计量经济学知识点总结

合集下载

大二计量经济学知识点

大二计量经济学知识点

大二计量经济学知识点计量经济学是经济学中一个重要的分支学科,它通过运用数理统计方法,对经济现象进行实证研究和分析,并建立经济模型以进行预测和政策评估。

大二阶段的计量经济学主要涉及以下几个知识点:一、回归分析方法回归分析是计量经济学中最常用的方法之一,它用于研究变量之间的关系。

在回归模型中,因变量与自变量之间的关系被建立为一个线性方程。

大二计量经济学课程中,学生需要了解简单线性回归、多元线性回归以及截断和截尾回归等基本概念和方法。

二、假设检验假设检验是计量经济学中常用的工具,用于判断经济理论假设的合理性。

该方法通过对统计数据进行推断,判断某一假设是否能在给定置信水平下被接受或拒绝。

大二计量经济学课程中,学生需要学习关于假设检验的基本概念、检验统计量的计算以及拒绝域的确定等内容。

三、时间序列分析时间序列分析是用于研究时间上相关数据的方法。

在计量经济学中,时间序列数据经常用于对宏观经济变量进行建模和预测。

在大二计量经济学中,学生需要了解平稳性、自相关性和单位根等基本概念,并学习相关的建模和预测方法,如移动平均法和ARIMA模型等。

四、面板数据分析面板数据分析是对个体观测数据和时间序列数据同时进行分析的方法。

面板数据能提供更多的信息和数据点,增强了计量分析的能力。

在大二计量经济学中,学生需要掌握面板数据模型的假设、估计方法以及面板数据的固定效应和随机效应等重要概念。

五、工具变量法工具变量法是用于解决内生性问题的一种方法。

当自变量与误差项存在内生性时,传统的最小二乘估计将失效。

大二计量经济学课程中,学生需要学习工具变量法的理论基础,了解如何构建工具变量以及如何使用工具变量法进行估计。

六、计量经济模型计量经济学基于经济理论,通过建立数学模型进行经济现象的度量和分析。

在大二阶段,学生需要学习和掌握一些常用的计量经济模型,如消费函数模型、投资函数模型、生产函数模型等。

总结起来,大二计量经济学知识点主要包括回归分析方法、假设检验、时间序列分析、面板数据分析、工具变量法以及计量经济模型等。

计量经济学复习知识点重点难点

计量经济学复习知识点重点难点

计量经济学复习知识点重点难点计量经济学知识点第一章导论1、计量经济学的研究步骤:模型设定、估计参数、模型检验、模型应用。

2、计量经济学是统计学、经济学和数学的结合。

3、计量经济学作为经济学的一门独立学科被正式确立的标志:1930年12月国际计量经济学会的成立。

4、计量经济学是经济学的一个分支学科。

第二章简单线性回归模型1、在总体回归函数中引进随机扰动项的原因:①作为未知影响因素的代表;②作为无法取得数据的已知因素的代表;③作为众多细小影响因素的综合代表;④模型的设定误差;⑤变量的观测误差;⑥经济现象的内在随机性。

2、简单线性回归模型的基本假定:①零均值假定;②同方差假定;③随机扰动项和解释变量不相关假定;④无自相关假定;⑤正态性假定。

3、OLS回归线的性质:①样本回归线通过样本均值;②估计值的均值等于实际值的均值;③剩余项ei的均值为零;④被解释变量的估计值与剩余项不相关;⑤解释变量与剩余项不相关。

4、参数估计量的评价标准:无偏性、有效性、一致性。

5、OLS估计量的统计特征:线性特性、无偏性、有效性。

6、可决系数R2的特点:①可决系数是非负的统计量;②可决系数的取值范围为[0,1];③可决系数是样本观测值的函数,可决系数是随抽样而变动的随机变量。

第三章多元线性回归模型1、多元线性回归模型的古典假定:①零均值假定;②同方差和无自相关假定;③随机扰动项和解释变量不相关假定;④无多重共线性假定;⑤正态性假定。

2、估计多元线性回归模型参数的方法:最小二乘估计、极大似然估计、矩估计、广义矩估计。

3、参数最小二乘估计的性质:线性性质、无偏性、有效性。

4、可决系数必定非负,但是根据公式计算的修正的可决系数可能为负值,这时规定为0。

5、可决系数只是对模型拟合优度的度量,可决系数越大,只是说明列入模型中的解释变量对被解释变量的联合影响程度越大,并非说明模型中各个解释变量对被解释变量的影响程度也大。

