(完整版)导数的概念及其几何意义同步练习题(学生版)
高二数学导数的概念和几何意义试题答案及解析

高二数学导数的概念和几何意义试题答案及解析1.若曲线在点处的切线方程是,则.【答案】2【解析】,又在点处的切线方程是,.【考点】三角函数化简求值.2.函数在处的切线方程是()A.B.C.D.【答案】A【解析】,因此切线方程为,即.【考点】(1)导数的运算法则;(2)导数的几何意义.3.若曲线f(x,y)=0上两个不同点处的切线重合,则称这条切线为曲线f(x,y)=0的“自公切线”,下列方程:①x2﹣y2=1②x2﹣|x﹣1|﹣y=0③xcosx﹣y=0④|x|﹣+1=0其中所对应的曲线中存在“自公切线”的有()A.①②B.②③C.①④D.③④【答案】B【解析】①x2﹣y2=1是一个等轴双曲线,没有自公切线;②x2﹣|x﹣1|﹣y="0" ,由两圆相交,可知公切线,满足题意,故有自公切线;③xcosx﹣y=0的图象过(2π,2π ),(4π,4π),图象在这两点的切线都是y=x,故此函数有自公切线;④|x|﹣+1=0,其表示的图形为图中实线部分,不满足要求,故不存在.故选:B【考点】利用导数研究曲线上某点切线方程.4.抛物线在点处的切线的倾斜角是( )A.30B.45C.60D.90【答案】B【解析】设抛物线在点处的切线的倾斜角为,因为,由导数几何意义得:,故选B.【考点】导数几何意义.5.已知函数,若曲线存在与直线平行的切线,则实数的取值范围是()A.B.C.D.【答案】A【解析】对函数求导可得,存在与直线平行的切线,即有实数解,则,,则,得.故选A.【考点】导数的几何意义.6.函数是定义在R上的可导函数,则下列说法不正确的是()A.若函数在时取得极值,则B.若,则函数在处取得极值C.若在定义域内恒有,则是常数函数D.函数在处的导数是一个常数【答案】B.【解析】对于B,可以构造函数,则,而并不是的极值点,而A,C,D均正确,∴选B.【考点】导数的性质.7.函数的图像在点)处的切线与轴的交点的横坐标为()若,则= 。
高二数学导数的概念和几何意义试题答案及解析

高二数学导数的概念和几何意义试题答案及解析1.设曲线在点处的切线与直线垂直,则()A.2B.C.D.【答案】B【解析】,故切线的斜率,在由切线与直线垂直得,即.【考点】导数的应用之一:曲线在一点处的切线以及两直线之间的位置关系.2.已知函数().⑴若函数的图象在点处的切线的倾斜角为,求在上的最小值;⑵若存在,使,求的取值范围.【答案】⑴在上的最小值为;⑵的取值范围为.【解析】⑴对函数求导并令导函数为0,看函数的单调性,即可求在上的最小值;⑵先对函数求导得,分、两种情况讨论即可求的取值范围.(1) 1分根据题意, 3分此时,,则.令-+∴当时,最小值为. 8分(2)∵,①若,当时,,∴在上单调递减.又,则当时,.∴当时,不存在,使 11分②若,则当时,;当时,.从而在上单调递增,在上单调递减.∴当时, 14分根据题意,,即,∴. 15分综上,的取值范围是. 16分【考点】导数的应用、分类讨论思想.3.设,则曲线在处的切线的斜率为()A.B.C.D.【答案】B【解析】因为,根据导数的几何意义可知,曲线在处的切线的斜率为,故选B.【考点】导数的几何意义.4.设曲线在点(3,2)处的切线与直线垂直,则的值是A.2B.C.D.【答案】B【解析】函数=1+的导数为,∴曲线在点(3,2)处的切线斜率为,由×(-a)="-1" 得,a=-2,故答案为:B.【考点】函数在某点的导数值与曲线在此点的切线的斜率的关系;两直线垂直的性质.5.设,则在处的导数()A.B.C.0D.【答案】A【解析】,故选A.【考点】某点处的导数.6.与直线2x-6y+1=0垂直,且与曲线f(x)=x3+3x2-1相切的直线方程是________.【答案】【解析】与已知直线垂直的直线的斜率,,解得,代入曲线方程所以切线方程为,整理得:【考点】1.导数的几何意义;2.直线的垂直.7.已知A为函数图像上一点,在A处的切线平行于直线,则A点坐标为 ;【答案】(1,2)【解析】因为,设,则A点坐标为(1,2).【考点】导数的几何意义8.过点且与曲线相切的直线方程为()A.或B.C.或D.【答案】A【解析】设切点为,因为,所以切线的斜率为,所以切线方程为,又因为切线过点,所以即,注意到是在曲线上的,故方程必有一根,代入符合要求,进一步整理可得即,也就是即,所以或,当时,,切线方程为即;当时,,切线方程为即,故选A.【考点】导数的几何意义.9.在曲线处的切线方程为。
