北师大版八年级数学上册平行线的判定共

合集下载

北师大版数学初二上册7.3平行线的判定课件

北师大版数学初二上册7.3平行线的判定课件

D在同一直线上,∠DAC=∠B+∠C,
AE是∠DAC的平分线,
求证:AE∥BC。
D
A
E
B
C
如图, ∠A、∠B、∠C满足什么条件 时,直线AD‖CE
A C
D B
E
A B
C
D E
平行线的判定可用文字和几何语言表示:
方法
文字叙述
数学符号
图形
一 定义 同一平面内,不相交的两条直线互相平行
二 公理 同位角相等, ∵∠1=∠2
第七章 平行线的证明
3.平行线的判定
C
3
E 1
在三线八角中:
75
D
∠1和∠2,
∠3和∠4,
A
① 同位角有4对: ∠5和∠6,
42 86
B
∠7和∠8.
F
② 内错角有2对:∠7和∠2, ∠5和∠4.
③ 同旁内角有2对:∠7和∠4, ∠5和∠2
前面我们探索过直线平行的条件.大家来想一 想:两条直线在什么情况下互相平行呢?
两直线平行
∴a∥b
三 定理 内错角相等, ∵∠2=∠3
两直线平行
∴a∥b
四 定理 同旁内角互补, ∵∠2+∠4=180°
两直线平行
∴a∥b
五 推论 平行于同一条直 ∵a∥b,c∥b 线的两直线平行 ∴a∥c
六 推论 同一平面内,垂 ∵a⊥b,c ⊥ b 直于同一条直线 ∴a∥c 的两条直线平行
3
1 4
∴ AD ∥ EF (内错角相等,两直线平)行
又∵ ∠EFC+ ∠C= 180 °
∴ EF ∥ BC ( 同旁内角互补,两直线平行 )
∴ AD ∥ BC 。 (平行于同一条直线的两条直线互) 相平行

平行线的判定北师大版八年级数学上册精品课件PPT

平行线的判定北师大版八年级数学上册精品课件PPT

第七章第4课 平行线的判定(1)-2020秋北师大版 八年级 数学上 册课件
第七章第4课 平行线的判定(1)-2020秋北师大版 八年级 数学上 册课件
证明:∵BE是∠ABC的角平分线(已知), ∴ ∠1=∠2 (角平分线的定义). ∵∠E=∠1(已知),∴∠E=∠2(). ∴ AE∥BC ( 内错角相等,两直线平行 ). ∴∠A+∠ABC=180°(两直线平行,同旁内角互补). ∵∠3+∠ABC=180°(已知), ∴ ∠3=∠A (同角的补角相等). ∴ DF∥AB( 同位角相等,两直线平行 ).
第七章第4课 平行线的判定(1)-2020秋北师大版 平行线的判定(1)-2020秋北师大版 八年级 数学上 册课件
三级检测练
一级基础巩固练 7. 如图,已知∠1=70°,要使AB∥CD,则需具备的 另一个条件是( C ) A. ∠2=70° B. ∠2=100° C. ∠2=110° D. ∠3=110°
2. (例1)如图,可以判定AB∥CD的条件是( B )
A. ∠1=∠2 B. ∠3=∠4 C. ∠D=∠5 D. ∠BAD+∠B=180°
3. 能判定直线a∥b的条件是( D )
A. ∠1=58°,∠3=59° B. ∠2=118°,∠3=59° C. ∠2=118°,∠4=119° D. ∠1=61°,∠4=119°

3、在生命的每一个阶段,阿甘的心中 只有一 个目标 在指引 着他, 他也只 为此而 踏实地 、不懈 地、坚 定地奋 斗,直 到这一 目标的 完成, 又或是 新的目 标的出 现。

4、让学生有个整体感知的过程。虽然 这节课 只教学 做好事 的部分 ,但是 在研读 之前我 让学生 找出风 娃娃做 的事情 ,进行 板书, 区分好 事和坏 事,这 样让学 生能了 解课文 大概的 资料。

