第3章直流伺服电动机解析
直流伺服电机的工作原理

直流伺服电机的工作原理
直流伺服电机是一种利用直流电源驱动的电动机。
其工作原理基于电磁感应的原理,主要包括电磁场产生、电力转换和闭环控制三个方面。
首先是电磁场产生,直流伺服电机内部有一组永磁体和一组电磁线圈。
当电流通过电磁线圈时,会产生一个磁场,该磁场将与永磁体的磁场相互作用,从而产生一个力矩。
可以通过改变电流的大小和方向来控制电磁场的强弱和极性,进而实现力矩的调节。
然后是电力转换的过程。
直流伺服电机通常通过直流电源供电,电源提供的直流电流经过控制器进行调节和分配。
控制器根据系统需求,通过改变电流的幅值和极性来控制伺服电机的运动。
电流经过电机的线圈时,会产生电流与磁场相互作用的力矩,从而驱动电机转动。
同时,电流也会通过电机的线圈产生电阻损耗和铜损耗。
最后是闭环控制,直流伺服电机通常配备反馈装置,如编码器或霍尔传感器。
这些传感器可以实时监测电机的转动角度和速度,并将信息反馈给控制器。
控制器通过对反馈信号的比较和计算,实时调整电流的输出,以使得电机的位置或速度达到预定的目标。
这种闭环控制可以保证伺服电机在不同负载和工况下的稳定性和精度。
综上所述,直流伺服电机的工作原理主要包括电磁场产生、电力转换和闭环控制三个方面。
通过调节电磁场的大小和方向,
利用电力转换将电能转化为力矩,然后通过闭环控制使电机按照预定目标进行位置或速度调节。
这种原理使得直流伺服电机在许多领域中得到广泛应用,包括工业自动化、机械加工、机器人技术等。
《直流伺服电机》PPT课件

图1-11 印制绕组直流伺服电动机 l-后轭铁(端盖);2-永久磁钢;3-电刷;4-印制绕组;5-机壳;6-前轭铁(端盖)
转子呈薄片圆盘状,厚度一般为(1.5~2) mm,转子的绝缘基片是环氧玻璃 布胶板。胶合在基片两侧的铜箔用印刷电路制成双面电枢绕组,电枢导体还 兼作换向片。定子由永久磁钢和前后盘状轭铁组成,轭铁兼作前后端盖。组 成多极的磁钢胶合在轭铁一侧,在电机中形成轴向的平面气隙。
3.1.1概述
3. 控制系统对伺服电动机的根本要求
宽广的调速范围 机械特性和调节特性均为线性 无“自转〞现象 快速响应。
此外,还要求伺服电动机的控制功率小、重量轻、 体积小等。
3.1.2直流伺服电动机的控制方式和运行特性
控制方式
由
nUa IaRa
Ce
可知,改变电枢电压和改变励磁磁通都可以改变电动机的
构造 杯形电枢绕组是用导线绕在
绕线模上,然后用环氧树脂 定形做成的。杯形转子内外 两侧有内外定子构成磁路。 由于转子内外侧都需要有足 够的气隙,所以气隙大,磁 阻大,磁动势利用率低。
图1-10 杯形转子直流伺服电动机 l-内磁轭;2-电枢绕组;3-永久磁钢;
4-机壳(磁轭);5-电刷;6-换向器
1.4.2 低惯量直流伺服电动机
1.4.1 直流力矩电动机
为什么做成圆盘状?
由 E a 6 p a 0 n N 6 a ( p 0 ) n 和 N T e 2 p a I a N 2 I a a ( p ) 可 N 知
在电枢电动势Ea Ua
、每极磁通
和导体电流ia
Ia 2a
一样的条件
下,增加导体数N和极对数p,能使转速n降低,电磁转矩Te增大。
由 nC U e a CT eC sR t ,a 2当n=0时,便可求得 Ua Ua0CRt a Ts
直流伺服电动机脉宽调制的工作原理

