利用导数判断函数的单调性练习题
高一数学利用导数研究函数的单调性试题答案及解析

高一数学利用导数研究函数的单调性试题答案及解析1.若函数在区间内是增函数,则实数的取值范围是()A.B.C.D.【答案】B【解析】∵f(x)=x3+ax-2,∴f′(x)=3x2+a,∵函数f(x)=x3+ax-2在区间[1,+∞)内是增函数,∴f′(1)=3+a≥0,∴a≥-3.故选B..【考点】利用导数研究函数的单调性..2.已知函数(1)若,试确定函数的单调区间;(2)若,且对于任意,恒成立,试确定实数的取值范围;【答案】(1)详见解析(2).【解析】(1)求出函数的导数,只要解导数的不等式即可,根据导数与0的关系判断函数的单调性;(2)函数f(|x|)是偶函数,只要f(x)>0对任意x≥0恒成立即可,等价于f(x)在[0,+∞)的最小值大于零.试题解析:解:(1)由得,所以.由得,故的单调递增区间是,由得,故的单调递减区间是. 4(2)由可知是偶函数.于是对任意成立等价于对任意成立.由得.①当时,.此时在上单调递增.故,符合题意.②当时,.当变化时的变化情况如下表:单调递减极小值单调递增由此可得,在依题意,,又.综合①,②得,实数的取值范围是.【考点】1.利用导数求闭区间上函数的最值;2.利用导数研究函数的单调性..3.已知函数f(x)=2x--aln(x+1),a∈R.(1)若a=-4,求函数f(x)的单调区间;(2)求y=f(x)的极值点(即函数取到极值时点的横坐标).【答案】(1)f(x)的单调增区间为(-1,3),单调减区间为(3,+∞)。
(2)ⅰ. 7分ⅱ.当时,若,由函数的单调性可知f(x)有极小值点;有极大值点。
若时, f(x)有极大值点,无极小值点。
【解析】(1)因为,f(x)=2x--aln(x+1),a∈R,定义域为(-1,+∞)。
所以,,故,f(x)的单调增区间为(-1,3),单调减区间为(3,+∞)。
(2)因为,f(x)=2x--aln(x+1),a∈R,定义域为(-1,+∞)。
高二数学利用导数研究函数的单调性试题答案及解析

高二数学利用导数研究函数的单调性试题答案及解析1.已知函数f(x)=x2+2alnx.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数在上是减函数,求实数a的取值范围.【答案】(Ⅰ)当a≥0时,递增区间为(0,+∞);当a<0时,递减区间是(0,);递增区间是(,+∞);(Ⅱ).【解析】解题思路:(Ⅰ)求定义域与导函数,因含有参数,分类讨论求出函数的单调区间;(Ⅱ)利用“函数g(x)为[1,2]上的单调减函数,则g′(x)≤0在[1,2]上恒成立”,得到不等式恒成立;再分离参数,求函数的最值即可.规律总结:若函数在某区间上单调递增,则在该区间恒成立;“若函数在某区间上单调递减,则在该区间恒成立.试题解析:(Ⅰ)f′(x)=2x+=,函数f(x)的定义域为(0,+∞).①当a≥0时,f′(x)>0,f(x)的单调递增区间为(0,+∞);②当a<0时,f′(x)=.当x变化时,f′(x),f(x)的变化情况如下:x(0,)(,+∞)-0+由上表可知,函数f(x)的单调递减区间是(0,);单调递增区间是(,+∞).(Ⅱ)由g(x)=+x2+2aln x,得g′(x)=-+2x+,由已知函数g(x)为[1,2]上的单调减函数,则g′(x)≤0在[1,2]上恒成立,即-+2x+≤0在[1,2]上恒成立.即a≤-x2在[1,2]上恒成立.令h(x)=-x2,在[1,2]上h′(x)=--2x=-(+2x)<0,=h(2)=-,所以a≤-.所以h(x)在[1,2]上为减函数,h(x)min故实数a的取值范围为{a|a≤-}.【考点】1.利用导数求函数的单调区间;2.根据函数的单调性求参数.2.函数的部分图象大致为( ).【答案】D【解析】,为奇函数,图像关于原点对称,排除选项B;,所以排除选项A;当时,,所以排除选项C;故选选项D.【考点】函数的图像.3.已知函数f(x)=ax2+bln x在x=1处有极值.(1)求a,b的值;(2)判断函数y=f(x)的单调性并求出单调区间.【答案】(1);(2)减区间(0,1),增区间(1,+∞)【解析】(1)由函数f(x)=ax2+bln x在x=1处有极值可知,解得;(2)由(1)可知,其定义域是(0,+∞),由,得由,得所以函数的单调减区间(0,1),增区间(1,+∞).试题解析:(1)又函数f(x)=ax2+bln x在x=1处有极值,所以解得.(2)由(1)可知,其定义域是(0,+∞)由,得由,得所以函数的单调减区间(0,1),增区间(1,+∞).【考点】1.导数与极值;2.导数与单调性4.函数f(x)=ax3-x在R上为减函数,则()A.a≤0B.a<1C.a<0D.a≤1【答案】【解析】当时,在上为减函数,成立;当时, 的导函数为,根据题意可知, 在上恒成立,所以且,可得.综上可知.【考点】导数法判断函数的单调性;二次函数恒成立.5.已知在R上开导,且,若,则不等式的解集为()A.B.C.D.【答案】B【解析】令,则,由,则,在上为增函数,,所以的解集为,故选B.【考点】函数的单调性与导数的关系.6.设,分别是定义在上的奇函数和偶函数,当时,,且,则不等式的解集是 ( )A.B.C.D.【答案】D.【解析】先根据可确定,进而可得到在时单调递增,结合函数,分别是定义在上的奇函数和偶函数可确定在时也是增函数.于是构造函数知在上为奇函数且为单调递增的,又因为,所以,所以的解集为,故选D.【考点】利用导数研究函数的单调性.7.在上可导的函数的图形如图所示,则关于的不等式的解集为().A.B.C.D.【答案】A【解析】由图象可知f′(x)=0的解为x=-1和x=1函数f(x)在(-∞,-1)上增,在(-1,1)上减,在(1,+∞)上增∴f′(x)在(-∞,-1)上大于0,在(-1,1)小于0,在(1,+∞)大于0当x<0时,f′(x)>0解得x∈(-∞,-1)当x>0时,f′(x)<0解得x∈(0,1)综上所述,x∈(-∞,-1)∪(0,1),故选A.【考点】函数的图象;导数的运算;其他不等式的解法.8.函数,若对于区间[-3,2]上的任意x1,x2,都有 | f(x1)-f (x2)|≤ t,则实数t的最小值是()A.20B.18C.3D.0【答案】A【解析】所以在区间,单调递增,在区间单调递减.,,,,可知的最大值为20 .故的最小值为20.【考点】利用导数求函数的单调性与最值.9.设函数.(1)若在时有极值,求实数的值和的极大值;(2)若在定义域上是增函数,求实数的取值范围.【答案】(1)极大值为(2)【解析】(1)先求导,根据在时有极值,则,可求得的值。
高三数学利用导数研究函数的单调性试题

高三数学利用导数研究函数的单调性试题1.函数在内单调递减,则实数a的范围为.【答案】.【解析】∵函数f(x)=x3-ax2+4在(0,2)内单调递减,∴f′(x)=3x2-2ax≤0在(0,2)内恒成立,即在(0,2)内恒成立,∵∴,答案为.【考点】利用导数研究函数的单调性.2.设函数,其中(1)讨论在其定义域上的单调性;(2)当时,求取得最大值和最小值时的的值.【答案】(1)在和内单调递减,在内单调递增;(2)所以当时,在处取得最小值;当时,在和处同时取得最小只;当时,在处取得最小值.【解析】(1)对原函数进行求导,,令,解得,当或时;从而得出,当时,.故在和内单调递减,在内单调递增.(2)依据第(1)题,对进行讨论,①当时,,由(1)知,在上单调递增,所以在和处分别取得最小值和最大值.②当时,.由(1)知,在上单调递增,在上单调递减,因此在处取得最大值.又,所以当时,在处取得最小值;当时,在和处同时取得最小只;当时,在处取得最小值.(1)的定义域为,.令,得,所以.当或时;当时,.故在和内单调递减,在内单调递增.因为,所以.①当时,,由(1)知,在上单调递增,所以在和处分别取得最小值和最大值.②当时,.由(1)知,在上单调递增,在上单调递减,因此在处取得最大值.又,所以当时,在处取得最小值;当时,在和处同时取得最小只;当时,在处取得最小值.【考点】1.含参函数的单调性;2.含参函数的最值求解.3.