高二数学导数的概念和几何意义试题答案及解析

高二数学导数的概念和几何意义试题答案及解析1.若直线是曲线的切线,则的值为 .【答案】或.【解析】设直线是曲线的切点的坐标为,则,即,且,联立这两个方程解得:或,从而或.【考点】利用导数研究曲线上某点切线方程.2.函数在处的切线方程是()A.B.C.D.【答案】A【解析】∵,∴切线的斜率,切点坐标(0,1)∴切线方程为y-1=-(x-0),即x+y-1=0.故选A.【考点】导数的几何意义;函数的求导运算.3.若,则等于()A.-1B.-2C.1D.【答案】A【解析】根据导数的定义知===-1,故选A.【考点】导数的定义4.(1)已知函数,过点P的直线与曲线相切,求的方程;(2)设,当时,在1,4上的最小值为,求在该区间上的最大值.【答案】(1) 或(2) 最大值为【解析】(1) 根据题意可知,直线过点,但是并没有说明该点是不是切点,所以得设出切点坐标,根据导数的几何意义可知,曲线切线的斜率就是在切点横坐标处的导数,然后利用点斜式求得切线方程;代入点可求出切点,从而得切线方程.(2)首先利用导数求得极值点和函数的单调区间,根据的范围可判断出函数在所给区间上的单调性,从而得出在该区间上的最小值(含),令其等于可得,从而求出在该区间的最大值.试题解析:(1)根据题意可知,直线过点,但是并没有说明该点是不是切点,所以设切点为,因为函数的导函数为,所以根据导数的几何意义可知,切线的斜率,则利用点斜式可得:切线的方程.因为过点,所以,解得或故的方程为或,即或.(2)令得,,故在上递减,在上递增,在上递减.当时,有,所以在上的最大值为又,即.所以在上的最小值为,得故在上的最大值为【考点】导数法求切线方程;导数法求单调性和最值.5.曲线在处的切线的倾斜角是()A.B.C.D.【答案】C【解析】由题知,当时,,则倾斜角的正切值为,倾斜角为.【考点】1.导数的几何意义;2.斜率与倾斜角.6.下列关于函数的性质叙述错误的是()A.在区间上单调递减B.在定义域上没有最大值C.在处取最大值3D.的图像在点处的切线方程为【答案】C【解析】因为,于是可得00极小值当时,,当时,所以可知A、B正确,C不正确,在处取得极大值3,并不是最大值而的图像在点处的切线的斜率为,故此时的切线方程为综上可知,只有C是错误的,故选C.【考点】导数在研究函数性质上的应用.7.已知函数.(1)若,求曲线在点处的切线方程;(2)若函数在其定义域内为增函数,求正实数的取值范围;(3)设函数,若在上至少存在一点,使得>成立,求实数的取值范围.【答案】(1);(2)实数的取值范围是;(3)实数的取值范围.【解析】(1)求的导数,找出处的导数即切线的斜率,由点斜式列出直线的方程即可;(2)求出函数的定义域,在定义域内利用导数与函数增减性的关系,转化为恒成立问题进行求解即可;(3)讨论在定义域上的最值,分情况讨论的增减性,进而解决存在成立的问题即可.(1)当时,函数,,曲线在点处的切线的斜率为从而曲线在点处的切线方程为,即 3分(2)令,要使在定义域内是增函数,只需在内恒成立由题意,的图象为开口向上的抛物线,对称轴方程为∴,只需,即时,∴在内为增函数,正实数的取值范围是 7分(3)∵在上是减函数∴时,;时,,即①当时,,其图象为开口向下的抛物线,对称轴在轴的左侧,且,所以在内是减函数当时,,因为,所以,此时,在内是减函数故当时,在上单调递减,不合题意②当时,由,所以又由(Ⅱ)知当时,在上是增函数∴,不合题意 12分③当时,由(Ⅱ)知在上是增函数,又在上是减函数,故只需,而,即,解得所以实数的取值范围是 15分.【考点】1.导数的几何意义;2.函数的单调性与导数;3.二次函数的图像与性质;4.分类讨论的思想.8.函数的图像在点)处的切线与轴的交点的横坐标为()若,则= 。
5.1 导数的概念及意义学生版

5.1 导数的概念及意义常见考法考点一平均速率【例1】.(2020.江苏张家港.高二期中)函数f (x ) = f-SinX 在[0,扪上的平均变化率为()A. 1B. 2C. πD. /■【一隅三反】1. (2020.武汉市钢城第四中学高二期中)如果函数/(x ) = αr + b 在区间[1,2]上的平均变化率为3,则。