直流伺服电动机是一种广泛应用于工业控制系统中的电动机,其主要特点是控制精度高、速度范围广、响应速度快等。
而脉宽调制(PWM)技术是一种常用的电力控制技术,通过调整脉冲宽度来控制输出电压,被广泛应用于直流伺服电动机的速度和位置控制中。
本文将介绍直流伺服电动机脉宽调制的工作原理,包括脉宽调制原理、直流伺服电动机的工作原理、脉宽调制在直流伺服电动机中的应用等内容。
一、脉宽调制原理脉宽调制技术是一种通过调制脉冲信号的宽度来控制输出电压或电流的技术。
其基本原理是将输入信号与一个高频的载波信号进行调制,通过改变调制信号的脉冲宽度,来实现对输出信号的控制。
脉宽调制技术可以实现对输出信号的精确控制,并且具有简单、成本低廉、效率高等优点,因此被广泛应用于各种电力控制领域。
二、直流伺服电动机的工作原理直流伺服电动机是一种能够精确控制角度、速度和位置的电动机,其主要由电动机、编码器和控制器组成。
控制器通过不断地监测编码器反馈的位置信息,计算电机与期望位置之间的误差,并输出控制信号来调节电机的速度和位置,从而实现对电机的精确控制。
三、脉宽调制在直流伺服电动机中的应用脉宽调制技术被广泛应用于直流伺服电动机的速度和位置控制中,其工作原理如下:控制器根据输入的期望速度或位置信号,计算出电机的转速或角度误差,然后将误差信号传递给脉宽调制模块。
脉宽调制模块通过调整输出脉冲信号的宽度和周期,控制电机的转速和位置,从而实现对电机的精确控制。
四、脉宽调制在直流伺服电动机中的优势脉宽调制技术在直流伺服电动机中具有以下优势:1. 精确控制:脉宽调制技术可以实现对电机的精确控制,包括速度、角度和位置的精确控制。
2. 响应速度快:脉宽调制技术可以实现对电机的快速响应,提高了系统的动态性能。
3. 节能减排:脉宽调制技术可以实现能效优化,降低了能耗,减少了环境污染。
4. 成本低廉:脉宽调制技术成本低廉,便于大规模应用。
五、总结脉宽调制技术在直流伺服电动机中的应用,实现了对电机的精确控制和高效能运行。
简述直流伺服电动机的工作原理

简述直流伺服电动机的工作原理直流伺服电动机是一种常见的电机类型,广泛应用于工业自动化控制、机器人、汽车、医疗设备等领域。
本文将简述直流伺服电动机的工作原理,包括电机结构、电机控制系统、编码器反馈系统等方面。
一、电机结构直流伺服电动机的基本结构包括转子、定子、永磁体、电刷等部分。
其中,永磁体是电机的核心部件,它产生磁场,使得电机可以转动。
电刷则起到输送电能的作用,通过与转子接触,将电能传递给转子。
在直流伺服电动机中,转子通过电磁感应原理产生转矩,从而带动负载旋转。
同时,电机控制系统可以通过改变电流的方向和大小来控制电机的转速和转向。
二、电机控制系统直流伺服电动机的控制系统主要包括功率放大器、控制器和编码器反馈系统。
功率放大器是直流伺服电动机的重要组成部分,它负责将控制信号转换为电流信号,并将其提供给电机。
控制器则负责处理控制信号,将其转换为电机可以理解的信号。
编码器反馈系统则用于检测电机的转速和位置,并将其反馈给控制器,从而实现闭环控制。
在控制系统中,控制器通常采用PID控制算法,通过调节控制信号,使得电机的转速和位置达到预定的目标值。
同时,电机的速度和位置可以通过编码器反馈系统进行实时监测和调整,从而保证电机的精准控制。
三、编码器反馈系统编码器反馈系统是直流伺服电动机的重要组成部分,它用于检测电机的转速和位置,并将其反馈给控制器。
编码器通常分为增量式编码器和绝对式编码器两种类型。
增量式编码器可以检测电机的转速和位置变化,但无法确定电机的绝对位置。
绝对式编码器则可以确定电机的绝对位置,但通常比增量式编码器更昂贵。
在编码器反馈系统中,编码器通过检测电机的转子和定子之间的相对位置来确定电机的转速和位置。
控制器可以根据编码器反馈的信息进行实时调整,从而保证电机的精准控制。
四、总结直流伺服电动机是一种重要的电机类型,具有精准控制、高效能、高速度等优点。
其工作原理主要包括电机结构、电机控制系统和编码器反馈系统等方面。
直流伺服电动机及其控制方法

要下降, 直到电枢电流恢复到原来的数值,使电磁转
矩和总阻转矩重新平衡时, 才达到稳定状态。 但这是
一个更高转速n2时的新的平衡状态。 这就是电动机转 速n随电枢电压Ua升高而升高的物理过程。
为了清晰起见, 可把这个过程用下列符号表示: 当Ts、 Φ不变时,
电枢电压Ua控制电动机转速变化的物理过程如下: 开始时, 电动机所加的电枢电压为Ua1 , 电动机的转 速为n1, 产生的反电势为Ea1 , 电枢中的电流为Ia1 , 根据电压平衡方程式, 则
Ua1 =Ea1 +Ia1 Ra=CeΦn1+Ia1Ra
(3 - 19)
这时, 电动机产生的电磁转矩T=CTΦIa1 。 由于电 动机处于稳态, 电磁转矩T和电动机轴上的总阻矩Ts相 平衡, 即T1=Ts。
由式(3 - 3)得到
T
Ia CT
把它代入式(3 - 9), 并考虑到Ea=CeΦn, 则得
Ua
Cen
TRa
CT
移项后, 得到
Ua
Ua
Ce
TRa
CeCT 2
(3 - 20)
式中, T为电动机产生的电磁转矩。 在稳态时, 电动机的电磁转矩与轴上的阻转矩相平衡, 即T=Ts。 所以稳态时, 上式可以写成
如果保持电动机的负载转矩TL不变, 也即阻转矩 Ts不变, 而把电枢电压升高到Ua2 , 起初, 由于电动机 有惯性, 转速不能马上跟上而仍为n1, 因而反电势仍 为Ea1 。 由于Ua1 升高到Ua2 而Ea1 不变, 为了保持电压 平衡, Ia1 应增加到I′a, 因此电磁转矩也相应由T增加 到T′, 此时电动机的电磁转矩大于总阻转矩Ts, 使电 动机得到加速。随着电动机转速的上升, 反电势Ea增
直流伺服电动机