设函数f(x)=ln x-ax,g(x)=e x-ax,其中a为实数.若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围.【答案】(e,+∞)【解析】解:令f′(x)=-a=<0,考虑到f(x)的定义域为(0,+∞),故a>0,进而解得x>a-1,即f(x)在(a-1,+∞)上是单调减函数.同理,f(x)在(0,a-1)上是单调增函数.由于f(x)在(1,+∞)上是单调减函数,故(1,+∞)⊆(a-1,+∞),从而a-1≤1,即a≥1.令g′(x)=e x-a=0,得x=ln a.当x<ln a时,g′(x)<0;当x>ln a时,g′(x)>0.又g(x)在(1,+∞)上有最小值,所以ln a>1,即a>e.综上,a的取值范围为(e,+∞).4.已知函数.(1)当时,求曲线在点处的切线方程;(2)求函数的单调区间;(3)若对任意的都有恒成立,求实数的取值范围.【解析】(1)当时,,求出导函数,所以曲线在处的切线斜率,又,进而得出切线方程;(2)易得函数的定义域为,对函数进行求导得,令并在定义域范围内解之,即,再对其分和进行分类讨论,求得函数的单调增区间,函数的单调增区间在定义域内的补集即为函数的单调减区间;由题意得:对任意,使得恒成立,只需在区间内,,对进行分类讨论,从而求出的取值范围.(1)时,曲线在点处的切线方程(2)①当时, 恒成立,函数的递增区间为②当时,令,解得或(舍去)x( 0,)-+所以函数的递增区间为,递减区间为(3)由题意知对任意的,,则只需对任意的,①当时,在上是增函数,所以只需,而,所以满足题意;②当时,,在上是增函数, 所以只需而,所以满足题意;③当时,,在上是减函数,上是增函数,所以只需即可,而,从而不满足题意;综合①②③实数的取值范围为.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;导数在最大值、最小值中的应用.5.函数f(x)=x3+ax2+3x﹣9,已知f(x)在x=﹣3时取得极值,则a=()A.2B.3C.4D.5【答案】D【解析】∵f′(x)=3x2+2ax+3,又f(x)在x=﹣3时取得极值∴f′(﹣3)=30﹣6a=0则a=5.故选D6.已知函数在区间[-1,2]上是减函数,那么b+c( )A.有最大值B.有最大值-C.有最小值D.有最小值-【答案】B【解析】由f(x)在[-1,2]上是减函数,知,x∈[-1,2],则15+2b+2c0b+c.7.已知函数.(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(2)当m≤2时,证明f(x)>0.【答案】(1)m=1(讨论见解析);(2)见解析.【解析】(1).由x=0是f(x)的极值点得f '(0)=0,所以m=1.于是f(x)=e x-ln(x+1),定义域为(-1,+∞),.函数在(-1,+∞)上单调递增,且f '(0)=0,因此当x∈(-1,0)时, f '(x)<0;当x∈(0,+∞)时, f '(x)>0.所以f(x)在(-1,0)上单调递减,在(0,+∞)上单调递增.(2)当m≤2,x∈(-m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时, f(x)>0.当m=2时,函数在(-2,+∞)上单调递增.又f '(-1)<0, f '(0)>0,故f '(x)=0在(-2,+∞)上有唯一实根,且.当时, f '(x)<0;当时, f '(x)>0,从而当时,f(x)取得最小值.)=0得=,,由f '(x故.综上,当m≤2时, f(x)>0.8.已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.其中正确结论的序号是()A.①③B.①④C.②③D.②④【答案】C【解析】∵f(x)=x3-6x2+9x-abc.∴f′(x)=3x 2-12x+9=3(x-1)(x-3),令f′(x)=0,得x=1或x=3.依题意有,函数f(x)=x3-6x2+9x-abc的图象与x轴有三个不同的交点,故f(1)f(3)<0,即(1-6+9-abc)(33-6×32+9×3-abc)<0,∴0<abc<4,∴f(0)=-abc<0,f(1)=4-abc>0,f(3)=-abc<0,故②③是对的,应选C.9.函数f(x)=x2-ln x的单调递减区间为 ().A.(-1,1]B.(0,1]C.[1,+∞)D.(0,+∞)【答案】B【解析】由题意知,函数的定义域为(0,+∞),又由f′(x)=x-≤0,解得0<x≤1,所以函数的单调递减区间为(0,1].10.已知f(x)=e x-ax-1.(1)求f(x)的单调增区间;(2)若f(x)在定义域R内单调递增,求a的取值范围.【答案】(1)当a≤0时,f(x)的单调增区间为(-∞,+∞);当a>0时,f(x)的单调增区间为(ln a,+∞).(2)(-∞,0].【解析】(1)∵f(x)=e x-ax-1(x∈R),∴f′(x)=e x-a.令f′(x)≥0,得e x≥a.当a≤0时,f′(x)>0在R上恒成立;当a>0时,有x≥ln a.综上,当a≤0时,f(x)的单调增区间为(-∞,+∞);当a>0时,f(x)的单调增区间为(ln a,+∞).(2)由(1)知f′(x)=e x-a.∵f(x)在R上单调递增,∴f′(x)=e x-a≥0恒成立,即a≤e x在R上恒成立.∵x∈R时,e x>0,∴a≤0,即a的取值范围是(-∞,0].11.若函数存在极值,则实数的取值范围是( )A.B.C.D.【答案】A【解析】∵函数存在极值点,∴有解,∴∴∵时,,∴,故选A.【考点】应用导数研究函数的单调性、极值.12.已知函数的图象如图所示(其中是函数的导函数)下面四个图象中,的图象大致是 ( )【答案】C【解析】由函数的图象可知,当时,在上是增函数,同理可得在上是减函数,在上是减函数,故选C.【考点】导数与函数的单调性.13.已知R,函数e.(1)若函数没有零点,求实数的取值范围;(2)若函数存在极大值,并记为,求的表达式;(3)当时,求证:.【答案】(1);(2);(3)详见试题解析.【解析】(1)令得,∴.再利用求实数的取值范围;(2)先解,得可能的极值点或,再分讨论得函数极大值的表达式;(3)当时,,要证即证,亦即证,构造函数,利用导数证明不等式.试题解析:(1)令得,∴. 1分∵函数没有零点,∴,∴. 3分(2),令,得或. 4分当时,则,此时随变化,的变化情况如下表:当时,取得极大值; 6分当时,在上为增函数,∴无极大值. 7分当时,则,此时随变化,的变化情况如下表:当时,取得极大值,∴ 9分(3)证明:当时, 10分要证即证,即证 11分令,则. 12分∴当时,为增函数;当时为减函数,时取最小值,,∴.∴,∴. 14分【考点】1.函数的零点;2.函数的导数与极值;3.不等式的证明.14.若=上是减函数,则的取值范围是___________.【答案】【解析】转化为在上恒成立,即在上恒成立,令,所以,则的取值范围是.【考点】1.导数判断函数的单调性;2.不等式恒成立.15.已知为函数图象上一点,O为坐标原点,记直线的斜率.(1)若函数在区间上存在极值,求实数m的取值范围;(2)当时,不等式恒成立,求实数的取值范围;(3)求证:.【答案】(1);(2);(3)详见解析.【解析】(1)在函数定义域范围内求函数的极值,则极值点在内;(2)首先根据条件分离出变量,由转化成求的最小值(利用二次求导判单调性);(3)结合第(2)问构造出含的不等关系,利用裂项相消法进行化简求和.试题解析:(1)由题意, 1分所以 2分当时,;当时,.所以在上单调递增,在上单调递减,故在处取得极大值. 3分因为函数在区间(其中)上存在极值,所以,得.即实数的取值范围是. 4分(2)由得,令,则. 6分令,则,因为所以,故在上单调递增. 7分所以,从而在上单调递增,所以实数的取值范围是. 9分(3)由(2) 知恒成立,即 11分令则, 12分所以,, ,.将以上个式子相加得:,故. 14分【考点】1.函数极值、最值的求法;2.函数单调性的判定;3.恒成立问题的转化.16.已知函数,.(Ⅰ)求的极值;(Ⅱ)当时,若不等式在上恒成立,求的取值范围.【答案】(Ⅰ)有极大值为;(Ⅱ).【解析】(Ⅰ)首先明确函数的定义域,然后利用求导的方法研究函数的单调性,进而确定函数的极值;(Ⅱ)利用转化思想将原不等式转化为在上恒成立,然后借助构造函数求解函数的最大值进而探求的取值范围.试题解析:(Ⅰ)函数的定义域为。