八年级数学(北师大版)上册教学课件:7.3平行线的判定

八年级数学(北师大版)上册教学课件:7.3平行线的判定
7.3 平行线的判定
1.能根据“同位角相等,两直线平行”证明“同旁内角互补,两直线平 行”“内错角相等,两直线平行”,并能简单地应用这些结论. 2.初步了解证明的基本步骤和书写格式. 3.体会几何中推理的严谨性、书写的规范性,发展初步的演绎推理能力.
知识回顾
公理 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行. 简单说成:同位角相等,两直线平行 你认为“两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线 平行”这个命题正确吗?说明理由.
核心归纳
定理 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.
简单说成:同旁内角互补,两直线平行
∵ ∠1+ ∠2=180°
∴ a∥b
证明一个命题的一般步骤: (1)弄清题设和结论; (2)根据题意画出相应的图形; (3)根据题设和结论写出已知,求证; (4)分析证明思路,写出证明过程.
自主探究
例1 已知:如图,∠1和∠2是直线a,b被直线c截出的内错角,且∠1=∠2.求
证:a∥b.
证明:∵∠1=∠2 (已知), ∠1+∠3=180°(平角的定义). ∴∠2+∠3 = 180°(等量代换).
c a
13
∴∠2与∠3互补(互补的意义). ∴ a∥b(同旁内角互补,两直线平行).
b
2
把你所悟到的证明一个命题的方法,步骤,书写格式以及注意事项内化为一种
方法.
借助“同位角相等,两直线平行”这一公理,你还能证明哪些熟悉的结论?
练一练
如图:直线AB、CD都和AE相交,且 ∠1+∠A=180°. 求证:AB//CD
A
B
2
C
13
D

新版北师大版数学八上课件:7.3平行线的判定

新版北师大版数学八上课件:7.3平行线的判定

b被直线c截出的同旁内角,且∠1与
a
∠2互补.
求证:a∥b
b
c
1 2
3
证明:∵ ∠1与∠2互补(已知) ∴∠1+ ∠2=180o(互补的定义) ∴ ∠1=180o- ∠2(等式的性质) ∵ ∠3+ ∠2=180o(平角的定义) ∴ ∠3=180o- ∠2(等式的性质) ∴ ∠ 1 = ∠3(等量代换 )
本课结束
∠1+∠A=180º .求证:AB//CD
C
证明:∵∠1+∠3=180 º(1平角=180º) ∠2+∠3=180 º( 1平角=180º)
∴∠1=∠2(等量代换) ∵∠1+∠A=180º (已知 ) ∴∠2+∠A=180º (等量代换)
B
2 13
D
E
∴ AB// CD( 同旁内角互补,两直线平行 )
∴ a∥b(同位角相等,两直线平行)
注意:证明的依据只能是有关概念、定义、所规定的公 理及已经证明的定理.
三、归纳小结
证明一个命题的一般步骤: (1)弄清题设和结论; (2)根据题意画出相应的图形; (3)根据题设和结论写出已知,求证; (4)分析证明思路,写出证明过程.
四、强化训练
如图:直线AB、CD都和AE相交,且 A
∠1=∠2.求证:a∥b
c
证明:∵ ∠1=∠2(已知), ∠1=∠3(对顶角相等),
∴∠2=∠3(等量代换).
3
a1bFra bibliotek2∴a∥b(同位角相等,两直线平行).
二、新课讲解
定理:两条直线被第三条直线所截,如果同 旁内角互补,那么这两条直线平行
简述为:同旁内角互补,两直线平行.

初二上数学课件(北师大)-平行线的判定

初二上数学课件(北师大)-平行线的判定

A
42°
D C
a∥b∥c
例1:已知,如图,直线a⊥c,b⊥c. 求证:a∥b.
解析 只要证出∠1=∠2即可. :
解:∵a⊥c,b⊥c(已知) ∴∠1=90°,∠2=90°(垂直的定义) ∴∠1=∠2(等量代换) ∴b∥a(同位角相等,两直线平行)
例2:在如图的四边形ABCD中,其中∠α =109°28′, ∠β =70°32′.试确定这个四边形的形状,并说明你的理由 .
9.阅读理解并填空: 已知:如图,CD⊥DA,DA⊥AB,∠1=∠2.试确定射线DF与 AE的位置关系,并说明你的理由. (1)问题的结论:DF_∥__AE; (2)证明思路分析:欲证DF_∥_AE, 只要证_∠__3_=_∠__4_ ; (3)证明过程:
解:∵CD⊥DA,DA⊥AB,
∴∠CDA=∠BAD=90°,
1.掌握平行线的判定定理证明. 2.会用平行线的判定定理证明其他命题的正确性.
重点:掌握平行线的判定定理证明. 难点:会用平行线的判定定理证明.
阅读教材P172-173, 了解本节主要内容.
两直线平行 两直线平行
两直线平行 平行
前面我们探索了直线平行的判别条件,你能用“同 位角相等,两直线平行”这一基本事实证明它们吗?试试 吧!
例:小明用下面的方法作出了平行线,你认为他的作 法对吗?为什么?
①您能画出几何图形来说明吗?找出图形中隐含的已知条件. (能,画图如图②,隐含条件:等腰直角三角形两底角是45°)
②你会用几种方法说明? (有三种)
例:小明用下面的方法作出了平行线,你认为他的作 法对吗?为什么?
解:我认为他的作法对. 他的作法可用图②来表示:∠CFE=45°,∠BEF=45°. 所以∠CFE=∠BEF, 因此可知:CD∥AB.