6、当R2=0时,F=0;当R2越大时,F值也越大;当R2=1时,F→∞。

计量经济学 主要知识点

计量经济学  主要知识点

《计量经济学》《经济计量学》《Econometrics》一、主要知识点第一章绪论第一节计量经济学一、经济计量学的产生过程1930 世界经济计量学会二、经济计量学与其他学科的关系计量经济学的定义第二节建立计量经济学模型的步骤和要点一、数据类型1、时间序列数据2、截面数据3、面板数据二、经济变量与经济参数(一)、经济变量1、内生变量和外生变量内生变量(endogenous variable):随机变量,模型自身决定;内生变量影响模型中内生变量,同时又受外生变量和其它内生变量影响。

外生变量(exogenous variable):通常为非随机变量,在模型之外决定。

而外生变量只影响模型中的内生变量,不受模型中任何其它变量影响。

2、解释变量与被解释变量3、滞后变量与前定变量(二)建模步骤和要点。

模型假定把所研究的经济变量之间的关系用适当的数学模型表达出来。

估计参数模型检验:经济意义的检验、统计推断的检验、计量经济的检验、预测的检验第三节计量经济学模型的应用模型应用:政策评价、经济预测、结构分析、检验和发展经济理论第二章一元线性回归模型第一节概述一、相关关系与回归分析1、函数关系与统计相关关系2、相关分析与回归分析的区别和联系二、总体回归模型与样本回归模型1、总体回归模型(PRF):总体回归函数随机扰动项2、样本回归模型(SRF):样本回归函数残差第二节简单线性回归模型的参数估计一、对线性回归模型的假设(古典假定)如何表示?1、零均值假定2、同方差假定3、无自相关假定4、 与解释变量不相关5、 正态性假定二、普通最小二乘法(OLS )1、 OLS 的思想 参数估计式2、Y i 的分布三、普通最小二乘估计量的统计性质 高斯—马尔可夫定理 BLUE1、参数估计量的性质 高斯-马尔科夫定理2、 总体方差/随机扰动项方差的估计式3、 参数估计量的概率分布四、最大似然估计的概念第三节 简单线性回归模型的检验一、对估计值的直观判断(经济意义的检验) 二、拟和优度的检验1、 TSS=ESS+RSS2、 TSS ESS RSS 各自的含义3、 R2的构造4、 ∑∑==22212ˆiyx TSSESS R iβ5、 2R [0,1]三、对1β的显著性检验(T 检验) 检验步骤 四、均值预测与个值预测的置信区间 P49 第三章 多元线性回归模型 第一节 概述一、基本概念偏回归系数及其解释二、多元线性回归的基本假定如何表示和理解?1、零均值假定2、同方差假定3、无自相关假定4、无多重共线性5、扰动项与解释变量不相关6、正态性假定第二节多元线性回归模型的最小二乘估计一、矩阵形式的OLS参数估计式二、总体方差/随机扰动项方差的OLS估计式三、参数估计量的性质:同一元情形四、样本容量问题第三节多元回归模型的检验一、拟和优度检验1、判定系数2、调整后的判定系数二、对单个回归系数的显著性检验(T检验)检验步骤三、总体回归模型的显著性检验(F检验)检验步骤第四节预测对个值预测、区间预测的理解:p74第五节可以线性化的其他函数形式一、线性回归模型的形式:对参数而言是线性的回归系数的含义:边际效应二、几种常见的线性回归模型1、 双对数模型 回归系数的经济含义:弹性2、 半对数模型3、 倒数变换模型第六节 受约束回归 基本思想和检验步骤 第四章 违背经典假设的回归模型第一节 异方差一、异方差1、 异方差,指的是回归模型中的随机误差项的方差不是常数。

计量经济学重点知识整理

计量经济学重点知识整理

计量经济学重点知识整理1一般性定义计量经济学是以经济理论和经济数据的事实为依据,运用数学和统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