=() A. -3B. 2C. 3D. -22. (2020.重庆高二月考)函数),=/+彳在% = ]到冗= ] + ©之间的平均变化率为( )A. Δx+2B. Δx+3C. 2∆x+(∆x )^D. 3∆x + (∆x )^思维导图 平均速率导数的概念及意义导数概念函数.,=/3)从R 到内的平均变化率为9人占工 若Ar=4-XI ,邮=/(")一曲) Xl -Xl则平均变化率可表示琮.设函数尸人力在区间(G 与上有定义,Λ∈(Λ a,当AX 无限趋近于O 时, 比值"=念±9立期无限趋近于一个常数A ,则称打力在X=X 处可导 AJr AX并称常数/为的敷∕tr )在k4处的导致,记作f (⅜). __________________________导数的几何意义函数F =/⑸在点4处的导致的几何意义,就是曲线J =网在点•,曲))处的 切线的斜率%即氏=/* 8).考点一平均速 考点二导数的概念〉考点三导数的iS )3.(2020.皇姑•辽宁实验中学高二月考)函数),=,在X = I到χ = 3之间的平均变化率为()X2 2 1 1A. -B. 一一C. 一一D.-3 3 3 3考点二导数的概念【例2】(1)(2020.利辛县阚噬金石中学高三月考)设/(x)为可导函数,且满足条件叫J也三= 5,则曲线y = ∕(χ)在点(1"⑴)处的切线的斜率为()A. 10B. 3C. 6D. 8(2). (2020•广东南海•高二期末)在高台跳水运动中ZS时运动员相对于水面的高度(单位:m)是∕ι(z) = -4.9r2+6.5r + 10,则高台跳水运动中运动员在z = 2s时的瞬时速度是()A. -3.3B. -13.1C. 13.1D. 3.3【一隅三反】1.(2020•扶风县法门高中高二月考(理))一个物体的位移S关于时间,的运动方程为S=I—l+[2,其中S的单位是:m, I的单位是:s,那么物体在t=3 s时的瞬时速度是A. 5 m / sB. 6 m / sC. 7 m / sD. 8 m / s2.(2020.赣州市赣县第三中学高二月考(文))已知函数段)在X=XO处的导数为12,则Iim /一弋-)=ArTo 3∆X()A. -4B. 4C. -36D. 363.(2020•赣州市赣县第三中学高二月考(理))已知函数/(x) = ∣x-∙∣lnx,则㈣/⑴-(.AX) =()4 5A. 1B. -1C. ----D. ------3 34.(2020.广东佛山.高二期末)若/(1) = —1,则Iim/° + AX匕/⑴二()AXTo Ar考点三导数的计算【例3】(2020.河南)设点P是函数/(x) = "'—r(0)x+∕'(l)图象上的任意一点,点P处切线的倾斜角为。
5.1.2导数的概念及其几何意义 -A基础练(学生版)

5.1.2导数的概念及其几何意义 -A 基础练一、选择题1.(2020·全国高二课时练)若(m 为常数),则等于( )A .B .1C .mD .2.(2020·全国高二课时练)已知函数在上可导,其部分图象如图所示,设,则下列不等式正确的是( )A .B .C .D .3.(2020·全国高二课时练)已知直线经过,两点,且与曲线切于点,则的值为( ) A . B . C . D .4.已知曲线y =x 3在点P 处的切线的斜率k =3,则点P 的坐标是( )A .(1,1)B .(-1,1)C .(1,1)或(-1,-1)D .(2,8)或(-2,-8)5.(多选题)(2020·河北正定高二月考)为了评估某种治疗肺炎药物的疗效,现有关部门对该药物在人体血管中的药物浓度进行测量.设该药物在人体血管中药物浓度与时间的关系为,甲、乙两人服用该药物后,血管中药物浓度随时间变化的关系如下图所示.给出下列四个结论正确的是( )A.在时刻,甲、乙两人血管中的药物浓度相同;B. 在时刻,甲、乙两人血管中药物浓度的瞬时变化率相同;C. 在这个时间段内,甲、乙两人血管中药物浓度的平均变化率相同;D. 在,两个时间段内,甲血管中药物浓度的平均变化率不相同.6.(多选题)(2020·山西师大附中高二月考)下列命题正确的是( )A .若,则函数在处无切线B .函数的切线与函数的图象可以有两个公共点C .曲线在处的切线方程为,则当时,D .若函数的导数,且,则的图象在处的切线方程为二、填空题7.已知函数y =ax 2+b 在点(1,3)处的切线斜率为2,则b a=________. 8.(2020·江西九江高二月考)如图,函数的图象在点处的切线方程是,则_____.9.已知曲线y =f (x )=x ,y =g (x )=1x,它们的交点坐标为________,过两曲线的交点作两条曲线的切线,则曲线f (x )在交点处的切线方程为________.10.(2020·湖南衡阳高二月考)已知二次函数f (x )=ax 2+bx +c 的导数为f ′(x ),f ′(0)>0,对于任意实数x ,有f (x )≥0,则f (1)f ′(0)的最小值为________. 三、解答题11.(2020·全国高二课时练)在曲线上求一点,使得曲线在点处的切线分别满足下列条件: (1)平行于直线;(2)垂直于直线;(3)倾斜角为.12.(2020·山东菏泽三中高二期中)设函数f (x )=x 3+ax 2-9x -1(a <0),若曲线y =f (x )的斜率最小的切线与直线12x +y =6平行,求a 的值.。
