1.3.3二次函数求最值(动轴定区间、动区间定轴)

合集下载

“定区间动轴法”求区间最值

“定区间动轴法”求区间最值

“定区间动轴法”求区间最值所谓“定区间动轴法”,就是将自变量所在区间[,]a b (或(,)a b )标在数轴上,无论该区间是动的还是静的,根据运动的相对性,都将其看作“静止”的,然后分对称轴0x a <、a ≤0x ≤b 、0x b >三种情况进行讨论,特别地,如果二次函数图象开口向上求区间最大值或二次函数图象开口向下求区间最小值时,只需分02a b x +<和0x ≥2a b +两种情况进行讨论.这样让区间标在数轴上不动,而让二次函数图象的对称轴移动,分类方法非常明确、思路清晰、条理性强,这样可做到不重不漏,并且简捷易行.1.条件中给出区间,直接采用“定区间动轴法”求区间最值例1已知2()43,f x x x x R =++∈,函数()g t 、()h t 表示函数()f x 在区间[,1]t t +上的最小值,最大值,求()g t 、()h t 表达式.分析:此题属于区间最值问题,结合图形,将区间[,1]t t +在数轴上相对固定,让对称轴2x =-的区间[,1]t t +内外移动,即分成2t -<;t ≤2-≤1t +;21t ->+三种情况进行讨论,结合图形便可轻松求出函数()f x 在区间[,1]t t +上的最小值.而只需分2-≤(1)2t t ++与(1)22t t ++->两种情况讨论便可求出()f x 在区间[,1]t t +上的最大值. 解:由22()43(2)1f x x x x =++=+-,知图象关于2x =-对称,结合图象知,当2t -<,即2t >-时,2()()43g t f t t t ==++; 而当t ≤2-≤1t +,即3-≤t ≤2-时,()(2)1g t f =-=-当12t +<-,即3t <-时,2()(1)68g t f t t t =+=++. ∴2268,(,3)()1, [3,2]43,(2,)t t t g t t t t t ⎧++∈-∞-⎪=-∈--⎨⎪++∈-+∞⎩.当2-≤(1)2t t ++,即t ≥52-时,2()(1)68h t f t t t =+=++当(1)22t t ++->,即52t <-时,2()()43h t f t t t ==++.∴22568,[,)2()543,(,)2t t t h t t t t ⎧++∈-+∞⎪⎪=⎨⎪++∈-∞-⎪⎩.评注:本题采用了“定区间动轴法”, 分2t -<;t ≤2-≤1t +;21t ->+三种情况和2-≤(1)2t t ++;(1)22t t ++->两种情况进行讨论,使本来因分类讨论带来的繁琐、思维混乱,变得脉络清晰、思维流畅、条理性强,降低了分类讨论中因分类不清带来的难度.此法是解决区间最值的一种非常有效的方法.该法是数形结合是重要体现,是研究数学的一个重要手段,是解题的一个有效途径,用数形结合法解题,直观、便于发现问题,启发思考,有助于培养我们综合运用数学知识解决问题的能力.应用分类讨论思想的前提是:审题准确、切入方向正确、分类严谨.引起分类讨论的原因主要有:字母的符号、字母的大小、函数图象对称轴的位置等.有时分类讨论思想应用的很隐蔽,需要我们仔细发掘.在讨论时,要做到尽量简捷、不重不漏.当然,有时也可采用转化思想避开分类讨论,这需要有较强的转化能力与转化意识.例2已知二次函数()y f x =的定义域为R ,(1)2f =且在x t =处(t ∈R )取得最值,若()y g x =为一次函数,且2()()23f x g x x x +=+-(1)求()y f x =的解析式(2)若[1,2]x ∈-时,()f x ≥1-恒成立,求t 的取值范围分析:(2)若[1,2]x ∈-时,()f x ≥1-恒成立,条件的实质即为:当[1,2]x ∈-时()f x 的最小值在于或等于1-,从而将问题归结为区间最值问题.作出函数的大致图象,借助函数图象的直观性让区间定,对称轴动,分三种情况进行讨论.解:(1)设2()()f x a x t b =-+,∵()g x 为一次函数,∴1a = 又(1)2f =,∴2(1)2t b -+=,∴221b t t =-++,∴()2221f x x tx t =-++ (2)即min ()f x ≥1-①当1t <-时,min [()]f x =(1)f -=24t +≥1-,得t ≥34- ②当1-≤t ≤2时,min [()]()f x f t ==221t t -++≥1-,得1t≤1③当2t >时,min [()]f x =()2421f t =-+≥1-,得t ≤3由①,②,③得:1t ≤3.评注:给定自变量区间求解最值问题时,最重要的策略就是结合二次函数图象,利用对称轴与区间的位置关系,可直观显示相应的最值.2.通过化归转化将问题归结为区间最值问题,再采用“定区间动轴法”求解例3设函数2()45f x x x =--.当2k >时,求证:在区间[1,5]-上,3y kx k =+的图像位于函数()f x 图像的上方. 分析:通过转化思想,将文字语言3y kx k =+的图像位于函数()f x 图像的上方,转化为符号语言2()(3)(45)0g x k x x x =+--++>,当[1,5]x ?时恒成立.而当[1,5]x ?时,2()(3)(45)0g x k x x x =+--++>恒成立只需min [()]0g x ,所以,本题的实质为区间最值问题.解:当[1,5]x ?时,2()45f x x x =-++.2()(3)(45)g x k x x x =+--++2(4)(35)x k x k =+-+-224203624k k k x 骣--+÷ç=--÷ç÷ç桫, 2k >,∴412k -<. 又15x -#, ① 当4112k --?,即26k <?时,取42k x -=, min ()g x ()2220361106444k k k -+轾=-=---犏臌. 216(10)64,k ?<∴2(10)640k --<, 则min ()0g x >. ②当412k -<-,即6k >时,取1x =-, min ()g x =20k >. 由 ①、②可知,当2k >时,()0g x >,[1,5]x ?.因此,在区间[1,5]-上,(3)y k x =+的图像位于函数()f x 图像的上方.评注:因为2k >条件的限制,降低了问题的难度,使讨论的情况减少.很多问题通过转化思想都可以达到化生为熟、化未知为已知、化繁杂为简单的目的,体现了转化思想的重要性.本题就是转化思想应用的一个典型,通过转化将本来抽象的问题归结到区间最值的求解,让我们有一种豁然开朗的感觉.例4设a 为实数,记函数()f x =()g a .(Ⅰ)设t ,求t 的取值范围,并把()f x 表示为t 的函数()m t ,求()m t 和表达式及t 的取值范围.(Ⅱ)求()g a .分析:本题看似与区间最值无关,但通过换元、转化思想,可将问题化归为区间最值.解:(I )1t x =+∴要使t 有意义,必须10x +≥且1x -≥0,即11x -≤≤.[]22240t t =+,,≥,①∴t 的取值范围是⎤⎦.2112t =-,∴()2211122m t a t t at t a ⎛⎫=-+=+- ⎪⎝⎭,t ⎤∈⎦.(II )由题意知()g a 即为函数()212m t at t a =+-,t ⎤∈⎦的最大值. 注意到直线1(0)t a a =-≠是抛物线()212m t at t a =+-的对称轴,分以下几种情况讨论.(1)当0a >时,函数()y m t =,t ⎤∈⎦的图像是开口向上的抛物线的一段,由10t a=-<知()m t 在⎤⎦上单调递增,∴()()22g a m a ==+.(2)当0a =时,()m t t =,t ⎤∈⎦,∴()2g a =.(3)当0a <时,函数()y m t =,t ⎤∈⎦的图像是 开口向下的抛物线的一段.若1t a =-∈,即a <,则()g a m ==若12]t a =-∈,即1[]22a ∈--,则()112g a m a a a ⎛⎫=-=-- ⎪⎝⎭. 若()12t a =-∈+∞,,即102a ⎛⎫∈- ⎪⎝⎭,,则()()22g a m a ==+.综上有()120211222a ag a a aaa⎧+-<<⎪⎪⎪=----⎨⎪<,,,≤,评注:此题也给我们启发:遇陌生或比较棘手的问题时,可采用化归、转化思想,将其转化为熟知的问题、简单的问题,从“数”方面难以入手时,可考虑借助形来说理.例5求函数2sin siny x p x q=++的最值.分析:由已知条件的形式特点,可采用配方法,从而将问题转化为二次函数区间最值问题,但要注意1-≤sin x≤1的条件限制,在此条件限制下,其实质即为区间最值问题,采用“定”区间“动”轴法,结合图形便可求出函数()f x在区间[1,1]-上的最值.解:2224sin sin(sin)24p q py x p x q x-=++=++(1)若1-≤2p≤1,即2-≤p≤2,则当sin2px=-时,2min44q py-=;最大值在sin1x=或sin1x=-时取得.(2)若12p-<-,即2p>,则当sin1x=-时,min1y p q=-+;当sin1x=时,max1y p q=++.(3)若12p->,即2p<-,则当sin1x=时,min1y p q=++;当sin1x=-时,max1y p q=-+.如图所示:评注:数形结合是研究数学的一个重要手段,是解题的一个有效途径,用数形结合法解题,直观、便于发现问题,启发思考,有助于培养我们综合运用数学知识解决问题的能力.(1) (3)。