研究的主体〔动身点、回宿、核心〕:经济现象及数量变化规律研究的工具〔手段〕:模型数学和统计方法必须明确:方法手段要服从研究对象的实质特征〔与数学不同〕,方法是为经济咨询题效劳2注重:计量经济研究的三个方面理论:即讲明所研究对象经济行为的经济理论——计量经济研究的根底数据:对所研究对象经济行为瞧测所得到的信息——计量经济研究的原料或依据方法:模型的方法与估量、检验、分析的方法——计量经济研究的工具与手段三者缺一不可3计量经济学的学科类型●理论计量经济学研究经济计量的理论和方法●应用计量经济学:应用计量经济方法研究某些领域的具体经济咨询题4区不:●经济理论重在定性分析,并不对经济关系提供数量上的具体度量●计量经济学对经济关系要作出定量的估量,对经济理论提出经验的内容5计量经济学与经济统计学的关系联系:●经济统计侧重于对社会经济现象的描述性计量●经济统计提供的数据是计量经济学据以估量参数、验证经济理论的全然依据●经济现象不能作实验,只能被动地瞧测客瞧经济现象变动的既成事实,只能依靠于经济统计数据6计量经济学与数理统计学的关系联系:●数理统计学是计量经济学的方法论根底区不:●数理统计学是在标准假定条件下抽象地研究一般的随机变量的统计规律性;●计量经济学是从经济模型动身,研究模型参数的估量和推断,参数有特定的经济意义,标准假定条件经常不能满足,需要建立一些专门的经济计量方法3、计量经济学的特点:计量经济学的一个重要特点是:它自身并没有固定的经济理论,而是依据其它经济理论,应用计量经济方法将这些理论数量化。

4、计量经济学什么缘故是一门单独的学科计量经济学是经济理论、数理经济、经济统计与数理统计的混合物。

1、经济理论所作的陈述或假讲大多数是定性性质的,计量经济学对大多数经济理论给予经验内容。

计量经济学知识分享

计量经济学知识分享

计量经济学知识分享
计量经济学是以一定的经济理论和统计资料为基础,运用数学、统计学方法与电脑技术,以建立经济计量模型为主要手段,定量分析研究具有随机性特性的经济变量关系的一门经济学学科。

以下是一些计量经济学的基本知识分享:
1. 变量:计量经济学中常用的变量包括因变量和自变量。

因变量是我们想要解释或预测的变量,而自变量是用来解释因变量的因素。

2. 数据类型:计量经济学中使用的数据类型包括横截面数据、时间序列数据和面板数据。

横截面数据是在同一时间点上收集的不同个体的数据,时间序列数据是在不同时间点上收集的同一个体的数据,面板数据则是在不同时间点上收集的不同个体的数据。

3. 模型建立:计量经济学中常用的模型包括简单线性回归模型、多元线性回归模型、非线性回归模型等。

模型建立的过程包括选择变量、选择模型形式、估计模型参数等。

4. 模型估计:计量经济学中常用的模型估计方法包括最小二乘法、最大似然估计法等。

这些方法用于估计模型中的参数,以使模型能够最好地拟合数据。

5. 模型检验:计量经济学中常用的模型检验方法包括拟合优度检验、假设检验、平稳性检验等。

这些方法用于检验模型的合理性和可靠性。

6. 预测和推断:计量经济学可以用于预测和推断经济变量的未来值。

通过建立合适的模型并使用历史数据进行估计,可以预测未来的经济趋势和变化。

计量经济学知识点

计量经济学知识点

第一章1.计量经济学含义:以经济理论为基础,以统计资料为材料,运用数理统计知识和计算机技术,建立计量模型,对经济变量进行定量分析,以验证经济理论、分析政策效果、或进行商业预测。

2.计量经济学和其他学科关系▪1、经济学,尤其是数理经济学,为其提供理论依据▪2、经济统计学为其提供搜集加工整理统计资料的工具但价格、收入、投资、储蓄等经济数据是不可控的非实验数据,存在测量误差、遗漏、设计错误等▪3、数理统计为其提供假设检验的工具,以验证模型正确性主要有概率、概率分布、随机变量、抽样、参数估计、假设检验和回归分析等内容,只有具备了一定的数理统计学基础,才能很好地掌握计量经济学。