专题02 利用导数求函数单调区间与单调性(解析版)

专题02 利用导数求函数单调区间与单调性专项突破一 利用导数判断或证明函数单调性一、多选题1.若函数f (x )的导函数在定义域内单调递增,则f (x )的解析式可以是( )A .()2sin f x x x =+B .()2f x x =C .()1cos f x x =+D .()2ln f x x x =+【解析】A :由()()2sin 2cos f x x x f x x x '=+⇒=-,令()()2cos g x f x x x '==-,因为()2sin 0g x x '=+>,所以函数()f x '是实数集上的增函数,符合题意;B :由()()22f x x f x x '=⇒=,因为一次函数()2f x x '=是实数集上的增函数,所以符合题意;C :由()()1cos sin f x x f x x '=+⇒=-,因为函数()sin f x x '=-是周期函数,所以函数()sin f x x '=-不是实数集上的增函数,因此不符合题意;D :由()()21ln 2f x x x f x x x '=+⇒=+,令()()12g x f x x x'==+,则()2221212x g x x x -'=-=,当2x ∈时,()()0,g x g x '<单调递减,因此不符合题意, 故选:AB 二、解答题2.已知函数()()21e xf x x x a -=++-.(1)讨论()f x 的单调性;(2)若()f x 至少有两个零点,求a 的取值范围.【解析】(1)由2()(21)e (1)e (1)e x x x f x x x x x x ---'=+-++=-, 在(,0)-∞,(1,)+∞上()0f x '<,在(0,1)上()0f x '>, 所以()f x 在(,0)-∞上递减,(0,1)上递增,(1,)+∞上递减.(2)由(1)知:()f x 极小值为(0)1f a =-,极大值为3(1)ef a =-,要使()f x 至少有两个零点,则1030ea a -≤⎧⎪⎨-≥⎪⎩,可得31e a ≤≤.3.设函数()323f x x ax b =-+.(1)若曲线()y f x =在点()()22f ,处与直线8y =相切,求a ,b 的值; (2)讨论函数()y f x =的单调性.【解析】(1)由题意知,2()36f x x ax '=-,又(2)8(2)0f f '==,即322232832620a b a ⎧-⨯+=⎨⨯-⨯=⎩,解得112a b ==,; (2)已知2()36f x x ax '=-,令()0f x '=,知1202x x a ==, 当0a =时,2()30f x x '=≥,此时函数()f x 在R 单调递增当0a >时,令()00f x x '>⇒<或2x a >,令()002f x x a '<⇒<<, 所以函数()f x 在(0)(2)a ∞∞-+,、,上单调递增,在(02)a ,上单调递减, 当0a <时,令()02f x x a '>⇒<或0x >,令()020f x a x '<⇒<<, 所以函数()f x 在(2)(0)a ∞∞-+,、,上单调递增,在(20)a ,上单调递减. 4.已知函数()1()x f x e axlnx a R =--∈,2()x g x xe x =-.当1a =时,求证:()f x 在(0,)+∞上单调递增. 【解析】证明:当1a =时,()ln 1x f x e x x =--,(0,)x ∈+∞,则()1x f x e lnx '=--,又1()x f x e x ''=-在(0,)+∞上单调递增,且1()202f ''<,且f ''(1)10e =->,01,12x ⎛⎫∴∃∈ ⎪⎝⎭,使得0001()0xf x e x ''=-=,当0(0,)x x ∈时,()0f x ''<,当0(x x ∈,)+∞时,()0f x ''>,()f x ∴'在0(0,)x 上单调递减,在0(x ,)+∞上单调递增,000()()1x f x f x e lnx ∴'≥'=--,0010x e x -=,∴001x e x =,00ln x x =-,001()10f x x x ∴'=+->,()f x ∴在(0,)+∞上单调递增.5.已知函数()()()()211422ln f x x x a a x =-+-+-,讨论()f x 的单调性;【解析】因为2()(1)(14)(22)ln f x x x a a x =-+-+-,所以[][]2'2(1)(1)22()24(0)x a x a a f x x a x x x---+-=-+=>, 当1a ≤-时,110a a -<+≤,'()0f x >,()f x 在(0,)+∞上单调递增.当11a -<≤时,10a -≤,10a +>,若(1,1)x a a ∈-+,则'()0f x <,()f x 单调递减,若(0,1)x a ∈-,则'()0f x >,()f x 单调递增.当1a >时,110a a +>->,若(1,1)x a a ∈-+,则'()0f x <,()f x 单调递减,若 (0,1)x a ∈-或(1,)x a ∈++∞,则'()0f x >,()f x 单调递增.综上可得,当1a ≤-时,()f x 在(0,)+∞上单调递增;当11a -<≤时()f x 在(0,1)a +上单调递减,在(1,)a ++∞上单调递增;当1a >时,()f x 在(1,1)a a -+上单调递减,在(0,1)a -,(1,)a ++∞上单调递增. 6.已知a ∈R ,设函数()()ln ln f x a x a x =++. (1)讨论函数()f x 的单调性; (2)若()2ln xf x a x a≤+恒成立,求实数a 的取值范围. 【解析】(1)()()()11a x a a f x x a x x x a ++'=+=++,0x >且x a >-, ①0a ≥,()0f x '>,()f x 单调递增;②1a ≤-,()0f x '<,()f x 单调递减; ③10a -<<,01aa a ->->+, ,1a x a a ⎛⎫∈-- ⎪+⎝⎭时,()0f x '<,()f x 单调递减,,1a x a ⎛⎫∈-+∞ ⎪+⎝⎭时,()0f x '>,()f x 单调递增; 综上,当0a ≥时,()f x 在(0,)+∞上单调递增;当1a ≤-时,()f x 在(,)a -+∞单调递减; 当10a -<<时,()f x 在,1a a a ⎛⎫-- ⎪+⎝⎭单调递减,在,1a a ⎛⎫-+∞ ⎪+⎝⎭单调递增 (2)()()2ln ln lnxf x a x a x a x a=++≤+, 即()2ln ln 0a x a a x a +-+≤,令()()2ln ln h x a x a a x a =+-+, 则()232a a x a a h x a x a x a -+-'=-=++,令()0h x '=,可得21a x a-=, 当1a ≥时,()0h x '≤,则()h x 在()0,∞+单调递减,则只需满足()0ln ln 0h a a a =+≤,∴ln 0≤a ,解得01a <≤,∴1a =;当01a <<时,可得()h x 在210,a a ⎛⎫- ⎪⎝⎭单调递增,在21,a a ⎛⎫-+∞⎪⎝⎭单调递减,则()()22max11ln 1ln 0a h x h a a a a a a ⎛⎫-==--+≤ ⎪⎝⎭,整理可得2ln 0a a a --≤,令()2ln a a a a ϕ=--,则()()()121121a a a a a aϕ-+-'=--=, ()1002a a ϕ'>⇒<<,()1012a a ϕ'<⇒>>,则可得()a ϕ在10,2⎛⎫ ⎪⎝⎭单调递增,在1,12⎛⎫⎪⎝⎭单调递减,则()max 13ln 2024a ϕϕ⎛⎫==--< ⎪⎝⎭,故01a <<时,()0h x ≤恒成立,综上,01a <≤;7.