2.2导数的概念及其几何意义(讲义+典型例题+小练)(解析版)

2.2导数的概念及其几何意义(讲义+典型例题+小练)一.导数的定义:0000000()()()'()'|lim()()()'()'limx x x x f x x f x y f x x x f x y xf x x f x y f x f x y x=∆→∆→+∆-====∆+∆-===∆1.(1).函数在处的导数: (2).函数的导数:2.利用定义求导数的步骤:①求函数的增量:00()()y f x x f x ∆=+∆-;②求平均变化率:00()()f x x f x y x x+∆-∆=∆∆; ③取极限得导数:00'()lim x yf x x∆→∆=∆例1:1.设()()22lim2x f x f x x∆→+∆--∆=-∆,则曲线()y f x =在点()()22f ,处的切线的倾斜角是( ) A .4π B .3π C .34π D .23π 【答案】C 【分析】根据导数的概念可得()21f '=-,再利用导数的几何意义即可求解. 【详解】 因为()()()022lim222x f x f x f x∆→+∆--∆'==-∆,所以()21f '=-,则曲线()y f x =在点()()22f ,处的切线斜率为1-,故所求切线的倾斜角为34π. 故选:C2.已知函数()y f x =在0x x =处的导数为1,则()()000lim 2x f x x f x x∆→+∆-=∆( )A .0B .12C .1D .2【分析】由已知结合导数的定义即可直接求解. 【详解】解:因为函数()y f x =在0x x =处的导数为1, 则()()()()()0000000111limlim 2222x x f x x f x f x x f x f x x x ∆→∆→+∆-+∆-'===∆∆.故选:B . 【点睛】本题考查导数的概念,涉及极限的性质,属于基础题.举一反三:1.设()f x 是可导函数,且()()000lim 2x f x x f x x∆→+∆-=-∆,则0()f x '=( )A .2B .1-C .1D .2-【答案】D 【分析】由导数的定义可得()()0000lim ()x f x f x f x x x∆→+-'=∆∆,即可得答案.【详解】 根据题意,()()0000lim()2x f x f x f x x x∆→∆+-'==-∆,故0()2f x '=-. 故选:D . 【点睛】本题考查导数的定义,属于基础题. 2.若()02f x '=,则()()000lim2h f x h f x h→+-=______.【答案】1 【解析】 【分析】根据导数的几何定义即可计算.()()()()()000000011limlim 1222h h f x h f x f x h f x f x h h →→+-+-'===.故答案为:1.二.导数的几何意义:函数()f x 在0x 处导数的几何意义,曲线()y f x =在点()()00,P x f x 处切线的斜率是()0k f x '=。
(完整版)导数练习题(含答案)

导数概念及其几何意义、导数的运算一、选择题:1 已知,若,则a 的值等于32()32f x ax x =++(1)4f '-=ABCD1931031631332 已知直线与曲线,则b 的值为1y kx =+3y x ax b =++切于点(1,3)A3B-3C5D-53 函数的导数为2y x a a =+2()(x-)ABCD 222()x a -223()x a +223()x a -222()x a +4 曲线在点处的切线与坐标轴围成的三角形的面积为313y x x =+4(1,)3A B C D192913235已知二次函数的导数为,对于任意实数x ,有,则2y ax bx c =++(),(0)0f x f ''>()0f x ≥的最小值为(1)(0)f f 'A3BC 2 D52326 已知函数在处的导数为3,则的解析式可能为()f x 1x =()f x A B2()(1)3(1)f x x x =-+-()2(1)f x x =-CD 2()2(1)f x x =-()1f x x =-7 下列求导数运算正确的是AB211(1x x x'+=+21(log )ln 2x x '=CD 3(3)3log x x e '=⋅2(cos )2sin x x x x'=-8 曲线在处的切线的倾斜角为32153y x x =-+1x =AB C D6π34π4π3π9 曲线在点处的切线方程为3231y x x =-+(1,1)-A BCD 34y x =-32y x =-+43y x =-+45y x =-10设函数的图像上的点处的切线斜率为k ,若,则函数的sin cos y x x x =+(,)x y ()k g x =()k g x =图像大致为11 一质点的运动方程为,则在一段时间内相应的平均速度为253s t =-[1,1]t +∆ABCD 36t ∆+36t -∆+36t ∆-36t -∆-12 曲线上的点到直线的最短距离是()ln(21)f x x =-230x y -+=ABCD 013 过曲线上的点的切线平行于直线,则切点的坐标为32y x x =+-0P 41y x =-0P A B(0,1)(1,0)-或(1,4)(1,0)--或CD (1,4)(0,2)---或(2,8)(1,0)或14 点P 在曲线上移动,设点P 处切线的倾斜角为,则角的取值范围是323y x x =-+ααABC D [0,]2π3[0,)[,)24πππ 3[,)4ππ3(,]24ππ二、填空题15 设是二次函数,方程有两个相等实根,且,则的表达式()y f x =()0f x =()22f x x '=+()y f x =是______________16 函数的导数为_________________________________2sin x y x=17 已知函数的图像在点处的切线方程是,则_________()y f x =(1,(1))M f 122y x =+(1)(1)f f '+=18 已知直线与曲线有公共点,则k 的最大值为___________________________y kx =ln y x =三、解答题19 求下列函数的导数(1)(2) (3)(4) 1sin 1cos xy x-=+y =y =+tan y x x =⋅20 已知曲线与,直线与都相切,求直线的方程21:C y x =22:(2)C y x =--l 12,C C l 21 设函数,曲线在点处的切线方程为()bf x ax x=-()y f x =(2,(2))f74120x y --=(1)求的解析式()f x(2)证明:曲线上任一点处的切线与直线和直线所围成的三角形面积为定值,并()y f x =0x =y x =求此定值。
(完整版)导数的几何意义练习题

导数的几何意义命题人:刘春来 时间:9.18 姓名: 学号:1.曲线x y e 在点A (0,1)处的切线斜率为( )A.1B.2C.eD.1e 2.若曲线y =在点(a ,)处的切线与两个坐标轴围成的三角形的面积为18,则a 等于( ) A .64B .32C .16D .8 3.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A .(0,π4) B .(π4,π2) C .(π2,3π4) D .[3π4,π) 4.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为( )A.94e 2 B .2e 2 C .e 2 D.e 225.若函数f (x )=e x +a e -x 的导函数是奇函数,并且曲线y =f (x )的一条切线的斜率是32,则切点的横坐标是 ( )A .-ln 22B .-ln 2 C.ln 22D .ln 2 6.如图是函数f (x )及f (x )在点P 处切线的图像,则f (2)+f ′(2)=________.7.若曲线 f (x )=x 4-x 在点P 处的切线平行于直线3x -y =0,则点P 的坐标为________.8.若点P 是曲线f (x )=x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为________.9.