平行线的判定++平行线的性质++知识考点梳理(课件)2024-2025学年北师大版数学八年级上册

平行线的判定++平行线的性质++知识考点梳理(课件)2024-2025学年北师大版数学八年级上册
∵∠EFC=142°,∴∠FCB+∠EFC=180°.
∴EF∥BC(同旁内角互补,两直线平行).
又 ∵AD∥BC,
∴EF∥AD(平行于同一条直线的两条直线平行);
7.4 平行线的性质






返回目录
(2)由(1)知∠FCB=38°,又 CE 平分∠FCB,
∴∠BCE=


∠FCB=19°(角平分线的定义).
在同一平面内,垂直于
同一条直线的两条直线
如图,∵b⊥a,c⊥a,
∴b∥c
平行
其他
方法
如 图 ,∵a ∥b,a ∥c,
平行于同一条直线的
两条直线平行
∴b∥c
7.3 平行线的判定
返回目录
归纳总结


要判断两条直线是否平行,首先要观察图形中与要判断

单 的两条直线有关的同位角、内错角、同旁内角的关系,这是
7.3 平行线的判定
返回目录
[解析]汽车行驶的方向不变,则汽车拐弯前与拐弯后


题 的行驶路线互相平行,如图所示.先右转后左转的两个角是
型 同位角,根据同位角相等,两直线平行,可知选项 D 正确

破 .
[答案] D
7.3 平行线的判定
返回目录
变式衍生 如图,已知∠1=90°,为保证两条铁轨平


∵∠1=60°(已知),∠ABC=∠1(对顶角相等),
∴∠ABC=60°(等量代换).
∵∠2=120°(已知),
∴∠ABC+∠2=180°,
∴AB∥CD(同旁内角互补,两直线平行).
∵∠2+∠BCD=180°(平角的定义),

数学八年级上北师大版7-3平行线的判定课件(20张)

数学八年级上北师大版7-3平行线的判定课件(20张)

请找出图中的平行线! 它们为什么平行?
公理 两条直线被第三条直线所截,如果同位 角相等,那么这两条直线平行.
简单说成:同位角相等,两直线平行 利用“同位角相等,两直线平行”这个基本 事实,可以证明哪些判别两直线平行的真命题呢?
议一议
据说,人类知识的75%是在操作中学到的. 小明用下面的方法作出平行线,你认为他的作法对 吗?为什么?
【跟踪训练】
1.如图:直线AB,CD都和AE相交,且 ∠1+∠A=180°.
求证:AB//CD
证明:∵∠1与∠2是对顶角. A
∴∠1=∠2.
C
∵∠1+∠A=180°( 已知 ),
B
2
13
D
E
∴∠2+∠A=180°(等量代换).
∴AB‖CD ( 同旁内角互补,两直线平行 ).
你还有其他证明方法吗?
2.(潜江·中考)对于图中标记的各角,下列条件能够 推理得到a∥b的是( )
平行线的判定方法
公理:
同位角相等,两直线平行.
a
∵ ∠1=∠2, ∴ a∥b.
b
判定定理:
内错角相等,两直线平行.
a
∵ ∠1=∠2, ∴ a∥b.
b
判定定理:
同旁内角互补,两直线平行.
a
∵∠1+∠2=180°, ∴ a∥b. b
c
1 2
c
12
c
1 2
证明一个命题的一般步骤: (1)弄清条件和结论; (2)根据题意画出相应的图形; (3)根据条件和结论写出已知,求证; (4)分析证明思路,写出证明过程.
证明:∵ ∠1与∠2互补 (已知),
∴∠1+∠2=180°(互补的定义).