二次函数求最值参数分类讨论的方法

二次函数求最值参数分类讨论的方法

二次函数求最值参数分类讨论的方法题型一:“动轴定区间”型的二次函数最值例1、求函数2()23f x x ax =−+在[0,4]x ∈上的最值。

分析:先配方,再根据对称轴相对于区间的位置讨论,然后根据口诀写出最值。

解:222()23()3f x x ax x a a =−+=−+− ∴此函数图像开口向上,对称轴x=a①、当a <0时,0距对称轴x=a 最近,4距对称轴x=a 最远,∴x=0时,min y =3,x=4时,max y =19-8a②、当0≤a<2时,a 距对称轴x=a 最近,4距对称轴x=a 最远,∴x=a 时,min y =3-a2,x=4时,max y =19-8a③、当2≤a<4时,a 距对称轴x=a 最近,0距对称轴x=a 最远,∴x=a 时,min y =3-a2,x=0时,max y =3④、当4≤a 时,4距对称轴x=a 最近,0距对称轴x=a 最远,∴x=4时,min y =19-8a ,x=0时,max y =3例2、已知函数2()(21)3f x ax a x =+−−在区间3[,2]2−上最大值为1,数a 的值 分析:取a=0,a ≠0,分别化为一次函数与二次函数,根据一次函数、二次函数的性质分类讨论.解:1)若a=0,则f(x)=-x-3,而f(x)在3[,2]2−上取不到最大值为1,∴a ≠0 2)若a ≠0,则2()(21)3f x ax a x =+−−的对称轴为0122a x a−= (Ⅰ)若3()12f −=,解得103a =−,此时0233[,2]202x =−∈− a<0, 0()f x 为最大值,但23()120f −≠ (Ⅱ) 若(2)1f =解得34a =此时013[,2]32x =−∈− 0310,43a x =>=−距右端点2较远,(2)f 最大值符合条件(Ⅲ) 若0()1f x =解得a =当0a<时034[,2]2x =−∉−当0a <时034[,2]2x =∈−综收所述34a =或a = 评注:此类题属于“动轴定区间”型的二次函数最值,解决此类问题的关键是讨论对称轴相对于定义域区间的位置,讨论时做到不重不漏。

求二次函数在某一区间上的最值

求二次函数在某一区间上的最值

求二次函数在某一区间上的最值求二次函数在某一区间上的最值问题,是函数中的一个重要问题。

下面我就分别按以下的三种类型来详细讨论这类问题。

类型一:定轴定区间问题例1、已知函数()22[1,)x x a f x x x++=∈+∞,若对于任意的[1,)x ∈+∞,()0f x >恒成立, 求实数a 的取值范围。

略解:因为1x ≥时,()0f x >恒成立,所以220x x a ++>恒成立,即函数22y x x a =++ 在1x ≥时恒成立,又min 3y a =+,所以30a +>,即3a >-例2、若函数221(0,1)x x y a a a a =+->≠在区间[]1,1-的最大值为14,求a 的值 解一:设x t a =,即0t > ,那么()()222112f t t t t =+-=+- 当1a >时,1a t a -≤≤,此时,()2max 1214y a =+-= 3a ∴=当01a <<时,1a t a -≤≤,此时,2max 11214y a ⎛⎫=+-= ⎪⎝⎭ 13a ∴= ∴3a =或13a = 解二:函数()212x y a =+- (0,1)a a >≠在区间[]1,1-上y 随x a 的增大而增大,当1a >时,()max xa a =,故()2max 1214y a =+-= 3a ∴= 当01a <<时,()max 1xa a = ,故 2max 11214y a ⎛⎫=+-= ⎪⎝⎭ 13a ∴= 综上3a =或13a = 类型二:动轴定区间问题例3、若函数23y x ax =++在区间[]1,1-的最小值为-3,求a 的值略解:原函数即为:22324a a y x ⎛⎫=++- ⎪⎝⎭ ① 若轴2a x =-在区间内,则11232a a f ⎧-≤-≤⎪⎪⎨⎛⎫⎪-=- ⎪⎪⎝⎭⎩,即 222334a a -≤≤⎧⎪⎨-=-⎪⎩ ∴a ∈∅ ② 若轴2a x =-在区间右侧,则()1213a f ⎧->⎪⎨⎪=-⎩,即243a a <-⎧⎨+=-⎩ ∴7a =- ③ 若轴2a x =-在区间左侧,则()1213a f ⎧-<-⎪⎨⎪-=-⎩ ,即233a a >⎧⎨-=-⎩ ∴7a = 所以a 7=±类型三: 定轴动区间问题例4、若函数222y x x =-+在区间[],1m m +的最大值为5,求m 的值略解:原函数即为:()2()11f x x =-+① 若轴1x =在区间内左侧,即()112111112m m m m m ≤≤+⎧⎪+⎨⎛⎫-≤+-≥ ⎪⎪⎝⎭⎩或,这时()15f m += 由上可解得:1122m m ⎧≤≤⎪⎨⎪=±⎩,∴m ∈∅② 若轴1x =在区间内右侧,即()112111112m m m m m ≤≤+⎧⎪+⎨⎛⎫-≥+-≤ ⎪⎪⎝⎭⎩或,这时()5f m = 由上可解得:10213m m m ⎧≤≤⎪⎨⎪=-=⎩或,∴m ∈∅ ③ 若轴1x =在区间左侧,即1m >,这时()15f m +=,由上可解得2m = ④ 若轴1x =在区间右侧,即11m +<,这时()5f m =,由上可解得1m =- 综上可知:12m m =-=或练习:是否存在实数a ,使函数()22f x x ax a =-+的定义域为[]11,-,值域为[]22,-;若存在,求出实数a的值,若不存在,说明理由. 答案:1a。