▪4、线性代数3.经济计量学建模步骤p2一、寻找研究的理论依据/设立一个理论假说二、确定统计指标,搜集编制数据①明确变量对应的统计指标②数据分类:时间序列数据:按时间跨度收集到的数据集合横截面数据:某个时点上的数据集合合并数据:时间序列数据和横截面数据的组合③数据来源:统计年鉴、统计类网站、数据公司三、建立数学模型四、设立经济计量模型:引入误差项自变量和因变量之间是统计关系,而不是确定的函数关系解释变量:函数的自变量被解释变量:函数的应变量五、采用适当方法,估计模型参数六、进行检验,验证模型的适用性经济检验:所估计参数的符号,大小是否符合理论等统计性检验:拟合优度检验:回归线拟合真实值优劣程度参数显著性检验:样本是否很好的代表了总体计量经济检验:回归模型前提条件的检验,例如多重共线性检验,异方差检验。

预测性检验本章考核要求▪识记:计量经济学含义、统计数据分类、参数、斜率、截距、解释变量和被解释变量、随机误差项等基本概念。

▪领会:计量经济学与其他学科的关系,计量经济模型基本的建模步骤第二章1.求和符号的性质p17常数的n次求和为常数的n倍常数可提到求和符号前两个变量的求和等于对两个变量分别求和2.几个定义▪1、实验:例:测试某批共1000灯泡的使用寿命▪2、总体:实验的所有可能结果的集合例:该批灯泡中每个灯泡的使用寿命,以小时计▪3、样本:由总体中抽出的若干个体的集合。

计量经济学基础知识梳理(超全)

计量经济学基础知识梳理(超全)
“微小”的含义取决于具体情况。
2.自然对数
近似计算的作用: 定义y对x的弹性(elasticity)为
y x %y x y %x
换言之,y对x的弹性就是当x增加1%时y的百分数变化。
若y是x的线性函数:y 0 1x ,则这个弹性是
y x
x y
1
x y
1
0
x
1x
它明显取决于x的取值(弹性并非沿着需求曲线保持不变)。
在经验研究工作中还经常出现使用对数函数的其他可 能性。假定y>0,且
logy 0 1x 则 logy 1x ,从而 100 logy 100 1x。
由此可知,当y和x有上述方程所示关系时,
%y 100 1x
例: 对数工资方程
假设小时工资与受教育年数有如下关系:
logwage 2.78 0.094edu
y 0 1 x;dy dx 1 2 x1 2
y 0 1logx;dy dx 1 x y exp0 1x;dy dx 1 exp0 1x
4.微分学
当y是多元函数时,偏导数的概念便很重要。假定y=f
(x1,x2),此时便有两个偏导数,一个关于x1,另一个关
于 x1的x2普。通y对导x1数的。偏类导似数的记,为yxy1就,是就固是定把xx12时看方做程常对数x时2的方导程数对。
的最大值出现在x*=8/4=2处,并且这个最大值是6+8×2-
2×(2)2=14。
y 16
14
12
10
8
6
4
2
0
x
0
1
2
3
4
1.二次函数
对方程式 y 0 1x 2x2
2 0 意味着x对y的边际效应递减,这从图中清晰可

计量经济学知识点(超全版)

计量经济学知识点(超全版)