7.3 平行线的判定课件(30张PPT)北师大版八年级数学上册

7.3  平行线的判定课件(30张PPT)北师大版八年级数学上册

(4) 从∠5 =∠ ABC ,可以推出 AB∥CD, 理由是 同位角相等,两直线平行 .
A
D
3
1
4
2
5
B
C
5. 如图,已知∠1 =∠3,AC 平分∠DAB,你能判定
哪两条直线平行?请说明理由.
解:AB∥CD. 理由如下:
D
∵ AC 平分∠DAB (已知),
C 3
∴∠1 =∠2 (角平分线的定义).
A
2 54 DB
∴ __C_E__∥__A_B__ (同旁内角互补,两直线平行).
④ ∵∠4 +_∠__3__= 180°(已知),
∴ AB∥CE (同旁内角互补,两直线平行).
例2 如图,已知∠MCA =∠A,∠DEC =∠B,那么 M
DE∥MN 吗?为什么?
AD C
解:∵∠MCA =∠A(已知),
2. 如图所示,∠1 = 75°,要使 a∥b,则∠2 等于
( C) A. 75° B. 95°
1
a
C. 105° D. 115°
2
b
【解析】∠1 的同位角与∠2 互为补角,所以∠2 =
180° - 75° = 105°.
3. 如图,已知∠1 = 30°,若∠2 或∠3 满足条件 _∠__2_=__1_5_0_°_或__∠__3__=__3_0_°,则 a∥b.
想一想
我们可以用下图的方法作出平行线,你能说说其 中的道理吗?
典例精析 例1 根据条件完成填空.
① ∵∠2 =∠6(已知),
E
∴ _A_B_∥_C_D_ (同位角相等,两直线平行).
21
② ∵∠3 =∠5(已知),
A 34 B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∴∠1+∠2=___°-∠E
∵∠E =90°(已知)
∴∠1+∠2=_90 °
∴∠ABC +∠BCD =2∠1+2∠2=__9_0°
∴__A_B_∥_C(D 同旁内角互补,两直线平)行
北师大版八年级数学上册平行线的判 定共
北师大版八年级数学上册平行线的判 定共
练习.已知:如图,CE平分∠ACD,∠1=∠B, 求证:AB∥CE
简述为:内错角相等,两直线平行。
a
符号语言: ∵∠1直线被第三条直线所截,如果同旁
内角互补,那么这两条直线平行.
已知:∠1和∠2是直线a、b被直线c截出的同旁
内角,且∠1与∠2 互补。
求证:a∥b.
证明:∵∠1与∠2互补(已知) ∴∠1+∠2=180°(互补定义) ∴∠1=180°-∠2(等式的性质) ∵∠3+∠2=180°(平角定义)
解析 EF∥BC,DE∥AB. 理由:∵∠1∶∠2∶∠3=2∶3∶4,∠1+∠2+∠3=180°, ∴∠1=40°,∠2=60°,∠3=80°, 又∵∠AFE=60°,∠BDE=120°, ∴∠AFE=∠2,∠BDE+∠2=180°, ∴DE∥AB,EF∥BC.
5.如图,点P在CD上,∠BAP+∠APD=180°,∠1=∠2,求 证:AE∥PF.
北师大版八年级数学上册平行线的判 定共
3.如图,填写下列推理中的理由.
已知:BE平分∠ABD,∠2=∠C.
求证:BE∥AC.
证明:∵BE平分∠ABD(
已知 ),
∴∠1=∠2( 角平分线定义
),
又∵∠2=∠C(
已知
),
∴∠1=∠C(
等量代换
).
∴BE∥AC(
同位角相等,两直线平行
).
北师大版八年级数学上册平行线的判 定共
证明 因为∠BAP+∠APD=180°,(已知) ∠APC+∠APD=180°,(邻补角的性质) 所以∠BAP=∠APC,(同角的补角相等) 又∠1=∠2,(已知) 所以∠BAP-∠1=∠APC-∠2,(等式的性质) 即∠EAP=∠APF, 所以AE∥PF.(内错角相等,两直线平行)
6.(2017江苏徐州期中)如图7-3-7,四边形ABCD中,∠A=∠C=90°, BE、DF分别是∠ABC、∠ADC的平分线. 求证:(1)∠1+∠2=90°;(2)BE∥DF.
试用这种方法
过已知直线外一点画它的平行线.
请说出其中的道理。
同位角相等,两直线平行.
一、放 二、靠 三、推