二次函数在各种区间上的最值

二次函数在各种区间上的最值

二次函数在各区间上的最值一、知识要点:一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。

一般分为:对称轴在区间的左边,中间,右边三种情况.设,求在上的最大值与最小值。

分析:将配方,得顶点为、对称轴为当时,它的图象是开口向上的抛物线,数形结合可得在[m,n]上的最值:(1)当时,的最小值是的最大值是中的较大者。

(2)当时若,由在上是增函数则的最小值是,最大值是若,由在上是减函数则的最大值是,最小值是当时,可类比得结论。

二、例题分析归类:(一)、正向型是指已知二次函数和定义域区间,求其最值。

对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。

此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。

1. 轴定区间定二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。

例1.函数在区间[0,3]上的最大值是_________,最小值是_______。

解:函数是定义在区间[0,3]上的二次函数,其对称轴方程是,顶点坐标为(2,2),且其图象开口向下,显然其顶点横坐标在[0,3]上,如图1所示。

函数的最大值为,最小值为。

图1练习. 已知,求函数的最值。

解:由已知,可得,即函数是定义在区间上的二次函数。

将二次函数配方得,其对称轴方程,顶点坐标,且图象开口向上。

显然其顶点横坐标不在区间内,如图2所示。

函数的最小值为,最大值为。

图22、轴定区间变二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。

例2. 如果函数定义在区间上,求的最小值。

解:函数,其对称轴方程为,顶点坐标为(1,1),图象开口向上。

如图1所示,若顶点横坐标在区间左侧时,有,此时,当时,函数取得最小值。

图1如图2所示,若顶点横坐标在区间上时,有,即。

当时,函数取得最小值。

图2如图3所示,若顶点横坐标在区间右侧时,有,即。

1.3.3二次函数求最值(动轴定区间、动区间定轴)ppt课件

1.3.3二次函数求最值(动轴定区间、动区间定轴)ppt课件

(t<0)
(0≤t ≤1) (t>1)
34
例2 求 f(x) =x2-ax+a在区间[-1,1]上的最值。
分析
解:f(x)=(x- a )2+a- a2 ,对称轴为x= a
2
4
2
(1)若 a 1,即a≤-2时,
2
f(x)min=f(-1)=1+2a,f(x)max=f(1)=1;
(2)若-1< a 2
y
y
-3 o 1 a 5 x -3 o 1
5a x
(2)当1 a < 5时
fmin=f(1)=-4 fmax=f(-3)=12
(3)当a 5时
fmin=f(1)=-4 fmax=f(a)= a2-2a-3 33
例题讲解:
例1 设函数 f(x) =x2-2x-3.3在区间[t,t+1]上的最小值 为g(t),求g(t)的解析式。
y
y
y
O -1 1 x
O
O
-1 1
x
-1 1
当a<-2时 当-2≤a<2时
f(x)min=f(1)=4+a
fmin
f
a 2
3
a2 4
当a≥2时
f(x)min=f(-1)=4-a
x
22
例2:若x∈ x 1 x 1,求函数
y =x2+ax+3的最小值:
y
y
y
O -1 1 x
O -1 1 x
(3)若x∈[ 1
,
5
6
],求函数f(x)的最值;
22
4
解:画出函数在定义域内的图像如图

二次函数求最值的三种方法

二次函数求最值的三种方法

二次函数求最值的三种方法一、引言在学习高中数学时,我们会学到二次函数,并学习如何求出这个函数的最值。

这是一个非常重要的问题,因为在实际生活中,很多问题都可以用二次函数来描述,例如:投射物的运动轨迹、拱桥的设计等。

为了更好地理解和掌握这一知识点,本文将分析三种常见的方法来解决二次函数求最值的问题。

这些方法包括:1.利用二次函数的顶点公式求最值2.利用二次函数的导数公式求最值3.利用求根公式解二次方程求最值在下文中,我们将详细展开上述三种方法的整体流程并进行详细描述。

二、利用二次函数的顶点公式求最值二次函数的标准形式为:y=ax²+bx+c,其中a、b、c分别代表二次项系数、一次项系数和常数项。

我们可以通过求出顶点来确定二次函数的最值。

我们知道,对于标准二次函数,其顶点坐标为(-b/2a,f(-b/2a))。

使用这一公式,我们可以简单地找到二次函数的最值。

接下来,我们将细致地介绍如何使用顶点公式求二次函数的最值。

1. 将二次函数转换为标准形式。

我们有一个二次函数y=2x²+4x-5,我们可以将其转换为y=2(x²+2x)-5。

2. 现在,我们可以通过分离平方项来找到二次项x²的系数a和一次项x的系数b。

在本例中,二次项系数a为2,一次项系数b为4。

3. 接下来,我们可以使用顶点公式来计算出顶点的坐标。

根据公式,顶点的横坐标为-b/2a,若b为正数,顶点为函数的最小值,反之为最大值。

在本例中,由于一次项系数为正数,因此我们将使用公式-b/2a来计算横坐标。

(a) 横坐标=-b/2a=(-4)/(2*2)=-1(b) 将横坐标代入原函数中,可得纵坐标f(-1)=2*(-1)²+4*(-1)-5=-7(c) 顶点坐标为(-1,-7)。

4. 因其二次项系数为正数,所以这是一个开口向上的抛物线,并且其最小值为-7,在顶点的位置。

答案为f(x)=-7。

三、利用二次函数的导数公式求最值另一种方法是使用二次函数的导数公式来确定最值。

二次函数求最值的六种考法(含答案)

二次函数求最值的六种考法(含答案)

