, 9 (1997), 92-94 )

图论及其应用

图论及其应用

Prim算法及思想
• • • • • 首先我们将V分成两部分U,S U∩S=∅ U∪S=V 一开始S中只有任意以个节点 每次我们枚举每条U,S之间的边权最小的边S中 这条边的端点 删除并加入U • 我们可以每次更新S中点的这个值不需要每次枚 举边复杂度O(n^2) • 如果使用堆优化可以做到O(nlogn+nlogm)
tarjan算法
tarjan算法
拓扑排序
• 每次选择一个入度为0的点加入队列,然后 删掉这个点的所有出度
小试身手
• APIO2009 atm • 有一个城市有若干条有向道路 • 一个小偷从一个点出发想偷这个城ATM机, 他从一个点出发,最后偷完之后需要到一 个酒吧庆祝,给定道路情况,每个路口atm 的钱数和有没有酒吧,求最多能偷多少钱。 • n<=100000
小试身手
对于n<=1000我们依然可以直接暴力建出图 来进行Dijsktra算法但是对于n<=10000的测 试点,所有边一共有10^10条,我们无法存下 来但是我们发现,只有x坐标相邻和y坐标相 邻的边才有意义(为什么?),然后就可以建出 图来用堆优化的Dij或者spfa过掉
小试身手
• 给你一个n个点的图,小Q有q个询问,每次 询问任意两点之间的最短路 • n<=200,q<=4000000
Байду номын сангаас
最短路算法
• 如果我们需要知道所有的点对之间的最短 路,可以使用floyed的传递闭包方法。 • floyed算法思想: • 我们每次选择一个中间点,然后枚举起点 和终点,用通过中间点的最短路径更新起 点和终点之间的最短路径时间复杂度O(n^3)
floyed代码实现
• 代码非常简单 • 注意枚举顺序
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
另一方面,对于X的任一非空子集S, 设E1与E2分别是与S 和N(S)关联的边集,显然有: E1 E2 即:
E1 k S E2 k N (S )
由Hall定理,存在由X到Y的匹配.又|X| = |Y|,所以G存在 完美匹配。 16
例2 (1) 证明:每个k方体都有完美匹配(k大于等于2) (2) 求K2n和Kn,n中不同的完美匹配的个数。 (1) 证明一:证明每个k方体都是k正则偶图。 事实上,由k方体的构造:k方体有2k个顶点,每个顶点可 以用长度为k的二进制码来表示,两个顶点连线当且仅当代 表两个顶点的二进制码只有一位坐标不同。 如果我们划分k方体的2k个顶点,把坐标之和为偶数的顶 点归入X,否则归入Y。显然,X中顶点互不邻接,Y中顶点 也如此。所以k方体是偶图。 又不难知道k方体的每个顶点度数为k,所以k方体是k正则 偶图。
2
v k 2v 1k
显然,P中M中的边比非M中的边少一条。于是作新 的匹配M1,它当中的边由P中非M中边组成。M1中边比 M中多一条,这与M是G的最大匹配矛盾。 “充分性” 若不然,设M1是G的一个最大匹配,则|M1|>|M|。
6
令H = M1ΔM。 容易知道:G[H]的每个分支或者是由M1与M中边交 替组成的偶圈,或者是由M1与M中边交替组成的路。 在每个偶圈中,M1与M中边数相等;但因|M1|>|M|, 所以,至少有一条路P,其起点和终点都是M非饱和点, 于是,它是G的一条M可扩路。这与条件矛盾。 注:贝尔热定理给我们提供了扩充G的匹配的思路。 贝尔热(1926---2002) 法国著名数学家。他的《无限图 理论及其应用》(1958) 是继哥尼之后的图论历史上的第 二本图论专著。他不仅在图论领域做出了许多贡献,而 且四处奔波传播图论,推动了图论的普及和发展。