设点P 是曲线y =x 33-x 2-3x -3上的一个动点,则以P 为切点的切线中,斜率取得最小值时的切线方程是__________________.10.已知曲线y =13x 3+43. (1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程;(3)求满足斜率为1的曲线的切线方程.12.已知曲线y =16x 2-1与y =1+x 3在x =x 0处的切线互相垂直,求x 0的值.13.已知函数f (x )=12x 2-a ln x (a ∈R). (1)若函数f (x )的图象在x =2处的切线方程为y =x +b ,求a ,b 的值;(2)若函数f (x )在(1,+∞)上为增函数,求a 的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数的概念及其几何意义同步练习题
一、选择题
1. 21y x =+在(1,2)内的平均变化率为( )
A .3
B .2
C .1
D .0
2. 质点运动动规律23s t =+,则在时间(3,3)t +∆中,相应的平均速度为( )
A .6t +∆
B .96t t
+∆+∆ C .3t +∆ D .9t +∆ 3. 函数y =f (x )的自变量x 由x 0改变到x 0+⊿x 时,函数值的改变量⊿y 为( )
A.f (x 0+⊿x )
B.f (x 0)+⊿x
C. f (x 0)•⊿x
D. f (x 0+⊿x )- f (x 0)
4.已知函数y =f (x )=2x 2-1的图像上一点(1,1)及邻近一点(1+⊿x ,1+⊿y ),则
等于( ) A.4 B.4x C.4+2⊿x D.4+2(⊿x )
2 5. 一质点运动的方程为s =5-3t 2,则在时间[1,1+Δt ]内相应的平均速度为( )
A. 3Δt +6
B. -3Δt +6
C. 3Δt -6
D. -3Δt -6
6.若函数y =f (x )在x 0处可导,则000()()lim h f x h f x h
的值( ) A.与x 0,h 有关 B.仅与x 0有关,而与h 无关 C. 仅与h 有关,而与x 0无关 D. 与x 0,h 都无关
7. 函数y =x +1x
在x =1处的导数是( ) A.2 B.1 C.0 D.-1
8.设函数f (x )=,则()()lim x a f x f a x a
等于( ) A.1a B.2a C.21a D.21a 9. 下列各式中正确的是( )
A. y ′|x =x 0=li m Δx →0 f (x -Δx )-f (x 0)Δx
B. y ′|x =x 0=li m Δx →0 f (x 0+Δx )+f (x 0)Δx
C. f ′(x 0)=li m Δx →0 f (x 0-Δx )-f (x 0)Δx
D. f ′(x )=li m Δx →0 f (x 0)-f (x 0-Δx )Δx
10. 设函数f (x )可导,则lim Δx →0 f (1+Δx )-f (1)3Δx
等于( ) A. f ′(1) B. 不存在 C. 13
f ′(1) D. 以上都不对 11. 设函数f (x )=ax +4,若f ′(1)=2,则a 等于( )
A. 2
B. -2
C. 3
D. 不确定
12. 已知物体的运动方程为s =t 2+3t
(t 是时间,s 是位移),则物体在时刻t =2时的速度为( ) A. 194 B. 174 C. 154 D. 134
13.曲线y=2x 2+1在点P (-1,3)处的切线方程是( )
A.y =-4x -1
B.y =-4x -7
C.y =4x -1
D.y =4x -7
14.过点(-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程是( )
A.y =2x -1
B.y =2x +1
C.y =2x +4 D .y =2x -4
15. 下面四个命题:
①若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处没有切线;
②若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在;
③若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在;
④曲线的切线和曲线有且只有一个公共点.