二次函数与最值的六种考法-重难点题型【题型1 二次函数中的定轴定区间求最值】【例1】(2021春•瓯海区月考)已知二次函数y=﹣x2+2x+4,关于该函数在﹣2≤x≤2的取值范围内,下列说法正确的是()A.有最大值4,有最小值0B.有最大值0,有最小值﹣4C.有最大值4,有最小值﹣4D.有最大值5,有最小值﹣4【解题思路】根据题目中的函数解析式和二次函数的性质,可以得到该函数的对称轴和开口方向,然后根据﹣2≤x≤2,即可得到相应的最大值和最小值,从而可以解答本题.【解答过程】解:∵二次函数y=﹣x2+2x+4=﹣(x﹣1)2+5,∴该函数的对称轴是直线x=1,函数图象开口向下,∴当﹣2≤x≤2时,x=1时取得最大值5,当x=﹣2时,取得最小值﹣4,故选:D.【变式1-1】(2020秋•龙沙区期中)当﹣1≤x≤3时,二次函数y=x2﹣3x+m最大值为5,则m=.【解题思路】根据题目中的函数解析式和二次函数的性质,可以求得m的值,本题得以解决.【解答过程】解:∵二次函数y=x2﹣3x+m=(x−32)2+m−94,∴该函数开口向上,对称轴为x=3 2,∵当﹣1≤x≤3时,二次函数y=x2﹣3x+m最大值为5,∴当x=﹣1时,该函数取得最大值,此时5=1+3+m,解得m=1,故答案为:1.【变式1-2】(2021•哈尔滨模拟)已知二次函数y=x2﹣4x+3,当自变量满足﹣1≤x≤3时,y的最大值为a,最小值为b,则a﹣b的值为.【解题思路】根据题目中的函数解析式和二次函数的性质,可以得到自变量满足﹣1≤x≤3时,x=﹣1时取得最大值,x=2时取得最小值,然后即可得到a、b的值,从而可以求得a﹣b的值,本题得以解决.【解答过程】解:∵二次函数y=x2﹣4x+3=(x﹣2)2﹣1,∴该函数图象开口向上,对称轴为直线x=2,∵当自变量满足﹣1≤x≤3时,y的最大值为a,最小值为b,∴当x=﹣1时,取得最大值,当x=2时,函数取得最小值,∴a=1+4+3=8,b=﹣1,∴a﹣b=8﹣(﹣1)=8+1=9,故答案为:9.【变式1-3】(2020秋•番禺区校级期中)若函数y=x2﹣6x+5,当2≤x≤6时的最大值是M,最小值是m,则M﹣m=.【解题思路】根据题意画出函数图象,即可由此找到m 和M 的值,从而求出M ﹣m 的值. 【解答过程】解:原式可化为y =(x ﹣3)2﹣4, 可知函数顶点坐标为(3,﹣4), 当y =0时,x 2﹣6x +5=0, 即(x ﹣1)(x ﹣5)=0, 解得x 1=1,x 2=5. 如图:m =﹣4,当x =6时,y =36﹣36+5=5,即M =5. 则M ﹣m =5﹣(﹣4)=9.故答案为9.【题型2 二次函数中的动轴定区间求最值】【例2】(2021•雁塔区校级模拟)已知二次函数y =mx 2+2mx +1(m ≠0)在﹣2≤x ≤2时有最小值﹣2,则m =( ) A .3B .﹣3或38C .3或−38D .﹣3或−38【解题思路】先求出对称轴为x =﹣1,分m >0,m <0两种情况讨论解答即可求得m 的值. 【解答过程】解:∵二次函数y =mx 2+2mx +1=m (x +1)2﹣m +1, ∴对称轴为直线x =﹣1, ①m >0,抛物线开口向上,x =﹣1时,有最小值y =﹣m +1=﹣2, 解得:m =3;②m <0,抛物线开口向下,∵对称轴为直线x =﹣1,在﹣2≤x ≤2时有最小值﹣2, ∴x =2时,有最小值y =4m +4m +1=﹣2,解得:m =−38; 故选:C .【变式2-1】(2021•瓯海区模拟)已知二次函数y =ax 2﹣4ax ﹣1,当x ≤1时,y 随x 的增大而增大,且﹣1≤x ≤6时,y 的最小值为﹣4,则a 的值为( ) A .1B .34C .−35D .−14【解题思路】根据二次函数y =ax 2﹣4ax ﹣1,可以得到该函数的对称轴,再根据当x ≤1时,y 随x 的增大而增大,可以得到a 的正负情况,然后根据﹣1≤x ≤6时,y 的最小值为﹣4,即可得到a 的值. 【解答过程】解:∵二次函数y =ax 2﹣4ax ﹣1=a (x ﹣2)2﹣4a ﹣1, ∴该函数的对称轴是直线x =2, 又∵当x ≤1时,y 随x 的增大而增大, ∴a <0,∵当﹣1≤x ≤6时,y 的最小值为﹣4, ∴x =6时,y =a ×62﹣4a ×6﹣1=﹣4, 解得a =−14, 故选:D .【变式2-2】(2021•章丘区模拟)已知二次函数y =2ax 2+4ax +6a 2+3(其中x 是自变量),当x ≥2时,y 随x 的增大而减小,且﹣2≤x ≤1时,y 的最小值为15,则a 的值为( ) A .1或﹣2B .−√2或√2C .﹣2D .1【解题思路】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向下a <0,然后由﹣2≤x ≤1时,y 的最小值为15,可得x =1时,y =15,即可求出a . 【解答过程】解:∵二次函数y =2ax 2+4ax +6a 2+3(其中x 是自变量), ∴对称轴是直线x =−4a2×2a=−1, ∵当x ≥2时,y 随x 的增大而减小, ∴a <0,∵﹣2≤x ≤1时,y 的最小值为15, ∴x =1时,y =2a +4a +6a 2+3=15, ∴6a 2+6a ﹣12=0, ∴a 2+a ﹣2=0,∴a =1(不合题意舍去)或a =﹣2. 故选:C .【变式2-3】(2021•滨江区三模)已知二次函数y =12(m ﹣1)x 2+(n ﹣6)x +1(m ≥0,n ≥0),当1≤x ≤2时,y 随x 的增大而减小,则mn 的最大值为( ) A .4B .6C .8D .494【解题思路】由二次函数解析式求出对称轴直线方程,分类讨论抛物线开口向下及开口向上的m ,n 的取值范围,将mn 转化为含一个未知数的整式求最值.【解答过程】解:抛物线y =12(m ﹣1)x 2+(n ﹣6)x +1的对称轴为直线x =6−nm−1, ①当m >1时,抛物线开口向上, ∵1≤x ≤2时,y 随x 的增大而减小, ∴6−n m−1≥2,即2m +n ≤8.解得n ≤8﹣2m , ∴mn ≤m (8﹣2m ),m (8﹣2m )=﹣2(m ﹣2)2+8, ∴mn ≤8.②当0≤m <1时,抛物线开口向下, ∵1≤x ≤2时,y 随x 的增大而减小, ∴6−n m−1≤1,即m +n ≤7,解得m ≤7﹣n , ∴mn ≤n (7﹣n ),n (7﹣n )=﹣(n −72)2+494, ∴mn ≤494, ∵0≤m <1, ∴此情况不存在.综上所述,mn 最大值为8. 故选:C .【题型3 二次函数中的定轴动区间求最值】【例3】(2020秋•马鞍山期末)当a﹣1≤x≤a时,函数y=x2﹣2x+1的最小值为1,则a的值为.【解题思路】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a﹣1≤x≤a时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【解答过程】解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a﹣1≤x≤a时,函数有最小值1,∴a﹣1=2或a=0,∴a=3或a=0,故答案为:0或3.【变式3-1】(2021•济南模拟)函数y=﹣x2+4x﹣3,当﹣1≤x≤m时,此函数的最小值为﹣8,最大值为1,则m的取值范围是()A.0≤m<2B.0≤m≤5C.m>5D.2≤m≤5【解题思路】根据题目中的函数解析式和二次函数的性质,可以求得m的取值范围.