(a) 一个覆盖
(b) 一个最小覆盖
19
定理2 设M是G的匹配,K是G的覆盖,若|M|=|K|,则 M是最大匹配,而G是最小覆盖。 证明:设M*与K*分别是G的最大匹配和最小覆盖。 由匹配和覆盖定义有:|M*|≦|K*|。所以,有:
|M| ≦|M*|≦|K*|≦ |K|
所以,当|M|=|K| 时,有|M| =|M*|,|K*|= |K|
15
的工作。匹配定理是他1935年在剑桥大学做讲师时发表的 结果。Hall是一名雅致的学者,对学生特别友好,当他觉 得有必要批评学生时,他都会以一种十分温和的方式建议 他们改正。 推论:若G是k (k>0)正则偶图,则G存在完美匹配。
证明:一方面,由于G是k (k>0)正则偶图,所以k|X|=k|Y|, 于是得|X| = |Y|;
F G
E : a, c, d, f ; F : c, e ;
A B C D E
a
b
c
d
e
f
g
问题转化为求饱和X每个顶点的一个匹配! 需要解决的问题是: (1) 匹配是否存在?(2) 如何求出匹配? 2、偶图匹配存在性判定----Hall定理
10
定理2 (Hall定理)设G=(X, Y)是偶图,则G存在饱和X每个 顶点的匹配的充要条件是:
对S X , 有 N (S ) S
(*)
例1,在下面偶图中,是否存在饱和X={A, B, C, D, E, F, G}的每个顶点的匹配?
A B C D E F G
a
b
c
d
e
f
g
11
解: (1) 当S取X中单元点时,容易验证:|N(S)|>|S| (2)| (3) 当S取X中三元点集时, 容易验证:|N(S)|≧|S|
设M={v7v8 , v3v4},则: 路v6v7v8v3v4与v1v7v8v2都是M交错路。其中后者是M 可扩路。
5
2、贝尔热定理 定理1 (贝尔热,1957) G的匹配M是最大匹配,当且 仅当G不包含M可扩路。 证明:“必要性” 若G包含一条M可扩路P,则可令该可扩路为:
P v1v 2 v 3
(二)、偶图的匹配与覆盖
1、问题的提出 在日常生活,工程技术中,常常遇到求偶图的匹配 问题。下面看一个例子:
8
有7名研究生 A, B, C, D, E, F, G毕业寻找工作。就业 处提供的公开职位是:会计师(a) ,咨询师(b),编辑(c ),程 序员(d), 记者(e), 秘书(f)和教师(g)。每名学生申请的职 位如下: A : b, c ; B : a, b, d, f, g ; C : b, e ; D : b, c, e ; G : d, e, f, g ; E : a, c, d, f ; F : c, e ;
第五章 匹配与因子分解
主要内容 一、偶图的匹配问题 二、图的因子分解 三、匈牙利算法与最优匹配算法 教学时数
安排6学时讲授本章内容
1
本次课主要内容
偶图的匹配问题
(一)、图的匹配与贝尔热定理 (二)、偶图的匹配与覆盖 (三)、托特定理
2
(一)、图的匹配与贝尔热定理
1、图的匹配相关概念 (1)、匹配 M--- 如果M是图G的边子集(不含环),且 M中的任意两条边没有共同顶点,则称M是G的一个匹 配或对集或边独立集。
18
例3 证明树至多存在一个完美匹配。 证明:若不然,设M1与M2是树T的两个不同的完美匹配, 那么M1ΔM2≠Φ ,且T[M1ΔM2]每个顶点度数为2,即它存在圈, 于是推出T中有圈,矛盾。 3、点覆盖与哥尼定理 (1)、图的点覆盖概念与性质 定义1:图的点覆盖 ---G的一个顶点子集K称为G的一个点覆 盖,如果G的每条边都至少有一个端点在K中。G的一个包含 点数最少的点覆盖称为G的最小点覆盖,其包含的点数称为G 的覆盖数,记为α (G).