已知函数()3211,32f x x ax a =-∈R .(1)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;(2)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值. 【解析】(1)由题意2()f x x ax '=-,所以,当2a =时,(3)0f =,2()2f x x x =-', 所以(3)3f '=,因此,曲线()y f x =在点(3,(3))f 处的切线方程是3(3)y x =-, 即390x y --=.(2)因为()()()cos sin g x f x x a x x =+--,所以()()cos ()sin cos g x f x x x a x x ''=+---()()sin x x a x a x =---()(sin )x a x x =--, 令()sin h x x x =-,则()1cos 0h x x '=-≥,所以()h x 在R 上单调递增,因为(0)0h =, 所以,当0x >时,()0h x >;当0x <时,()0h x <. (1)当0a <时,()()(sin )g x x a x x '=--,当(,)x a ∈-∞时,0x a -<,()0g x '>,()g x 单调递增; 当(,0)x a ∈时,0x a ->,()0g x '<,()g x 单调递减; 当(0,)x ∈+∞时,0x a ->,()0g x '>,()g x 单调递增.所以当x a =时()g x 取到极大值,极大值是31()sin 6g a a a =--,当0x =时()g x 取到极小值,极小值是(0)g a =-. (2)当0a =时,()(sin )g x x x x '=-, 当(,)x ∈-∞+∞时,()0g x '≥,()g x 单调递增;所以()g x 在(,)-∞+∞上单调递增,()g x 无极大值也无极小值. (3)当0a >时,()()(sin )g x x a x x '=--,当(,0)x ∈-∞时,0x a -<,()0g x '>,()g x 单调递增; 当(0,)x a ∈时,0x a -<,()0g x '<,()g x 单调递减; 当(,)x a ∈+∞时,0x a ->,()0g x '>,()g x 单调递增. 所以当0x =时()g x 取到极大值,极大值是(0)g a =-; 当x a =时()g x 取到极小值,极小值是31()sin 6g a a a =--.综上所述:当0a <时,函数()g x 在(,)a -∞和(0,)+∞上单调递增,在(,0)a 上单调递减,函数既有极大值,又有极小值,极大值是31()sin 6g a a a =--,极小值是(0)g a =-;当0a =时,函数()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,函数()g x 在(,0)-∞和(,)a +∞上单调递增,在(0,)a 上单调递减,函数既有极大值,又有极小值,极大值是(0)g a =-,极小值是31()sin 6g a a a =--.专项突破二 利用导数求函数单调区间(不含参)一、单选题1.函数()1e 2xf x x =-的单调减区间是( )A .(2),ln -∞B .(ln2,)+∞C .(–),2∞D .(2,)+∞【解析】1()1e 2xf x '=-,由()0f x '<,得ln 2x >,所以()f x 的单调递减区间为(ln2,)+∞.故选:B2.函数()()2ln 2f x x x =-的单调递减区间为( ) A .10,2⎛⎫ ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .112⎛⎫⎪⎝⎭, D .10,4⎛⎫ ⎪⎝⎭【解析】由题得函数的定义域为(0,)+∞.()121222x f x x x-'=-⨯=, 令1()0,02f x x '<∴<<.所以函数的单调递减区间为10,2⎛⎫⎪⎝⎭.故选:A 3.已知函数()f x 的导函数为()f x ',()()2ln 1f x x f x '=+,则函数()f x 的单调递增区间为( )A .⎛ ⎝⎭B .,⎛-∞ ⎝⎭,⎫+∞⎪⎪⎝⎭C .⎛ ⎝⎭D .⎫+∞⎪⎪⎝⎭【解析】由()()2ln 1f x x f x '=+得1()2(1)f x f x x''=+,所以(1)12(1)f f ''=+,(1)1f '=-, 2112()2x f x x x x -'=-=,因为0x >,所以由212()0x f x x -'=>得0x <<C . 4.已知函数f (x )满足()()()2212e 02x f x f f x x -'=-+,则f (x )的单调递减区间为( ) A .(-∞,0)B .(1,+∞)C .(-∞,1)D .(0,+∞)【解析】由题设()()()22e 0x f x f f x -''=-+,则()()()2202f f f ''=-+,可得()02f =,而()()2022e f f -'==,则()2e 22f '=,所以()212e 22xf x x x =-+,即()2e 2x f x x '=-+,则()00f '=且fx 递增,当0x <时0f x,即()f x 递减,故()f x 递减区间为(-∞,0).故选:A二、多选题 5.函数()1ln f x x x=的一个单调递减区间是( ) A .(e ,+∞)B .1,e ⎛⎫+∞ ⎪⎝⎭C .(0,1e )D .(1e,1)【解析】()f x 的定义域为()()0,11,+∞,()()()'2210ln 1ln ln ln x x x x f x x x x x ⎛⎫-+⨯ ⎪+⎝⎭==-, 所以()f x 在区间()1,1,1,e ⎛⎫+∞ ⎪⎝⎭上()'0f x <,()f x 递减,所以AD 选项符合题意.故选:AD三、填空题6.函数()2ln f x x x x =+-的单调递增区间是______.【解析】()2ln f x x x x=+-的定义域为()0,∞+,()()()2222211221x x x x f x x x x x -+--='=--=,令()0f x '>,解得:2x >或1x <-, 因为定义域为()0,∞+,所以单调递增区间为()2,+∞.7.函数()2cos f x x x =+,π0,2x ⎛⎫∈ ⎪⎝⎭的增区间为___________.【解析】由已知得()12sin f x x =-',π0,2x ⎛⎫∈ ⎪⎝⎭,令()0f x '>,即12sin 0x ->,解得π06x <<,令()0f x '<,即12sin 0x -<,解得ππ62x <<, 则()f x 的单调递增区间为π0,6⎛⎫ ⎪⎝⎭,单调递减区间为ππ,62⎛⎫⎪⎝⎭,故答案为:π0,6⎛⎫ ⎪⎝⎭.四、解答题8.已知函数2()ln 3f x x x x=++. (1)求函数()f x 的单调区间;(2)求曲线()y f x =在点(1,(1))f 处的切线方程.【解析】(1),()0x ∈+∞,22221232(32)(1)()3x x x x f x x x x x +--+=-+==', 解()0f x '<得20,3x <<解()0f x '>得2,3x >所以()f x 的单调减区间是20,,()3f x ⎛⎤ ⎥⎝⎦的单调增区间是2,3⎡⎫+∞⎪⎢⎣⎭.(2)由(1)知(1)2f '=,而(1)5f =,所以曲线()y f x =在点(1,(1))f 处的切线方程为52(1)y x -=-,即23y x =+.专项突破三 利用导数求函数单调区间(含参)1.设函数()e 2xf x ax =--,求()f x 的单调区间.【解析】()f x 的定义域为(),-∞+∞,()e xf x a '=-.若0a ≤,则()0f x '>,所以()f x 在(),-∞+∞上单调递增.