1.经济变量:经济变量是用来描述经济因素数量水平的指标。

(3分)2.解释变量:是用来解释作为研究对象的变量(即因变量)为什么变动、如何变动的变量。

(2分)它对因变量的变动做出解释,表现为方程所描述的因果关系中的“因”。

(1分)3.被解释变量:是作为研究对象的变量。

(1分)它的变动是由解释变量做出解释的,表现为方程所描述的因果关系的果。

(2分)4.内生变量:是由模型系统内部因素所决定的变量,(2分)表现为具有一定概率分布的随机变量,是模型求解的结果。

(1分)5.外生变量:是由模型系统之外的因素决定的变量,表现为非随机变量。

(2分)它影响模型中的内生变量,其数值在模型求解之前就已经确定。

(1分)6.滞后变量:是滞后内生变量和滞后外生变量的合称,(1分)前期的内生变量称为滞后内生变量;(1分)前期的外生变量称为滞后外生变量。

(1分)7.前定变量:通常将外生变量和滞后变量合称为前定变量,(1分)即是在模型求解以前已经确定或需要确定的变量。

(2分)8.控制变量:在计量经济模型中人为设置的反映政策要求、决策者意愿、经济系统运行条件和状态等方面的变量,(2分)它一般属于外生变量。

(1分)9.计量经济模型:为了研究分析某个系统中经济变量之间的数量关系而采用的随机代数模型,(2分)是以数学形式对客观经济现象所作的描述和概括。

(1分)10.函数关系:如果一个变量y的取值可以通过另一个变量或另一组变量以某种形式惟一地、精确地确定,则y与这个变量或这组变量之间的关系就是函数关系。

(3分)11.相关关系:如果一个变量y的取值受另一个变量或另一组变量的影响,但并不由它们惟一确定,则y与这个变量或这组变量之间的关系就是相关关系。

(3分)12.最小二乘法:用使估计的剩余平方和最小的原则确定样本回归函数的方法,称为最小二乘法。

(3分)13.高斯-马尔可夫定理:在古典假定条件下,OLS估计量是模型参数的最佳线性无偏估计量,这一结论即是高斯-马尔可夫定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绪论
计量经济学:根据理论和观测的事实,运用合适的推理方法使之联系起来同时推导,对实际经济现象进行的数量分析。

计量经济学(定量分析)是经济学(定性分析)、统计学和数学(定量分析)的结合。

目的:把实际经验的内容纳入经济理论,确定变现各种经济关系的经济参数,从而验证经济理论,预测经济发展的趋势,为制定经济策略提供依据。

类型:理论计量经济学和应用计量经济学
计量经济学的研究步骤:
(一)模型设定:要有科学的理论依据选择适当的数学形式方程中的变量要具有可观测性
(二)估计参数:参数不能直接观测而且是未知的
(三)模型检验:经济意义的检验、统计推断检验、计量经济学检验、模型预测检验
(四)模型应用:经济分析、经济预测、政策评价和检验、发展经济理论计量经济模型:计量经济模型是为了研究分析某个系统中经济变量之间的数量关系而采用的随机代数模型,是以数学形式对客观经济现象所作的描述和概括。

计量经济研究中应用的数据包括:①时间序列②数据截面③数据面板④数据虚拟变量数据
第二章
简单线性回归模型:只有一个解释变量的线性回归模型
相关系数:两个变量之间线性相关程度可以用简单线性相关系数去度量
总体相关系数:对于研究的总体,两个相互关联的变量得到相关系数。

总体相关系数Var方差Cov协议方差
总体回归函数:将总体被解释函数Y的条件期望表现为解释变量X的函数
总体
个体随机扰动项
引入随机扰动项的原因?
①作为未知影响因素的代表②作为无法取得数据的已知因素的代表③作为众多细小因素的综合代表④模型的设定误差⑤变量的观测误差⑥经济现象的内在随机性。

简单线性回归的基本假定?
(1)零均值假定时,即在给定解释变量Xi得到条件下,随机扰动项Ui的条件期望或条件均值为零。

(2)同方差假定,即对于给定的每一个Xi,随机扰动项Ui的条件方差等于某一常数。

(3)无相关假定,即随机扰动项Ui的逐次值互不相干,或者说对于所有的i和j(I不等于j),ui和uj的协方差为零。

(4)随机扰动项ui与解释变量Xi不想管
(5)正态性假定,即假定随机扰动项ui服从期望为零、方差为的正态分布。

最小二乘准则:用使估计的剩余平方和最小的原则确定杨讷回归函数
最小二乘估计量评价标准:无偏性、有效性、一致性。

统计特性:线性特性、无偏性、有效性。

E()=
P28
拟合优度:样本回归直线与样本观测数据之间的拟合程度。

可决系数=1-
修正的决定系数2
R 及其作用。

解答:
2
2
2
/1
1
()/1
t
t
e n k
R
y y n
--
=-
--

∑(2分)其作用有:(1)用自由度调整后,可以消除拟合优度
评价中解释变量多少对决定系数计算的影响;(2分)(2)对于包含解释变量个数不同的模型,可以用调整后的决定系数直接比较它们的拟合优度的高低,但不能用原来未调整的决定系数来比较(1分)。