其中,真命题个数是( )
A. 0
B. 1
C. 2
D. 3
16. 函数y =f (x )的导函数f ′(x 0)图像如图所示,则在y =f (x )的图像上A 、B 的对应点附近,有( )
A. A 处下降,B 处上升
B. A 处上升,B 处下降
C. A 处下降,B 处下降
D. A 处上升,B 处上升
17. 曲线y =2x 2上有一点A (2,8),则点A 处的切线斜率为( )
A.4
B. 16
C. 8
D. 2
18. 曲线y =x 3-3x 2+1在点(1,-1)处的切线方程为( )
A. y =3x -4
B. y =-3x +2
C. y =-4x +3
D. y =4x -5 19.一直线运动的物体,从时间t 到t +Δt 时,物体的位移为Δs ,那么lim Δx →0 Δs Δt
为( ) A .在t 时刻该物体的瞬时速度 B .当时间为Δt 时物体的瞬时速度
C .从时间t 到t +Δt 时物体的平均速度
D .以上说法均错误
20. (2012·宝鸡检测)已知函数f (x )=x 3-x 在x =2处的导数为f ′(2)=11,则( )
A .f ′(2)是函数f (x )=x 3-x 在x =2时对应的函数值
B .f ′(2)是曲线f (x )=x 3-x 在点x =2处的割线斜率
C .f ′(2)是函数f (x )=x 3-x 在x =2时的平均变化率
D .f ′(2)是曲线f (x )=x 3-x 在点x =2处的切线的斜率
21.已知函数y =f (x )的图像如图,则f ′(x A )与f ′(x B )的大小关系是( )
A .f ′(x A )>f ′(x
B ) B .f ′(x A )<f ′(x B )
C .f ′(x A )=f ′(x B )
D .不能确定
22.(2012·上饶检测)函数y =3x 2在x =1处的导数为( )
A .2
B .3
C .6
D .12
23.设f (x )=ax +4,若f ′(1)=2,则a 等于( )
A .2
B .-2
C .3
D .-3
24.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( )
A .1 B.12 C .-12
D .-1 25.已知曲线y =x 2
4的一条切线斜率为12,则切点的横坐标为 ( ) A .1 B .2 C .3 D .4
26.一物体的运动方程是s =12
at 2(a 为常数),则该物体在t =t 0时的瞬时速度是 ( ) A .at 0 B .-at 0 C.12
at 0 D .2at 0 二、填空题
27. 在曲线y =x 2+1的图像上取一点(1,2)及附近一点(1+Δx,2+Δy ),则Δy Δx
为__ __. 28. 若质点M 按规律s =2t 2-2运动,则在一小段时间[2,2+Δt ]内,相应的平均速度_ .
29.已知函数y =f (x )的图像在点M (1,f (1))处的切线方程是y =12
x +2,则f (1)+f ′(1)=__ __. 30.曲线y =f (x )=2x -x 3在点(1,1)处的切线方程为________.
31.函数y =x 2在x =________处的导数值等于其函数值.
32. (2012·南昌调研)若一物体的运动方程为s =3t 2+2,求此物体在t =1时的瞬时速度是 .
33.过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程是___ _.
34.函数f (x )=3x 2-4x 在x =-1处的导数是 .
三、解答题
35. 已知函数f (x )=2x 2+3x -5.
(1)求当x 1=4,且Δx =1时,函数增量Δy 和平均变化率Δy Δx
; (2)求当x 1=4,且Δx =0.1时,函数增量Δy 和平均变化率Δy Δx
; (3)求当x 1=4,且Δx =0.01时,函数增量Δy 和平均变化率Δy Δx
;
36. 已知自由落体的运动方程为s =12
gt 2,求: (1)落体在t 0到t 0+Δt 这段时间内的平均速度;(2)落体在t 0时的瞬时速度;
(3)落体在t 0=2 s 到t 1=2.1 s 这段时间内的平均速度;(4)落体在t =2 s 时的瞬时速度.
37. 求等边双曲线y =1x 在点⎝ ⎛⎭
⎪⎫12,2处的切线的斜率,并写出切线方程.
38. 在曲线y =x 2上过哪一点的切线,(1)平行于直线y =4x -5;
(2)垂直于直线2x -6y +5=0;(3)与x 轴成135°的倾斜角.
39.已知抛物线f (x )=ax 2+bx -7过点(1,1),且过此点的切线方程为4x -y -3=0,求a ,b 的值.
40. (2012·榆林调研)已知曲线y =13x 3上一点P ⎝ ⎛⎭
⎪⎫2,83。
(1)求曲线在点P 处的切线的斜率; (2)求曲线在点P 处的切线方程.。