若0a >,则当(),ln x a ∈-∞时,()0f x '<;当()ln ,x a ∈+∞时,()0f x '>. 所以()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增. 综上所述,当0a ≤时,函数()f x 在(),-∞+∞上单调递增;当0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增. 2.已知函数()()21ln 12f x a x x a x =+-+. (1)求函数f (x )的单调区间;(2)若f (x )≥ 0对定义域内的任意x 恒成立,求实数a 的取值范围. 【解析】(1)求导可得()(1)()(0)>'--=x a x f x x x①0a ≤时,令()0f x '<可得1x <,由于0x >知01x <<;令()0f x '>,得1x > ∴函数()f x 在(0,1)上单调递减,在(1,)+∞上单调递增;②01a <<时,令()0f x '<可得1<<a x ;令()0f x '>,得1x >或x a <,由于0x >知0x a <<或1x >;∴函数()f x 在(,1)a 上单调递减,在(0,),(1,)+∞a 上单调递增; ③1a =时,()0f x '≥,函数()y f x =在(0,)+∞上单调递增;④1a >时,令()0f x '<可得1x a <<;令()0f x '>,得x a >或1x <,由于0x >知01x <<或x a > ∴函数()f x 在(1,)a 上单调递减,在(0,1),(,)+∞a 上单调递增; (2)由(1)0a ≥时,1(1)02f a =--<,(不符合,舍去)当0a <时,()f x 在(0,1)上单调递减,在(1,)+∞上单调递增,故函数在1x =处取得最小值,所以函数()0f x ≥对定义域内的任意x 恒成立时,只需要(1)0f ≥即可 ,∴12a ≤-.综上,12a ≤-.3.设函数()()32211,3f x x x m x =-++-其中0m >.(1)当1m =时,求曲线()y f x =在点()()1,1f 处的切线斜率; (2)求函数()f x 的单调区间.【解析】(1)由题设,()3213f x x x =-+,则()22f x x x '=-,∴()11f '=,故点()()1,1f 处的切线斜率为1.(2)由题设,()()2221f x x x m '=-++-,又2244(1)40m m ∆=+-=>,∴()(1)(1)f x x m x m '=-+++-,且11m m -<+, 当0f x 时,11m x m -<<+,()f x 单调递增; 当0fx时,1x m <-或1x m >+,()f x 单调递减;∴()f x 在(1,1)m m -+上递增,在(,1)m -∞-、(1,)m ++∞上递减.4.已知函数()()22x xf x ae a e x =+--,讨论()f x 的单调性.【解析】()f x 的定义域为R ,()()()22211(21)x x x xf x ae a e ae e '=+--=-+,若0a ≤,则()0f x '<恒成立,故()f x 在(),-∞+∞上为减函数; 若0a >,则当ln x a <-时,()0f x '<,当ln x a >-时,()0f x '>, 故()f x 在()ln ,a -+∞上为增函数,在(),ln a -∞-上为减函数,综上,当0a ≤时,()f x 在(),-∞+∞上为减函数;当0a >时,()f x 在()ln ,a -+∞上为增函数,在(),ln a -∞-上为减函数. 5.已知函数()21ln 2f x x a x ax =--()0a >. (1)讨论()f x 的单调性;(2)若()f x 恰有一个零点,求a 的值.【解析】(1)()()21a f x x a x ax a x x'=--=--,令()0f x '=,得20x ax a --=.因为0a >,则240a a ∆=+>,即原方程有两根设为12,x x 0x >,所以10x =<(舍去),2x =则当x ⎛∈ ⎝⎭时,()0f x '<,当x ⎫∈+∞⎪⎪⎝⎭时,()0f x '> ()f x在⎛ ⎝⎭上是减函数,在⎫+∞⎪⎪⎝⎭上是增函数.(2)由(1)可知()()2min f x f x =.①若()20f x =,则()()220,0,f x f x ⎧=⎪⎨='⎪⎩,即222222210,20,x alnx ax x ax a ⎧--=⎪⎨⎪--=⎩,可得2212ln 0x x --=,设()12ln h x x x =--,()h x 在()0,∞+上单调递减所以()0h x =至多有一解且()10h =,则21x =,代入解得12a =. ②若()20f x <,则()()220,0,f x f x ⎧<⎪⎨='⎪⎩,即222222210,20,x alnx ax x ax a ⎧--<⎪⎨⎪--=⎩,可得2212ln 0x x --<,结合①可得21>x ,因为211ex <<,21111ln e 2ee ef a a ⎛⎫=-- ⎪⎝⎭2102e e a a =+->,所以()y f x =在21,ex ⎛⎫⎪⎝⎭存在一个零点.当4x a >时,()2ln f x ax a x ax >--()ln 0a x x =->,所以()y f x =在()2,x +∞存在一个零点.因此()y f x =存在两个零点,不合题意 综上所述:12a =.6.已知函数()()e 1xf x m x =++()m ∈R .(1)当1m =时,求()f x 在()()22f ,处的切线方程; (2)讨论()f x 的单调性.【解析】(1)当1m =时,()e 2x f x x =+,()22e 4f =+,()e 2x f x '=+,()22e 2f '=+,故()f x 在()()22f ,处的切线方程为()()()22e 4e 22y x -+=+-,即()22e 2e 0x y +--=;(2)()e 1xx m f =++',当10m +≥,即1m ≥-时,()0f x '>,()f x 在R 上单调递增; 当10+<m ,即1m <-时,由()0f x '>,得()ln 1x m >--,由()0f x '<,得()ln 1x m <--, ∴()f x 在()()ln ,1m -∞--上单调递减,在()(),ln 1m --+∞上单调递增. 综上所述,当1m ≥-时,()f x 在R 上单调递增;当1m <-时,()f x 在()()ln ,1m -∞--上单调递减,在()(),ln 1m --+∞上单调递增. 7.设函数2()(2)ln ()f x x a x a x a R =+--∈. (1)若1a =,求()f x 的极值; (2)讨论函数()f x 的单调性.【解析】(1)当1a =时,2()ln f x x x x =--(0)x >, 所以2121(21)(1)()21x x x x f x x x x x--+-'=--==, 当1x >时,()0,()f x f x '>单调递增,当01x <<时,()0,()f x f x '<单调递减, 所以当1x =时,该函数有极小值(1)0f =,无极大值. (2)由2()(2)ln (0)f x x a x a x x =+-->,22(2)(2)(1)()2(2)a x a x a x a x f x x a x x x+--+-'⇒=+--==,当0a ≥时,当1x >时,()0,()f x f x '>单调递增,当01x <<时,()0,()f x f x '<单调递减; 当0a <时,1()02af x x '=⇒=-,或21x =,当2a =-时,22(1)()0x f x x-'=≥,函数在0x >时,单调递增, 当2a <-时,12a ->, 当01x <<时,()0,()f x f x '>单调递增,当12a x <<-时,()0,()f x f x '<单调递减, 当2a x >-时,()0,()f x f x '>单调递增, 当20a -<<时,12a -<, 当02a x <<-时,()0,()f x f x '>单调递增, 当12a x -<<时,()0,()f x f x '<单调递减, 当1x >时,()0,()f x f x '>单调递增,综上所述:当0a ≥时, ()f x 在(1,)+∞上单调递增,在(0,1)上单调递减;当2a =-时,()f x 在(0,)+∞上单调递增;当2a <-时,()f x 在(0,1)单调递增,在(1,)2a -单调递减,在(,)2a -+∞上单调递增; 当20a -<<时,()f x 在(0,)2a -单调递增,在(,1)2a -单调递减,在(1,)+∞上单调递增 8.