多重共线性:指解释变量之间存在精确或近似的线性关系
产生多重共线性的原因?
(1)经济变量之间具有共同变化趋势(2)模型中包含滞后变量(3)利用截面数据建立模型也可能出现多重共线性(4)样本数据自身的原因
完全多重共线性的后果?
(1)参数的估计值不确定(2)参数估计值的方差无限大
不完全多重共线性下产生得到后果?
(1)参数估计值的方差与协方差增大(2)对参数区间估计时,置信区间趋于变大(3)严重的多重共线性时,假设检验容易作出错误的判断
(4)当多重共线性严重时,可能造成可决系数较高
多重共线性检验方法?
(1)简单相关系数检验法(2)方差膨胀因子法(3)直接观测法(4)逐步回归检测法降低多重共线性的经验方法?
(1)利用外部或经验信息(2)横截面与时间序列数据并用(3)剔除高度共线性的变量
(4)数据转换(5)获取补充数据或新数据(6)选择有偏估计量
异方差性:其他假设均不变,但模型中随机误差项的方差Var()=(i=1,2..n)则具有异方差性
异方差性产生的原因?
(1)模型设定误差(2)测量误差的变化(3)截面数据中总体名单的差异
异方差性产生的后果?
(1)对参数估计式统计特性的影响:参数的OLS估计仍然具有无偏性。

参数OLS 估计式得到方差不再是最小的
(2)对模型假定检验的影响:参数估计的方差若还是用OLS方法去估计方差,通常得到t统计量不再服从t分布,并且使用大样本也不能解决这个问题
(3)对预测的影响:导致参数的显著性检验失效和预测的精度降低。

异方差性的检验
1.图示检验法相关图分析残差分布图分析
2.(Goldfeld—Quandt)检验3.(White)检验4.RCH检验
异方差性的补救措施?
(1)对模型变换(2)加权最小二乘法(3)模型的的对数变换
自相关:指总体回归模型的随机误差项ui之间存在的相关关系
自相关产生的原因?
(1)经济系统的惯性(2)经济活动的滞后效应(3)数据处理造成的相关(4)蛛网现象(5)模型设定偏误
自相关的后果?
(1)一阶自回归形式的性质:自协方差均不为零。

(2)自相关对参数估计的影响:导致低估真实的
(3)对模型检验的影响:参数的最小二乘估计量是无效的,使得F检验和R2检验也是不可靠的。

(4)对模型预测的影响:使预测的置信区间不可靠,从而降低了预测精度自相关检验?
(1)图示检验法(2)DW检验法(3)LM检验
自相关的补救?
(1)广义差分法(2)自相关系数的确定
残差平方和2
i e ∑ 2
^22i n e σ=-∑ 21ess rss tss tss R
==- ()()()
22/11111/11RSS n k n TSS n n k R R ---=-=----- 2111n n k kF R -=---+ ()
()22/1/1k F n k R R =--- F 检验的步骤:
()01122,1,2,n i i i k ik Y x x x i ββββμ=++++=…+? 1、提出假设 ()012k 1:000
:1,2,k j H H j ββββ====,…,…,不全为零
2、在原假设0H 成立的条件下,统计量()//1ess k F rss n k =
-- 3、给定显著性水平α,查表可得临界值(),1F k n k α-- 4、(),1F F k n k α>--显著 T 检验步骤;
1、提出假设:0111:0:0
H H ββ=≠ 2、在0H 成立的前提条件下,由2^112~,i N x ββσ⎛⎫ ⎪ ⎪⎝⎭∑构造统计量
()^1
^
11~1t t n k S βββ-=-- ~t (n-2)
3、给定显著性水平α,查表可得()21n k t α--。

得出拒绝域()2
1t n k t α>--
4、把样本带入,求统计量值。

若2t t α>,则落入拒绝域,拒绝原假设 。

相关文档
最新文档