【解答过程】解:∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴该函数图象开口向下,对称轴是直线x=2,顶点坐标为(2,1),∴x=﹣1和x=5对应的函数值相等,∵当﹣1≤x≤m时,此函数的最小值为﹣8,最大值为1,当x=﹣1时,y=﹣8,∴2≤m≤5,故选:D.【变式3-2】(2021•宁波模拟)若二次函数y=ax2﹣x+2的图象经过点(2,﹣1),当t≤x≤2时,y有最大值3,最小值﹣1,则t的取值范围应是()A.﹣6≤t≤2B.t≤﹣2C.﹣6≤t≤﹣2D.﹣2≤t≤2【解题思路】根据二次函数y=ax2﹣x+2的图象经过点(2,﹣1),可以求得a的值,然后即可得到该函数的解析式,再根据二次函数的性质和当t≤x≤2时,y有最大值3,最小值﹣1,即可得到t的取值范围.【解答过程】解:∵二次函数y=ax2﹣x+2的图象经过点(2,﹣1),∴﹣1=a×22﹣2+2,解得a=−1 4,∴y=−14x2﹣x+2=−14(x+2)2+3,∴该函数的图象开口向下,对称轴是直线x=﹣2,当x=﹣2时,该函数取得最大值3,∵当t≤x≤2时,y有最大值3,最小值﹣1,当x=2时,y=﹣1,∴﹣6≤t≤﹣2,故选:C.【变式3-3】(2021•莱芜区二模)已知二次函数y=(x+1)2﹣4,当a≤x≤b且ab<0时,y的最小值为2a,最大值为2b,则a+b的值为()A.2√3B.−72C.√3−2D.0【解题思路】根据a的取值范围分﹣1≤a<0,﹣b﹣2≤a<﹣1,a<﹣b﹣2三种情况讨论,求出满足题目条件的情况即可.【解答过程】解:∵a≤x≤b且ab<0,∴a,b异号,∴a<0,b>0,由二次函数的对称性,b关于对称轴的对称点为﹣b﹣2,若﹣1≤a<0,则(a+1)2﹣4=2a,解得a=−√3(舍),若﹣b﹣2≤a<﹣1,则﹣4=2a,a=﹣2,且(b+1)2﹣3=2b,解得b=√3,∴a+b=√3−2,若a<﹣b﹣2,则2a=﹣4,a=﹣2,2b=(a+1)2﹣4=﹣3,∴b=−32(舍),故选:C.【题型4 二次函数中求线段最值】【例4】(2020春•海淀区校级期末)如图,抛物线y=x2+5x+4与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,连接AC,点P在线段AC上,过点P作x轴的垂线交抛物线于点Q,则线段PQ长的最大值为.【解题思路】先解方程x2+5x+4=0得A(﹣4,0),再确定C(0,4),则可利用待定系数法求出直线AC的解析式为y=x+4,设P(t,t+4)(﹣4≤t≤0),Q(t,t2+5t+4),所以PQ=t+4﹣(t2+5t+4),然后利用二次函数的性质解决问题.【解答过程】解:当y=0时,x2+5x+4=0,解得x1=﹣4,x2=﹣1,则A(﹣4,0),B(﹣1,0),当x=0时,y=x2+5x+4=4,则C(0,4),设直线AC的解析式为y=kx+b,把A(﹣4,0),C(0,4)代入得{−4k+b=0b=4,解得{k=1b=4,∴直线AC的解析式为y=x+4,设P(t,t+4)(﹣4≤t≤0),则Q(t,t2+5t+4),∴PQ=t+4﹣(t2+5t+4)=﹣t2﹣4t=﹣(t+2)2+4,∴当t=﹣2时,PQ有最大值,最大值为4.故答案为4.【变式4-1】(2020秋•镇平县期末)如图,直线y=−34x+3与x轴交于点C,与y轴交于点B,抛物线y=−38x 2+34x +3经过B ,C 两点,点E 是直线BC 上方抛物线上的一动点,过点E 作y 轴的平行线交直线BC 于点M ,则EM 的最大值为 .【解题思路】设出E 的坐标,表示出M 坐标,进而表示出EM ,化成顶点式即可求得EM 的最大值. 【解答过程】解:∵点E 是直线BC 上方抛物线上的一动点,∴点E 的坐标是(m ,−38m 2+34m +3),点M 的坐标是(m ,−34m +3),∴EM =−38m 2+34m +3﹣(−34m +3)=−38m 2+32m =−38(m 2﹣4m )=−38(m ﹣2)2+32, ∴当m =2时,EM 有最大值为32,故答案为32.【变式4-2】(2021•埇桥区模拟)对称轴为直线x =﹣1的抛物线y =x 2+bx +c ,与x 轴相交于A ,B 两点,其中点A 的坐标为(﹣3,0). (1)求点B 的坐标.(2)点C 是抛物线与y 轴的交点,点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.【解题思路】(1)利用二次函数对称性即可得出B 点坐标;(2)首先利用待定系数法求二次函数解析式,进而求出直线AC 的解析式,再利用QD =﹣x ﹣3﹣(x 2+2x ﹣3)进而求出最值.【解答过程】解:(1)∵点A (﹣3,0)与点B 关于直线x =﹣1对称, ∴点B 的坐标为(1,0). (2)∵a =1,∴y =x 2+bx +c .∵抛物线过点(﹣3,0),且对称轴为直线x =﹣1, ∴{9−3b +c =0−b2=−1∴解得:{b =2c =−3,∴y =x 2+2x ﹣3,且点C 的坐标为(0,﹣3). 设直线AC 的解析式为y =mx +n , 则{−3m +n =0n =−3, 解得:{m =−1n =−3,∴y =﹣x ﹣3如图,设点Q 的坐标为(x .y ),﹣3≤x ≤0.则有QD =﹣x ﹣3﹣(x 2+2x ﹣3)=﹣x 2﹣3x =﹣(x +32)2+94∵﹣3≤−32≤0,∴当x =−32时,QD 有最大值94.∴线段QD 长度的最大值为94.【变式4-3】(2020秋•滨海新区期末)如图,在平面直角坐标系中,已知抛物线y =ax 2+bx +52与x 轴交于A(5,0),B(﹣1,0)两点,与y轴交于点C.(Ⅰ)求抛物线的解析式;(Ⅱ)若点M是抛物线的顶点,连接AM,CM,求△ACM的面积;(Ⅲ)若点P是抛物线上的一动点,过点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为点F,连接EF,当线段EF的长度最短时,求出点P的坐标.【解题思路】(Ⅰ)用待定系数法即可求解;(Ⅱ)△AMC的面积=S△MHC+S△MHA=12×MH×OA,即可求解;(Ⅲ)点D在直线AC上,设点D(m,−12m+52),由题意得,四边形OEDF为矩形,故EF=OD,即当线段EF的长度最短时,只需要OD最短即可,进而求解.【解答过程】解:(Ⅰ)令x=0,则y=52,即C(0,52)设抛物线的表达式为y=a(x﹣x1)(x﹣x2)=a(x﹣5)(x+1),将点C的坐标代入上式得:52=a(0﹣5)(0+1),解得a=−1 2,故抛物线的表达式为y=−12(x﹣5)(x+1)=−12x2+2x+52;(Ⅱ)由抛物线的表达式得顶点M(2,92),过点M作MH∥y轴交AC于点H,设直线AC 的表达式为y =kx +t ,则{t =520=5k +t, 解得{k =−12t =52, 故直线AC 的表达式为y =−12x +52,当x =2时,y =32,则MH =92−32=3,则△AMC 的面积=S △MHC +S △MHA =12×MH ×OA =12×3×5=152; (Ⅲ)点D 在直线AC 上,设点D (m ,−12m +52),由题意得,四边形OEDF 为矩形,故EF =OD ,即当线段EF 的长度最短时,只需要OD 最短即可,则EF 2=OD 2=m 2+(−12m +52)2=54m 2−52m +254,∵54>0,故EF 2存在最小值(即EF 最小),此时m =1, 故点D (1,2),∵点P 、D 的纵坐标相同,故2=−12x 2+2x +52,解得x =2±√5,故点P 的坐标为(2+√5,2)或(2−√5,2).