已知函数()2()ln(1)2f x x a x x =++++(其中常数0a >),讨论()f x 的单调性; 【解析】21231()(21)11ax ax a f x a x x x +++=++=++, 记2()231g x ax ax a =+++,28a a ∆=-,①当0∆≤,即08a <≤时,()0g x ≥,故'()0f x ≥,所以()f x 在(1,)-+∞单调递增.②当0∆>,即当8a >时,()0g x =有两个实根1x ,2x 注意到(0)10g a =+>, (1)610g a =+>且对称轴3(1,0)4x =-∈-,故12(),1,0x x ∈-,所以当11x x -<<或2x x >时,()0>g x ,()0f x '>,()f x 单调递增;当2i x x x <<时,()0g x <,()0f x '<,()f x 单调递减.综上所述,当08a <≤时,()f x 在(1,)-+∞单调递增;当8a >时,()f x 在(-和)+∞上单调递增,在上单调递减.专项突破四 利用函数单调性比较大小一、单选题1.已知ln 33a =,1e b =,ln 55c =,则以下不等式正确的是( ) A .c b a >> B .a b c >>C .b a c >>D .b c a >> 【解析】令()ln x f x x =,则()21ln x f x x -'=, 当0e x <<时,()()0,f x f x '>单调递增,当e x >时,()()0,f x f x '<单调递减,因为e<35<,所以()()()e 35f f f >>,所以b a c >>故选:C2.设11011,ln2,10a b c e ===,则( ) A .c a b >> B .a c b >> C .c b a >> D .a b c >> 【解析】根据题意,111,ln2110a b =>=<,则a b >, 构造函数()1(0)x f x e x x =-->,所以()10x f e x ='->恒成立,所以()1xf x e x =--在()0,∞+上单调递增,所以()110111001010f e f ⎛⎫=-->= ⎪⎝⎭,即1101110e >,所以c a >,故c a b >>.故选:A3.已知a =1b e -=,3ln 28c =,则a ,b ,c 的大小关系为( ) A .a b c >> B .b c a >> C .c a b >> D .b a c >>【解析】根据题意,ln55a =,1ln =e b e e -=,ln88c =. 令()ln x f x x =,则()21ln x f x x -'=,由()0f x '<得x e >;由()0f x '>得0x e <<; 则函数()f x 在()0e ,上单调递增,在(),e +∞上单调递减,又58e <<,所以()()()58f e f f >>,因此b a c >>.故选:D .4.已知函数()sin f x x x =,ln 22a f ⎛⎫= ⎪⎝⎭,sin 3b f π⎛⎫= ⎪⎝⎭,(ln )c f π=,则a ,b ,c 大小( ) A .a c b <<B .a b c <<C .b a c <<D .c b a <<【解析】由题意,函数()sin f x x x =,可得()sin cos f x x x x '=+,当(0,)2x π∈时,可得()0f x '>,()f x 单调递增,又由ln 21,sin ln 1223e ππ==>=,且3ln 2π<=, 所以ln 20sin ln 232πππ<<<<,所以a b c <<.故选:B. 5.已知()232ln 3ln 31,,e 3ea b c -===,则a 、b 、c 的大小关系为( ) A .c b a >> B .c a b >> C .b c a >> D .a b c >> 【解析】由题可知22e ln ln 3ln e 3,,e 33a b c e ===,构造函数ln ()x f x x=,则21ln ()x f x x -'=, 所以()f x 在()0,e 单调递增,()e,∞+单调递减,所以()()max e f x f =,即c 最大;对于a 、b ,构造函数()()2e ,(e)g x f x f x x ⎛⎫=-> ⎪⎝⎭, 因为()222222e e ln ln 2ln e e e e x x x x x f x x-⎛⎫=== ⎪⎝⎭,令()()22ln e x x h x -=,得()21ln e x h x -'=, 在(,)e +∞上,()()22221ln 1ln 111ln 0e e x x g x x x x--⎛⎫=-=--> ⎪⎝⎭',()g x 单调递增; 所以()()3e 0g g >=,从而()2e 303f f ⎛⎫-> ⎪⎝⎭,(3)b f =,2()3e a f =,即b a >,综上,c b a >>.故选:A 6.若2e 2e x x y y ---<-,则( )A .()ln 10y x -+<B .()ln 10y x -+>C .ln 0x y ->D .ln 0x y -<【解析】令()2e x x f x -=-,则()2ln 2e 0x x f x -'=+>恒成立,故()2e x x f x -=-单调递增,由2e 2e x x y y ---<-可得:x y <,故()ln 1ln10y x -+>=,A 错误,B 正确;x y 可能比1大,可能等于1,也可能()0,1x y -∈,故不能确定ln x y -与0的大小关系,CD 错误. 故选:B7.已知21ln 2ln3,,e 49a b c ===,则( ) A .a b c <<B .c a b <<C .b a c <<D .c b a <<【解析】设2ln ()x f x x =,则()()()e ,2,3a f b f c f ===,又312ln ()-'=x f x x ,于是当)x ∞∈+时,()0f x '<,故2ln ()x f x x =2e 3=<<,则有()()()3e 2f f f <<,即c a b <<.故选:B. 8.已知函数()f x '为函数()f x 的导函数,满足()tan ()x f x f x '⋅>,6a π⎛⎫= ⎪⎝⎭,4b π⎛⎫= ⎪⎝⎭,3c π⎛⎫= ⎪⎝⎭,则下面大小关系正确的是( )A .a b c <<B .a c b <<C .b a c <<D .c b a <<【解析】根据题意,()()tan ()tan ()0x f x f x x f x f x ''⋅>⇔⋅->,变换可得:()()()()cos tan 0tan 0tan sin f x f x x x f x x f x x x ⋅⎛⎫⎛⎫''->⇔-> ⎪ ⎪⎝⎭⎝⎭2sin ()0cos sin x f x x x '⎛⎫⇔> ⎪⎝⎭, 解析可得,0,2x π⎛⎫∈ ⎪⎝⎭,cos 0x >,()0sin f x x '⎛⎫> ⎪⎝⎭,,2x ππ⎛⎫∈ ⎪⎝⎭, cos 0x <,()0sin f x x '⎛⎫< ⎪⎝⎭,所以函数()()sin f x g x x =在0,2π⎛⎫ ⎪⎝⎭上单调递增, 所以643sin sin sin 643f f f ππππππ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭<<,即2643f f πππ⎛⎫⎛⎫⎛⎫< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选:A. 9.