T
显然,S-{u}中点与T中点在M*下配对,即: |T| = |S| -1< |S| 即: |N(S)| = |T| = |S| -1< |S| ,与条件矛盾。 注: (1) G=(X,Y)存在饱和X每个顶点的匹配也常说成存 在由X到Y的匹配。
14
(2) Hall定理也可表述为:设G=(X,Y)是偶图,如果存在 X的一个子集S,使得|N(S)| < |S| ,那么G中不存在由X到Y的 匹配。 (3) Hall定理也称为“婚姻定理”,表述如下: “婚姻定理” :在一个由r个女人和s个男人构成的人群中, 1≦r≦s。在熟识的男女之间可能出现r对婚姻的充分必要条 件是,对每个整数k(1≦k≦r),任意k个女人共认识至少k个男 人。 (4) Hall定理是在偶图中求最大匹配算法的理论基础,即 匈牙利算法基础。 (5) Hall (1904---1982) 英国人,20世纪最伟大的数学家之 一。主要功绩是在代数学领域。在剑桥大学工作期间,主要 研究群论,1932年发表的关于素数幂阶群论文是他最有名
如果G中顶点v是G的匹配 M中某条边的端点,称它 为M饱和点,否则为M非饱和点。
M1={v6v7}
v7
M2={v6v7, v1v8}
M3={v6v7, v1v8, v3v4} M1,M2,M3等都是G的匹配。
v6
v5 v8 v4 G
v1
v2 v3
3
(2)、最大匹配 M--- 如果M是图G的包含边数最多的 匹配,称M是G的一个最大匹配。特别是,若最大匹配 饱和了G的所有顶点,称它为G的一个完美匹配。
S U X \S
T=N (S)
21
由M*的最大性,T中点是M*饱和的,且N(S)=T。
S
现在,令K* =(X-S)∪T。 可以证明:K* =(XS)∪T是G的一个覆盖。
U
X \S
T=N (S)
事实上,若K* =(X-S)∪T不是G的一个覆盖。则存在 G的一条边,其一个端点在S中,而另一个端点在Y-T中, 这与N(S)=T矛盾! 显然|K*| = |M*|。由定理2,K*是最小覆盖。
由推论:k方体存在完美匹配。
17
证明二:直接在k方体中找出完美匹配。 设k方体顶点二进制码为(x1 ,x2,…,xn),我们取(x1 ,x2,…,xn-1,0), 和(x1 ,x2,…,xn-1,1) 之间的全体边所成之集为M. 显然,M中的边均不相邻接,所以作成k方体的匹配,又 容易知道:|M|=2k-1.所以M是完美匹配。 (2) 我们用归纳法求K2n和Kn,n中不同的完美匹配的个数。 K2n的任意一个顶点有2n-1中不同的方法被匹配。所以K2n的 不同完美匹配个数等于(2n-1)K2n-2,如此推下去,可以归纳出 K2n的不同完美匹配个数为:(2n-1)!! 同样的推导方法可归纳出K n, n的不同完美匹配个数为:(n)!
1993年,他获得组合与图论领域颁发的欧拉奖章。
7
贝尔热在博弈论、拓扑学领域里也有杰出贡献。在 博弈领域,他引入了Nash均衡之外的另一种均衡系统。 Nash的生活被改编成电影《美丽的心灵》,获02年奥 斯卡金像奖。 贝尔热对中国的手工艺很感兴趣。他也是一位象棋 高手,还创作过小说《谁杀害了Densmore公爵》。
A B C D E F G
a
b
c
d
e
f
g
(4) 当S取X中四元点集时,若取S={A,C,D,F},则 有3=|N(S)|<|S|=4
所以,不存在饱和X每个顶点的匹配。
下面我们证明Hall定理。
12
证明:“必要性” 如果G存在饱和X每个顶点的匹配,由匹配的定义, X的每个顶点在Y中至少有一个邻接点,所以:
问:学生能找到理想工作吗? 解:如果令X={A, B, C, D, E, F, G},Y={a, b, c, d, e, f , g} ,X中顶点与Y中顶点连线当且仅当学生申请了该工作。于是, 得到反映学生和职位之间的状态图:
9
A : b, c ;
B : a, b, d, f, g ; C : b, e ; D : b, c, e ; G : d, e, f, g ;
相关文档
最新文档