【题型5 二次函数中求线段和最值】【例5】(2020秋•安居区期末)如图,在抛物线y =﹣x 2上有A ,B 两点,其横坐标分别为1,2,在y 轴上有一动点C ,当BC +AC 最小时,则点C 的坐标是( )A .(0,0)B .(0,﹣1)C .(0,2)D .(0,﹣2)【解题思路】利用二次函数图象上点的坐标特征可求出点A ,B 的坐标,作点B 关于y 轴的对称点B ′,连接AB ′交y 轴于点C ,此时BC +AC 最小,由点B 的坐标可得出点B ′的坐标,由点A ,B ′的坐标,利用待定系数法可求出直线AB ′的解析式,再利用一次函数图象上点的坐标特征,即可求出点C 的坐标.【解答过程】解:当x =1时,y =﹣12=﹣1,∴点A 的坐标为(1,﹣1);当x =2时,y =﹣22=﹣4,∴点B 的坐标为(2,﹣4).作点B 关于y 轴的对称点B ′,连接AB ′交y 轴于点C ,此时BC +AC 最小,如图所示.∵点B 的坐标为(2,﹣4),∴点B ′的坐标为(﹣2,﹣4).设直线AB ′的解析式为y =kx +b (k ≠0),将A (1,﹣1),B (﹣2,﹣4)代入y =kx +b 得:{k +b =−1−2k +b =−4, 解得:{k =1b =−2, ∴直线AB ′的解析式为y =x ﹣2.当x =0时,y =0﹣2=﹣2,∴点C 的坐标为(0,﹣2),∴当BC +AC 最小时,点C 的坐标是(0,﹣2).故选:D .【变式5-1】(2021•铁岭模拟)如图,已知抛物线y =﹣x 2+px +q 的对称轴为x =﹣3,过其顶点M 的一条直线y =kx +b 与该抛物线的另一个交点为N (﹣1,1).要在坐标轴上找一点P ,使得△PMN 的周长最小,则点P 的坐标为( )A .(0,2)B .(43,0)C .(0,2)或(43,0)D .以上都不正确【解题思路】首先,求得抛物线的解析式,根据抛物线解析式求得M 的坐标;欲使△PMN 的周长最小,MN 的长度一定,所以只需(PM +PN )取最小值即可.然后,过点M 作关于y 轴对称的点M ′,连接M ′N ,M ′N 与y 轴的交点即为所求的点P (如图1);过点M 作关于x 轴对称的点M ′,连接M ′N ,则只需M ′N 与x 轴的交点即为所求的点P (如图2).【解答过程】解:如图,∵抛物线y =﹣x 2+px +q 的对称轴为x =﹣3,点N (﹣1,1)是抛物线上的一点, ∴{−p −2=−31=−1−p +q, 解得{p =−6q =−4. ∴该抛物线的解析式为y =﹣x 2﹣6x ﹣4=﹣(x +3)2+5,∴M (﹣3,5).∵△PMN 的周长=MN +PM +PN ,且MN 是定值,所以只需(PM +PN )最小.如图1,过点M 作关于y 轴对称的点M ′,连接M ′N ,M ′N 与y 轴的交点即为所求的点P .则M ′(3,5).设直线M ′N 的解析式为:y =ax +t (a ≠0),则{5=3a +t 1=−a +t, 解得{a =1t =2, 故该直线的解析式为y =x +2.当x =0时,y =2,即P (0,2).同理,如图2,过点M 作关于x 轴对称的点M ′,连接M ′N ,则只需M ′N 与x 轴的交点即为所求的点P (−43,0).如果点P 在y 轴上,则三角形PMN 的周长=4√2+MN ;如果点P 在x 轴上,则三角形PMN 的周长=2√10+MN ;所以点P 在(0,2)时,三角形PMN 的周长最小.综上所述,符合条件的点P 的坐标是(0,2).故选:A .【变式5-2】(2021•包头)已知抛物线y =x 2﹣2x ﹣3与x 轴交于A ,B 两点(点A 在点B 的左侧)与y 轴交于点C ,点D (4,y )在抛物线上,E 是该抛物线对称轴上一动点,当BE +DE 的值最小时,△ACE 的面积为 .【解题思路】解方程x 2﹣2x ﹣3=0得A (﹣1,0),B (3,0),则抛物线的对称轴为直线x =1,再确定C (0,﹣3),D (4,5),连接AD 交直线x =1于E ,交y 轴于F 点,如图,利用两点之间线段最短可判断此时BE +DE 的值最小,接着利用待定系数法求出直线AD 的解析式为y =x +1,则F (0,1),然后根据三角形面积公式计算.【解答过程】解:当y =0时,x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3,则A (﹣1,0),B (3,0), 抛物线的对称轴为直线x =1,当x =0时,y =x 2﹣2x ﹣3=﹣3,则C (0,﹣3),当x =4时,y =x 2﹣2x ﹣3=5,则D (4,5),连接AD 交直线x =1于E ,交y 轴于F 点,如图,∵BE +DE =EA +DE =AD ,∴此时BE +DE 的值最小,设直线AD 的解析式为y =kx +b ,把A (﹣1,0),D (4,5)代入得{−k +b =04k +b =5,解得{k =1b =1, ∴直线AD 的解析式为y =x +1,当x =1时,y =x +1=2,则E (1,2),当x =0时,y =x +1=1,则F (0,1),∴S △ACE =S △ACF +S △ECF =12×4×1+12×4×1=4. 故答案为4.【变式5-3】(2021•涪城区模拟)如图,抛物线y =53x 2−203x +5与x 轴分别交于A 、B 两点(点A 在点B 的左侧),与y 轴交于C ,在其对称轴上有一动点M ,连接MA 、MC 、AC ,则当△MAC 的周长最小时,点M 的坐标是 .【解题思路】点A 关于函数对称轴的对称点为点B ,连接CB 交函数对称轴于点M ,则点M 为所求点,即可求解.【解答过程】解:点A 关于函数对称轴的对称点为点B ,连接CB 交函数对称轴于点M ,则点M 为所求点,理由:连接AC ,由点的对称性知,MA =MB ,△MAC 的周长=AC +MA +MC =AC +MB +MC =CA +BC 为最小,令y =53x 2−203x +5=0,解得x =1或3,令x =0,则y =5,故点A 、B 、C 的坐标分别为(1,0)、(3,0)、(0,5),则函数的对称轴为x =12(1+3)=2,设直线BC 的表达式为y =kx +b ,则{0=3k +b b =5,解得{k =−53b =5, 故直线BC 的表达式为y =−53x +5,当x =2时,y =−53x +5=53,故点M 的坐标为(2,53). 【题型6 二次函数中求面积最值】【例6】(2020秋•盐城期末)如图,抛物线y =x 2+bx +c 与x 轴交于A (﹣1,0),B (3,0)两点,过点A 的直线l 交抛物线于点C (2,m ),点P 是线段AC 上一个动点,过点P 做x 轴的垂线交抛物线于点E .(1)求抛物线的解析式;(2)当P 在何处时,△ACE 面积最大.【解题思路】(1)利用交点式写出抛物线解析式;(2)先利用二次函数解析式确定C (2,﹣3),再利用待定系数法求出直线AC 的解析式为y =﹣x ﹣1,设E (t ,t 2﹣2t ﹣3)(﹣1≤t ≤2),则P (t ,﹣t ﹣1),利用三角形面积公式得到△ACE 的面积=12×(2+1)×PE =32(﹣t 2+t +2),然后根据二次函数的性质解决问题.