一、直流伺服电动机的结构和分类
直流伺服电动机实质上就是一台他励式直流电动机。
分类: ㈠ 传统型直流伺服电动机:普通型直流伺服电机,分为电
磁式和永磁式两种。 ㈡ 低惯量型直流伺服电动机 ⑴ 盘形电枢直流伺服电动机; ⑵ 空心杯电枢直流伺服电动机; ⑶ 无槽电枢直流伺服电动机。
图7.2.1 盘形电枢直流伺服电动机结构
当转矩为零时,电机转速仅与电枢电压有关,此时的转速
称为理想空载转速。
n
n0
U ke
当转速为零时,电机转矩仅与电枢电压有关,此时的转矩 称为堵转转矩。
U TD Ra kT
直流伺服电动机的机械特性如图7.2.4所示:
图7.2.4 电枢控制的直流伺服电机机械特性
图7.2.5 直流伺服电机调节特系。
图7.2.2 空心杯电枢直流伺服电动机结构
图7.2.3 无槽电枢直流伺服电动机结构
二、直流伺服电动机的运行特性
转速关系式:
n
U ke
Ra kekT
Tem
1、机械特性:指在控制电压保持不变的情况下,直流伺服
电动机的转速n随转矩变化的关系。
n n0 kTem
式中:
n0
U ke
,k
Ra kekT
控制方式:电枢控制和磁极控制,实际中主要采用电枢控制方式。
直流伺服电动机的调节特性如图7.2.5所示。
(完整版)《直流伺服电动机》PPT课件

第二章 直流伺服电动机
3.4 直流电动机的使用
3.4.1 直流电动机的启动
启动要求:
①启动时电磁转矩要大,以利于克服启动时阻转矩,包括总
阻转矩
Ts
和惯性转矩J
dΩ dt
。
②启动时电枢电流不要太大,一般把启动电流限制在允许电 流值的 1.5~2 倍以内。
③要求电动机有较小的转动惯量和加速过程中保持足够大的 电磁转矩,以利于缩短启动时间。
第二章 直流伺服电动机
1) 负载为常数时的调节特性
电动机的负载转矩主要是动摩擦转矩TL加上电机本 身的阻转矩T0, 所以电动机的总阻转矩Ts=TL+T0。 在 转速比较低的条件下, 总阻转矩Ts是一个常数。
由式: n Ua TsRa
Ce CeCT 2
表征调节特性两个量
①始动电压——Ua0,是电动机处于待动而未动这种临界状 态时的控制电压。
作为控制信号, 实现电动机的转速控制。
第二章 直流伺服电动机
电枢电压Ua,转速n 以及电磁转矩T 的关系:
Ua
移项后,得到
Cen
TRa
CT
n
Ua Ce
TRa CeCT 2
在稳态时,电动机的电磁转矩与轴上的阻转矩相平衡, 即
T=Ts。所以稳态时,上式可以写成
n
Ua
Ce
Ts Ra
CeCT 2
第二章 直流伺服电动机
第二章 直流伺服电动机
第 3章 直流伺服电动机
3.1 直流电动机 3.2 电磁转矩和转矩平衡方程式 3.4 直流电动机的使用 3.5 直流伺服电动机及其控制方法 3.6 直流伺服电动机的稳态特性 3.9 直流力矩电动机 习题
第二章 直流伺服电动机
直流伺服电机原理