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 5 6 7 8 9 10 00 11 22 33 44 55 66 77 88 99 1100
证明: ∵ CE平分∠ACD, ∴∠1=∠2, ∵∠1=∠B, ∴∠ B =∠2, ∴AB∥CE
北师大版八年级数学上册平行线的判 定共
北师大版八年级数学上册平行线的判 定共
作业布置如下
北师大版八年级数学上册平行线的判 定共
北师大版八年级数学上册平行线的判 定共
1.如图:∠1=53 º,∠2= 127º,∠3= 53º, 试说明直线AB与CD,BC与DE的位置关系. 证明: ∵ ∠2= 127º, ∴ ∠4=180º-127º=53º, ∵ ∠3= 53º ∴∠3=∠4, ∴AB∥CD. ∵∠1=∠3, ∴BC∥DE
四、画
北师大版八年级数学上册平行线的判 定共
北师大版八年级数学上册平行线的判 定共
例;如图BE平分∠ABC,EC平分∠ BCD, ∠ E=90° 那么AB∥CD吗?为什么? 解:∵BE 平分∠ABC(已知)
∴∠ABC =2∠1
∵EC平分∠BCD(已知) ∴∠_B_C_D_ =2∠2
∵∠E+∠1+∠2=180°
北师大版八年级数学上册平行线的判 定共
4.如图,∠C=∠1,∠2与∠D互余,DE⊥BF, 求证:AB∥CD. 证明:∵∠C=∠1, ∴EC∥BF, ∵DE⊥BF,∴EC⊥DE, ∴∠C+∠D=90°, 又∵∠2+∠D=90°, ∴∠2=∠C,∴AB∥CD
北师大版八年级数学上册平行线的判 定共
4.如图∠1∶∠2∶∠3=2∶3∶4,∠AFE=60°, ∠BDE=120°,写出图中平行的直线,并说明理由
北师大版八年级数学上册平行线的判 定共
北师大版八年级数学上册平行线的判 定共
2、如图,下列推理中,正确的是( ) A.∵∠2=∠4,∴AD∥BC B.∵∠1=∠3,∴AD∥BC C.∵∠4+∠D=180°,∴AD∥BC D.∵∠4+∠B=180°,∴AB∥CD
北师大版八年级数学上册平行线的判 定共
证明 (1)∵BE、DF分别是∠ABC、∠ADC的 平分线, ∴∠1=∠ABE,∠2=∠ADF, ∵∠A=∠C=90°, ∴∠ABC+∠ADC=180°, ∴2(∠1+∠2)=180°, ∴∠1+∠2=90°.
7.3平行线的判定
1 两条直线被第三条直线所截,如果 同位角相等,那么这两条直线平行.
同位角相等,两直线平行
2 两条直线被第三条直线所截,如果内错角 相等,那么这两条直线平行.
内错角相等,两直线平行
3 两条直线被第三条直线所截,如果同旁内 角互补,那么这两条直线平行.
同旁内角互补,两直线平行
定理:两条直线被第三条直线所截,如果内错角相等,
北师大版八年级数学上册平行线的判 定共
北师大版八年级数学上册平行线的判 定共
议一议 1.小明用下面的方法作出了平行线,你认 为他的作法对吗?为什么?
∵∠1=∠2 ∴a∥b
北师大版八年级数学上册平行线的判 定共
北师大版八年级数学上册平行线的判 定共
2. 你还记得怎样用移动三角尺的方法画两
条平行线吗?
那么这两条直线平行 条件是什么,结论是什么?
已知:∠1和∠2是直线a、b被直 线c 截出的内错角,且
∠1=∠2.
求证:a∥b
c
a
3 1
b
2
证明:∵∠1=∠2(已知)
∠1=∠3(对顶角相等)
∴∠2=∠3(等量代换)
∴a∥b(同位角相等,两直线平行)
定理:两条直线被第三条直线所截,如果 内错角相等,那么这两条直线平行。
c
a1 2
b
∴∠3=180°-∠2(等式的性质)
3
∴∠1=∠3(等量代换)
∴a∥b(同位角相等,两直线平行)
北师大版八年级数学上册平行线的判 定共
定理:两条直线被第三条直线所截, 如果同旁内角互补,那么这两 条直线平行。
简述为:同旁内角互补,两直线平行
c
∵ ∠1+ ∠2=180o
a1 2
b
∴ a∥b
相关文档
最新文档