【解答过程】解:(1)抛物线解析式为y =(x +1)(x ﹣3),即y =x 2﹣2x ﹣3;(2)把C (2,m )代入y =x 2﹣2x ﹣3得m =4﹣4﹣3=﹣3,则C (2,﹣3),设直线AC 的解析式为y =mx +n ,把A (﹣1,0),C (2,﹣3)代入得{−m +n =02m +n =−3,解得{m =−1n =−1, ∴直线AC 的解析式为y =﹣x ﹣1;设E (t ,t 2﹣2t ﹣3)(﹣1≤t ≤2),则P (t ,﹣t ﹣1),∴PE =﹣t ﹣1﹣(t 2﹣2t ﹣3)=﹣t 2+t +2,∴△ACE 的面积=12×(2+1)×PE=32(﹣t 2+t +2)=−32(t −12)2+278,当t =12时,△ACE 的面积有最大值,最大值为278,此时P 点坐标为(12,−32). 【变式6-1】(2021春•金塔县月考)如图,已知抛物线经过A (4,0),B (1,0),C (0,﹣2)三点.(1)求该抛物线的解析式;(2)在直线AC 上方的该抛物线上是否存在一点D ,使得△DCA 的面积最大,若存在,求出点D 的坐标及△DCA 面积的最大值;若不存在,请说明理由.【解题思路】(1)根据题意设出抛物线的交点式,用待定系数法求解即可;(2)根据题意作出相关辅助线,用待定系数法求得直线AC解析式为y=12x﹣2,因为点D在抛物线上,所以可设其坐标为(x,−12x2+52x﹣2),点E在直线AC上则设点E坐标为(x,12x﹣2),由图形可知S△DCA=S△DCE+S△DAE,将相关坐标及线段的长度代入求解,再根据二次函数的性质即可得出△DCA面积的最大值.【解答过程】(1)设该抛物线解析式为y=a(x﹣4)(x﹣1),将点C(0,﹣2)坐标代入解析式得:﹣2=a(0﹣4)(0﹣1),解得a=−1 2,∴y=−12(x﹣4)(x﹣1)=−12x2+52x﹣2,故该抛物线的解析式为:y=−12x2+52x﹣2,(2)如图,设存在点D在抛物线上,连接AD、CD,过点D作DE⊥x轴且与直线AC交于点E,设直线AC表达式为:y=kx+b(k≠0),将A(4,0),C(0,﹣2)代入其表达式得:{0=4k+b−2=b,解得{k=12b=−2,∴直线AC:y=12x﹣2,设点D坐标为(x,−12x2+52x﹣2),则点E坐标为(x,12x﹣2),S△DCA=S△DCE+S△DAE=12×DE×x E+12×DE×(x A﹣x E)=12×DE×x A=12×DE×4=2DE,∵DE=(−12x2+52x﹣2)﹣(12x﹣2)=−12x2+2x,∴S△DCA=2DE=2×(−12x2+2x)=﹣x2+4x=﹣(x﹣2)2+4,∴当x=2时,y=−12x2+52x﹣2═﹣2+5﹣2=1,即点D坐标为(2,1),此时△DCA的面积最大,最大值为4.【变式6-2】(2021春•无为市月考)如图,直线y=﹣x+n与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求抛物线的解析式.(2)若P为直线AB上方的抛物线上一点,且点P的横坐标为m,求四边形BCAP的面积S关于点P横坐标m的函数解析式,并求S的最大值.【解题思路】(1)将点A坐标代入直线解析式可求n的值,可求点B坐标,利用待定系数法可求解;(2)过点P做PE⊥x轴于点E,与直线AB交于点D,求得C的坐标和D的坐标,然后根据S=S△ABC+S △ABP得到S关于m的函数解析式,根据二次函数的性质即可求得结论.【解答过程】解:(1)∵直线y=﹣x+n与x轴交于点A(3,0),∴0=﹣3+n,∴n=3,∴直线解析式为:y=﹣x+3,当x=0时,y=3,∴点B (0,3),∵抛物线y =﹣x 2+bx +c 经过点A ,B ,∴{c =3−9+3b +c =0, ∴{b =2c =3, ∴抛物线的解析式为:y =﹣x 2+2x +3;(2)如图,过点P 做PE ⊥x 轴于点E ,与直线AB 交于点D ,∵点P 的横坐标为m ,∴点P 的坐标为(m ,﹣m 2+2m +3),∵点D 在直线AB 上,∴点D 的坐标为(m ,﹣m +3),∴PD =﹣m 2+2m +3﹣(﹣m +3)=﹣m 2+3m ,在y =﹣x 2+2x +3中.令y =0.则﹣x 2+2x +3=0,解得x 1=﹣1,x 2=3,∴点C 的坐标为(﹣1,0),∴S =S △ABC +S △ABP =12×4×3+12(﹣m 2+3m )×3=−32(m −32)2+758, ∴当m =32时,S 最大,最大值为758.【变式6-3】(2021春•无棣县月考)如图,在平面直角坐标系中,二次函数y =x 2+bx +c 的图象与x 轴交于A 、B 两点,B 点的坐标为(3,0),与y 轴交于点C (0,﹣3),点P 是直线BC 下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO ,PC ,并将△POC 沿y 轴对折,得到四边形POP 'C .是否存在点P ,使四边形POP 'C 为菱形?若存在,求出此时点P 的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.【解题思路】(1)先根据点C坐标求出c=﹣3,再将点B坐标代入二次函数解析式中求出b,即可得出结论;(2)连接PP'交y轴于E,根据菱形的性质判断出点E是OC的中点,进而求出点P的纵坐标,最后代入二次函数解析式中求解,即可得出结论;(3)设出点P的坐标,进而利用梯形的面积+三角形的面积得出S四边形ABPC=−32(m−12)2+398,即可得出结论.【解答过程】解:(1)∵二次函数y=x2+bx+c与y轴的交点C(0,﹣3),∴c=﹣3,∴二次函数的解析式为y=x2+bx﹣3,∵点B(3,0)在二次函数图象上,∴9+3b﹣3=0,∴b=﹣2,∴二次函数的解析式为y=x2﹣2x﹣3;(2)存在,理由:如图1,连接PP'交y轴于E,∵四边形POP'C为菱形,∴PP'⊥OC,OE=CE=12OC,∵点C(0,﹣3),∴OC=3,∴OE=3 2,∴E (0,−32),∴点P 的纵坐标为−32,由(1)知,二次函数的解析式为y =x 2﹣2x ﹣3, ∴x 2﹣2x ﹣3=−32,∴x =2−√102或x =2+√102,∵点P 在直线BC 下方的抛物线上,∴0<x <3,∴点P (2+√102,−32);(3)如图2,过点P 作PF ⊥x 轴于F ,则PF ∥OC , 由(1)知,二次函数的解析式为y =x 2﹣2x ﹣3, 令y =0,则x 2﹣2x ﹣3=0,∴x =﹣1或x =3,∴A (﹣1,0),∴设P (m ,m 2﹣2m ﹣3)(0<m <3),∴F (m ,0),∴S 四边形ABPC =S △AOC +S 梯形OCPF +S △PFB =12OA •OC +12(OC +PF )•OF +12PF •BF =12×1×3+12(3﹣m 2+2m +3)•m +12(﹣m 2+2m +3)•(3﹣m ) =−32(m −32)2+758,∴当m =32时,四边形ABPC 的面积最大,最大值为758,此时,P (32,−154),即点P 运动到点(32,−154)时,四边形ABPC 的面积最大,其最大值为758.。