直流伺服电机原理直流伺服电机是一种广泛应用于工业自动化领域的电机,其原理和工作方式具有一定特点和优势。
本文将介绍直流伺服电机的原理及其工作过程。
原理介绍直流伺服电机是一种能够根据外部控制信号调整输出角位置的电机。
其基本原理是利用电磁感应产生的磁场与永久磁铁的磁场相互作用,从而产生转矩。
直流伺服电机通过控制电压大小和方向,可以实现精确的位置控制。
工作过程1.电磁感应原理直流伺服电机的转子上有导线绕组,当通入电流时,导线中会产生磁场。
这个磁场与永久磁铁之间的相互作用产生了转矩,从而驱动电机运转。
2.控制回路直流伺服电机通常配备有控制回路,用于接收外部控制信号并调整电机的转速和位置。
控制回路可以根据不同的控制算法来实现位置闭环或速度闭环控制,以保证电机的准确性和稳定性。
3.编码器反馈为了实现更精确的位置控制,直流伺服电机通常会配备编码器模块,用于实时反馈电机的位置信息。
控制回路通过读取编码器信号,可以及时调整电机的输出,实现精确的位置控制。
4.功率驱动电机通常需要配备功率驱动模块,用于根据控制信号调整电机的电压和电流输入。
功率驱动模块可以根据电机的负载情况和运行要求来动态调整电机的输出功率,以确保电机的稳定性和可靠性。
应用领域直流伺服电机广泛应用于机械臂、自动化设备、数控机床等领域,其高精度、高效率的特点使其成为自动化领域的重要组成部分。
通过合理的控制和设计,直流伺服电机可以实现机械系统的高速、高精度运动,大大提高生产效率和产品质量。
总的来说,直流伺服电机通过电磁感应原理、控制回路、编码器反馈和功率驱动等模块的相互配合,实现了高精度、高效率的位置控制,为工业自动化带来了重大的便利和优势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直流伺服电动机电枢绕组的反电势
If
+
Uf
–
Ia
+
+
TG
Ua
– –
Ua Ia Ra Ea Ua Ea Ia Ra
Ia
Ua
Ia Ra Ra
Ua
Cen Ra
n Ua Ia Ra Ce
直流电机电枢绕组的电磁转矩
f
b lia
b
l
Ia 2a
左手定则
bδ
电磁转矩: t f D
2
tav
Bavl
传统式直流伺服电动机 低惯量型直流伺服电动机 (1).无槽电枢直流伺服电动机 (2).空心杯电枢永磁式直流伺服电动机
3直流伺服电动机的工作原理
以单线圈简化模型为例,进行 分析。 在电刷间接入直流电源后,在 线圈中就有直流电流流过。
电磁力定律: f Bli 满足左手定则
直流电机换向器将外部的直流电变成了内部
电枢电流 Ia1 0.08A
,已知电枢电阻为 Ra 30
当U 矩T
a及输1出10转V 矩,ITa22
1.5A
时的电机转速 n
,电磁转
工作原理:采用电枢控制方式时,Uf保持恒 值,当电枢电压Uc(即信号电压)改变时,
得到一组平行的机械特性。
n Uc
RaU
2 f
n Uc1> Uc2>Uc3>Uc4
Ia 2a
D 2
bδ
Bav
.
. . . . . .
. . . . . . .
0
ia T
x n
总电磁转矩:
T
z
ti
i 1
zeav
zBavl
Ia 2a
D 2
电枢绕组的电磁转矩(续)
将 D 2 p / 及 Bavl 代入总电磁转矩表
达式得
T
pN
2 a
Ia
Ct I a
[N]
Ct
pN
2 a
且有
Ct
60
2
Ce
已知某直流伺服电动机电枢电为 Ra ,当外加电压 为Ua 时,电枢电流为 Ia 电动机转速为n,求电 磁转矩 T 。
直流伺服电动机转矩平衡方程式
T2 T Tf TL T2 输出转矩
T f 阻转矩
TL 负载转矩
一台SZ电磁式直流伺服电动机,励磁电压保持恒定。
当电枢电压 Ua 100V 时,空载转速 n0 3000r / min
第三章直流伺服电动机
直流伺服电动机的结构与直流电动机基本相同。只 是为减小转动惯量,电机做得细长一些。直流伺服 电动机的工作原理也与直流电动机相同。
本章的主要内容: 1.直流伺服电动机的基本工作原理 2.电枢绕组的反电势,电压方程. 3.电磁转矩计稳态时的转矩方程式 4.电枢控制时的机械特性
直流伺服电动机的结构
交替变化的电流。
图中电刷相对于磁极的位置保证了,无论线圈 边处在N极下,还是S极下,线圈电流均产生逆 时针方向的电磁力矩,从而使转子获得了一个 固定方向的电磁转矩。
直流电机换向器将外部的直流电变成了内部
交替变化的电流。
图中电刷相对于磁极的位置保证了,无论线圈 边处在N极下,还是S极下,线圈电流均产生逆 时针方向的电磁力矩,从而使转子获得了一个 固定方向的电磁转矩。
Uc3UcU2 c1
Uc4
T
0
特点:起动转矩大,调速范围宽,无自 转现象,但易产生火花,可靠性差,易 产生无线电干扰。