已知ln a ππ=,2ln 2b =,c e =,则a ,b ,c 的大小关系为( ) A .a c b <<B .c a b <<C .c b a <<D .b a c << 【解析】ln a ππ=,2ln 2b =,ln e c e e ∴== 构造函数()ln x f x x=且()2ln 1()ln x f x x -'= 当1x e <<时ln 1x <,此时()2ln 1()0ln x f x x -'=<;当x e >时ln 1x >,此时()2ln 1()0ln x f x x -'=>. 故()ln x f x x=当()1,x e ∈单调递减,当(,)x e ∈+∞单调递增. 故min ()()f x f e e c === 故,a c b c >> ,2224(4)ln 22ln 2ln 4b f ⋅==== 又40(4)()f f ππ>>∴> 即b a > ,故c a b <<,故选: B10.若01a b <<<,则( )A .e e ln ln b a b a -<-B .e e ln ln b a b a -≥-C .e e a b b a ≤D .e e a b b a >【解析】对于A,B,令()e ln x f x x =- ,则1()e x f x x'=-, 当01x <<时,1()e x f x x'=-单调递增,且2132123()e 20,()e 0232f f ''=-<=-=>> 故存在012(,)23x ∈ ,使得0()0f x '=, 则当0(0,)x x ∈时,()e ln x f x x =-递减,当0(,1)x x ∈时,()e ln x f x x =-递增,由于01a b <<<,此时()e ln ,()e ln a b f a a f b b =-=-大小关系不确定,故A,B 均不正确;对于C,D,设e g()=x x x ,则e (1)g ()=x x x x-', 当01x <<时,()0g x '<,故e g()=xx x 单调递减, 所以当01a b <<<时,()()g a g b > ,即e e a b a b> ,即e e a b b a >, 故C 错误,D 正确,故选:D 11.设20222020a =,20212021b =,20202022c =,则( )A .a b c >>B .b a c >>C .c a b >>D .c b a >> 【解析】∵ln2020ln 2022ln20202021ln2021ln 2021ln20212022a b ==,构造函数()()2ln 1x f x x e x =≥+,()()21ln 1x x x f x x x +-'=+, 令()1ln g x x x x =+-,则()ln 0g x x '=-<,∴()g x 在)2,e ⎡+∞⎣上单减,∴()()2210g x g e e ≤=-<,故()0f x '<, ∴()f x 在)2,e ⎡+∞⎣上单减,∴()()202020210f f >>,∴()()2020ln 1ln 2021f a b f => ∴ln ln a b >.∴a b >,同理可得ln ln b c >,b c >,故a b c >>,故选:A二、多选题12.下列命题为真命题的个数是( )A.ln3< B.ln π<C.15< D.3eln2<【解析】设函数()0f x x =>,则()f x '==当20e x <≤时,()0f x '>,当2e x >时,()0f x '<,故()0f x x =>在2(0,e ) 上递增,在2(e ,)+∞ 上递减, 对于A ,由234e << ,故(3)(4)f f <,<, 即2ln 2,ln 322<<,A 正确; 对于B ,2e<π <e ,故(e)(π)f f <<ln πB 错误; 对于C ,21615e >> ,故(16)(15)f f <4ln 24<<故ln 22ln15<<,则ln 15<<,故C 正确; 对于D ,28e > ,故2(8)(e )f f <22e<,即3eln2<D 正确,故选:ACD专项突破五 函数与导函数图像关系一、单选题1.函数()y f x =在定义域3,32⎛⎫- ⎪⎝⎭内可导,图像如图所示,记()y f x =的导函数为()y f x '=,则不等式()0f x '≥的解集为( )A .[)1,12,33⎡⎤-⎢⎥⎣⎦B .1481,,233⎡⎤⎡⎤-⋃⎢⎥⎢⎥⎣⎦⎣⎦C .[]31,1,223⎛⎤--⋃ ⎥⎝⎦D .3148,,2333⎛⎤⎡⎤--⋃ ⎥⎢⎥⎝⎦⎣⎦ 【解析】()0f x '≥的解集即为()y f x =单调递增区间结合图像可得()y f x =单调递增区间为[]31,,1,223⎛⎤-- ⎥⎝⎦则()0f x '≥的解集为[]31,1,223⎛⎤--⋃ ⎥⎝⎦,故选:C . 2.如图是函数y =f (x )的导函数()y f x '=的图象,则下列判断正确的是( )A .在区间()2,1-上f (x )单调递增B .在区间(1,3)上f (x )单调递减C .在区间()4,5上f (x )单调递增D .在区间(3,5)上f (x )单调递增 【解析】由导数图象知,在区间32,2⎛⎫-- ⎪⎝⎭上小于0,在3,12⎛⎫- ⎪⎝⎭上大于0,函数f (x )先减后增,A 错误; 在区间()1,2上大于0,在()2,3上小于0,函数f (x )先增后减,B 错误;在区间()4,5上大于0,函数f (x )单调递增,C 正确;在区间()3,4上小于0,在()4,5上大于0,函数f (x )先减后增,D 错误.故选:C.3.函数f (x )的图象如图所示,则()0x f x '⋅<的解集为( )A .()()320,1--,B .()(),13,-∞-⋃+∞C .()()2,10,--⋃+∞D .()(),31,-∞-⋃+∞ 【解析】由函数图象与导函数大小的关系可知:当()(),3,2,1x x ∞∈--∈-时,()0f x '<,当()()3,2,1,x x ∞∈--∈+时,()0f x '>,故当()()(),3,2,0,1,,x x x ∞∈--∈-∈+∞时,()0x f x '⋅>;当()0,1x ∈时,()0x f x '⋅<;当()3,2x ∈--时,()0x f x '⋅<,故()0x f x '⋅<的解集为()()320,1--,.故选:A4.若函数()y f x =的导函数图象如图所示,则该函数图象大致是( )A .B .C .D .【解析】由导函数图像可知,原函数的单调性为先单增后单减再单增,符合的只有A 选项. 故选:A5.已知()21cos 4f x x x =+,()f x '为()f x 的导函数,则()y f x '=的图像大致是( ) A .B .C . D . 【解析】1()sin 2f x x x '=-,()'f x 为奇函数,则函数()f x '的图像关于原点对称,排除选项A 、D ,令()()g x f x '=,1()cos 2g x x '=-,当0,3x π⎛⎫∈ ⎪⎝⎭,()0g x '<,()g x 在0,3π⎛⎫ ⎪⎝⎭递减,故选B . 6.已知函数()y f x =的图象如图所示,()f x '是函数()f x 的导函数,则下列数值排序正确的是( )A .()()()()224224f f f f ''<-<B .()()()()222242f f f f '<<-C .()()()()222442f f f f ''<<-D .()()()()422422f f f f ''-<<【解析】由函数()f x 的图象可知,当0x ≥时,()f x 单调递增,所以(2)0f '>,(4)0f '>,(4)(2)0f f ->,由此可知,()'f x 在(0,)+∞上恒大于0,因为直线的斜率逐渐增大,所以()'f x 单调递增,结合导数的几何意义, 故(4)(2)(2)(4)42f f f f -''<<-,所以()()()()224224f f f f ''<-<,故选:A .。
高三数学利用导数研究函数的单调性试题答案及解析