二次函数的最值公式最大值和最小值二次函数图像平移规律

二次函数的最值公式最大值和最小值二次函数图像平移规律

二次函数的最大值和最小值
•二次函数的最值:
1.如果自变量的取值范围是全体实数,则当a>0时,抛物线开口向上,有最低点,
那么函数在处取得最小值y最小值=;
当a<0时,抛物线开口向下,有最高点,即当时,函数取得最大值,y最大
值=。

也即是:如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当时,,那么,首先要看是否在
自变量取值范围内,若在此范围内,则当x=时,;
若不在此范围内,则需要考虑函数在范围内的增减性,如果在此范围内,y随x的增大而增大,则当x=x2时,,当x=x1时
;如果在此范围内,y随x的增大而减小,则当x=x1时,
,当x=x2时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y = x2 2∙x 3
y = x2 2∙x 3
练习:已知函数f(x)= x2–2x –3.
10
(1)若x∈[ –2,0 ], 求函数f(x)的最值8 ;
解:画出函数在定义域内的图像如图
6
对称轴为直线x=1
由图知,y=f(x)在[ –2,0 ]上为减函数 故x=-2时有最大值f(-2)=5
4
x=1
6
由图知,y=f(x)在[ 2,4 ]上为增函数
4
故x=4时有最大值f(4)=5
x=2时有最小值f(2)=-3
10
5
2 x=1 2
45
2
4
y = x2 2∙x 3
y = x2 2∙x 3
例1、已知函数f(x)=
x2 –2x

3.
10
(1)若x∈[ –2,0],求函数f(x)的最值;8
(2)若x∈[ 2,4],求函数f(x)的最值;
8
6
4
2 x=1 k
2
k+2 5
当k ≥1 时 f(x) max=f(k+2)=k2+2k-3
10
15
f(x) min=f(k)=k2-2k-3
4
6
8
10
8
例: 6求函数y=x2-62x-3在x∈[k,k6+2]时的最值
4
4
4
2 x=1
x=1
2
x=1
2
k+2
k k+2
k k+2
k 15
5
10
5
15
5 10
5
15
10
10
5
5
2
2
2
8
6
4
2 x=1
15
k 10
k+2 5
2
4
4
4
4
当k ≤-1时 6
f(x)max6=f(k)=k2-2k-3
6 f(x)min=f(k+2)=k6 2+2k-3
当-1<k <0时 8
f(x)8max=f(k)=k2-2k-38
当0≤ k<1时 f(x)max=f(k+2)=k2+21k0 -3
核心 : 区间与对称轴的相对位置
注意数形结合和分类讨论
变式:已知函数y=x2+2x+2, x 3, m , m 3 ,函数的值域为
1,5 ,求m的范围。
练习:已知函数 f (x) x2 2ax a2 2
当 x1,3 时,求函数的最大值.
1、当a 1时.
10
10
当k ≥1 时 f(x) max=f(k+2)=k2+2k-3
f(x)min=f(1)=8- 4 f(x)min=f(1)=10- 4 f(x) min=f(k)=k2-2k-3
例: 6求函数y=x2-62x-3在x∈[k,k6+2]时的最值
4
4
4
2 x=1
x=1
2
x=1
2
k+2
k k+2
10
y = x2 2∙x 3
y = x2 2∙x 3
10
例:8 求函数yy == x28x2∙x2-3 2x-3在x∈[k,k+210 ]时
8
的最6 值
6
8
6
6
4
4
4
2 x=1
k+2
15
k
5
x=1
2
k
10
5
15
k+2
5
10
10
x=1
2
k k+2
5
15
5
4
2 x=1
10 5
k
2
2
2
2
1105
k+2
4
4
y X=a
f (x)max f (3) a2 6a 11 2、当1 < a 2时.
0 12 3 x
y
X=a
f (x)max f (3) a2 6a 11
3、当2 < a < 3时,
0 12 3 x
y
X=a
f (x)max f (1) a2 2a 3
4、当a 3时,
解:f(x)=(x-1)2+1,对称轴为x=1 (1)当t>1时,则g(t)=f(t)=t2-2t+1; (2)当0≤t ≤1时,则g(t)=f(1)=1; (3)当t+1<1,即t<0时,则g(t)=f(t+1)=t2+1;
g(t)=
t2+1; 1; t2-2t+2;
(t<0)
(0≤t ≤1) (t>1)
(3)若x∈[ 1
,
5
6
],求函数f(x)的最值;
22
4
解:画出函数在定义域内的图像如图
对称轴为直线x=1,由图知,
10
5
x=
5 2
时有最大值
f (5) 2
1 3 4
2 x=1
1
ห้องสมุดไป่ตู้
5
2
2
5
2
4
x=1时有最小值f(1)=-4 6
例1、已知函数f(x)= x2 –2x – 3
(1)若x∈yy[== xx–22 222,∙∙xx 033 ],求函数f(x)的最值;
者是最大值,较小者是最小值.
思考:如何 求函数y=x2-2x-3在 x∈[k,k+2]时的最值?
解析: 因为函数 y=x2-2x-3=(x-1)2-4的对称 轴为 x=1 固定不变,要求函数的最值, 即要看区间[k,k+2]与对称轴 x=1的位 置,则从以下几个方面解决如图:
y1=0 x2 2∙x 3
(1)当t>1时,则g(t)=f(t)=t2-2t-3.3;
(2)当0≤t ≤1时,则g(t)=f(1)=-4.3;
(3)当t+1<1,即t<0时,则g(t)=f(t+1)=t2-4.3;
g(t)=
t2-4.3; -4.3; t2-2t-3.3;
(t<0)
(0≤t ≤1) (t>1)
例2 求 f(x) =x2-ax+a在区间[-1,1]上的最值。
y =x2+ax+3的最小值:
y
y
y
O -1 1 x
O
O
-1 1
x
-1 1 x
当a<-2时 当-2≤a<2时
f(x)min=f(1)=4+a
fmin

f


a 2

3
a2 4
当a≥2时
f(x)min=f(-1)=4-a
例2:若x∈ x 1 x 1,求函数
y =x2+ax+3的最小值:
y的最小值为
O -1 1
x
f(

a
)=
a2 3
2
4
例2:若x∈ x 1 x 1,求函数
y =x2+ax+3的最小值:
y
(3)当 a 1即a<-2时 2
函数在[-1,1]上是减函数
O -1 1 x
y的最小值为f(1) =4+a
例2:若x∈ x 1 x 1,求函数
0 12 3 x
y
X=a
f (x)max f (1) a2 2a 3
0 12 3 x
综上可知:
y
X=a
a2 6a 11 (a < 2) f (x)max a2 2a 3 (a 2)
0 12 3 x
y
X=a
0 12 3 x
问题三: 设函数 f(x) =x2-2x+2在区间[t,t+1]上的最 小值为g(t),求g(t)的解析式。
1 2
,
5 2
](4)x6 ∈[
1 2
,
3] 2
6
6
4
4
4
x=1
2
0
10
-2
2
55
4
2 x=1
10 15
2
5
10
10
4 15
2
2 x=1
1
5
2
2
5
10 2
2
1 -2
5
15 2
x=1
3 2
10
4
4
4 4
6
思考6 :通过以上几6 题,你发现二次6 函数在区间[m,n]
8
上的8 最值通常在哪8 里取到?
它的对称轴为x=-1, ∴f(x)在[0,2]上单 调递增,
∴f(x)的最小值为 f(0)=a,即a≥ 4
-1 O 2 x
练一练
1.已知y=-x2+ax+3 ,x∈[-1,1],
y
求y的最大值
O
-1
1x
课堂小结
1.闭区间上的二次函数的最值问题求 法
2. 含参数的二次函数最值问题: 轴动区间定 轴定区间动
2
x=0时15有最小值f(010)=-3
5
0
5
-2
2
4
6
例1、已知函数f(x)= x2 –2x – 3.
(1)若x∈yy ==[xx22
–2,0 2∙x 3 2∙x 3
],求函数f(x)的最10 值;
相关文档
最新文档