高三数学利用导数研究函数的单调性试题答案及解析1.我们把形如y=f(x)φ(x)的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边求对数得ln y=φ(x)lnf(x),两边求导得=φ′(x)·ln f(x)+φ(x)·,于是y′=f(x)φ(x)[φ′(x)·ln f(x)+φ(x)·].运用此方法可以探求得y=x的单调递增区间是________.【答案】(0,e)【解析】由题意知y′=x (-ln x+·)=x·(1-ln x),x>0,>0,x>0,令y′>0,则1-ln x>0,所以0<x<e.2.已知函数f(x)=(ax+1)e x.(1)求函数f(x)的单调区间;(2)当a>0时,求函数f(x)在区间[-2,0]上的最小值.【答案】(1)见解析(2)当a>1时,f(x)在区间[-2,0]上的最小值为-a·;当0<a≤1时,f(x)在区间[-2,0]上的最小值为.【解析】解:依题意,函数的定义域为R,f′(x)=(ax+1)′e x+(ax+1)(e x)′=e x(ax+a+1).(1)①当a=0时,f′(x)=e x>0,则f(x)的单调递增区间为(-∞,+∞);②当a>0时,由f′(x)>0,解得x>-,由f′(x)<0,解得x<-,则f(x)的单调递增区间为(-,+∞),f(x)的单调递减区间为(-∞,-);③当a<0时,由f′(x)>0,解得x<-,由f′(x)<0解得,x>-,则f(x)的单调递增区间为(-∞,-),f(x)的单调递减区间为(-,+∞).(2)①当时,)上是减函数,在(-,0)上是增函数,则函数f(x)在区间[-2,0]上的最小值为f(-)=-a·;②当时,即当0<a≤1时,f(x)在[-2,0]上是增函数,则函数f(x)在区间[-2,0]上的最小值为f(-2)=.综上,当a>1时,f(x)在区间[-2,0]上的最小值为-a·;当0<a≤1时,f(x)在区间[-2,0]上的最小值为.3.函数f(x)=x(x-m)2在x=1处取得极小值,则m=________.【答案】1【解析】f′(1)=0可得m=1或m=3.当m=3时,f′(x)=3(x-1)(x-3),1<x<3,f′(x)<0;x<1或x>3,f′(x)>0,此时x=1处取得极大值,不合题意,所以m=1.4.设,曲线在点处的切线与直线垂直.(1)求的值;(2)若对于任意的,恒成立,求的范围;(3)求证:【解析】(1)求得函数f(x)的导函数,利用曲线y=f(x)在点(1,f(1))处的切线与直线2x+y+1=0垂直,即可求a的值;(2)先将原来的恒成立问题转化为lnx≤m(x−),设g(x)=lnx−m(x−),即∀x∈(1,+∞),g(x)≤0.利用导数研究g(x)在(0,+∞)上单调性,求出函数的最大值,即可求得实数m的取值范围.(3)由(2)知,当x>1时,m=时,lnx<(x−)成立.不妨令x=,k∈N*,得出[ln(2k+1)−ln(2k−1)]<,k∈N*,再分别令k=1,2,,n.得到n个不等式,最后累加可得.(1) 2分由题设,∴,. 4分(2),,,即设,即.6分①若,,这与题设矛盾. 7分②若方程的判别式当,即时,.在上单调递减,,即不等式成立. 8分当时,方程,设两根为,当,单调递增,,与题设矛盾.综上所述, . 10分(3) 由(2)知,当时, 时,成立.不妨令所以,11分12分累加可得∴∴ ---------------14分【考点】1.利用导数研究曲线上某点切线方程;2.导数在最大值、最小值问题中的应用.5.已知函数.(1)当时,证明:当时,;(2)当时,证明:.【答案】(1)证明过程详见解析;(2)证明过程详见解析.【解析】本题主要考查导数的运算、利用导数判断函数的单调性、利用导数求函数的最值等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,将当时,转化为,对函数求导,利用单调递增,单调递减,来判断函数的单调性来决定函数最值,并求出最值为0,即得证;第二问,先将转化为且,利用导数分别判断函数的单调性求出函数最值,分别证明即可.(1)时,,令,,∴在上为增函数 3分,∴当时,,得证. 6分(2)令,,时,,时,即在上为减函数,在上为增函数 9分∴①令,,∴时,,时,即在上为减函数,在上为增函数∴②∴由①②得. 12分【考点】导数的运算、利用导数判断函数的单调性、利用导数求函数的最值.6.已知函数.(1)当a=l时,求的单调区间;(2)若函数在上是减函数,求实数a的取值范围;(3)令,是否存在实数a,当(e是自然对数的底数)时,函数g(x)最小值是3,若存在,求出a的值;若不存在,说明理由.【答案】(1)单调递减区间为,单调递增区间为;(2);(3)存在实数.【解析】(1)把代入函数解析式得,且定义域为,利用导数法可求出函数的单调区间,由,分别解不等式,,注意函数定义域,从而可求出函数的单调区间;(2)此问题利用导数法来解决,若函数在上是减函数,则其导函数在上恒成立,又因为,所以函数,必有,从而解得实数的取值范围;(3)利用导数求极值的方法来解决此问题,由题意得,则,令,解得,通过对是否在区间上进行分类讨论,可求得当时,有,满足条件,从而可求出实数的值.(1)当时,. 2分因为函数的定义域为,所以当时,,当时,.所以函数的单调递减区间为,单调递增区间为. 4分(2)在上恒成立.令,有, 6分得,. 8分(3)假设存在实数,使有最小值3,. 9分当时,在上单调递减,,(舍去); 10分②当时,在上单调递减,在上单调递增.,解得,满足条件; 12分③当时,在上单调递减,,(舍去). 13分综上,存在实数,使得当时,有最小值3. 14分【考点】1.导数性质;2.不等式求解;3.分类讨论.7.设函数f(x)=x-2msin x+(2m-1)sin xcos x(m为实数)在(0,π)上为增函数,则m的取值范围为()A.[0,]B.(0,)C.(0,]D.[0,)【答案】A【解析】∵f(x)在区间(0,π)上是增函数,∴f′(x)=1-2mcos x+2(m-)cos 2x=2[(2m-1)cos2x-mcos x+1-m]=2(cos x-1)[(2m-1)cos x+(m-1)]>0在(0,π)上恒成立,令cos x=t,则-1<t<1,即不等式(t-1)[(2m-1)t+(m-1)]>0在(-1,1)上恒成立,①若m>,则t<在(-1,1)上恒成立,则只需≥1,即<m≤,②当m=时,则0·t+-1<0,在(-1,1)上显然成立;③若m<,则t>在(-1,1)上恒成立,则只需≤-1,即0≤m<.综上所述,所求实数m的取值范围是[0,].8.已知e为自然对数的底数,设函数f(x)=xe x,则()A.1是f(x)的极小值点B.﹣1是f(x)的极小值点C.1是f(x)的极大值点D.﹣1是f(x)的极大值点【答案】B【解析】f(x)=xe x⇒f′(x)=e x(x+1),令f′(x)>0⇒x>﹣1,∴函数f(x)的单调递增区间是[﹣1,+∞);令f′(x)<0⇒x<﹣1,∴函数f(x)的单调递减区间是(﹣∞,﹣1),故﹣1是f(x)的极小值点.故选:B.9.若函数f(x)=x3-ax2+(a-1)x+1在区间(1,4)上是减函数,在区间(6,+∞)上是增函数,则实数a的取值范围是________.【答案】[5,7]【解析】f′(x)=x2-ax+(a-1),由题意,f′(x)≤0在(1,4)恒成立且f′(x)≥0在(6,+∞)恒成立,即a≥x+1在(1,4)上恒成立且a≤x+1在(6,+∞)上恒成立,所以5≤a≤7.10.已知函数f(x)=x2-mlnx+(m-1)x,当m≤0时,试讨论函数f(x)的单调性;【答案】当-1<m≤0时单调递增区间是和(1,+∞),单调递减区间是;当m≤-1时,单调递增区间是和,单调递减区间是【解析】函数的定义域为,f′(x)=x-+(m-1)=.①当-1<m≤0时,令f′(x)>0,得0<x<-m或x>1,令f′(x)<0,得-m<x<1,∴函数f(x)的单调递增区间是和(1,+∞),单调递减区间是;②当m≤-1时,同理可得,函数f(x)的单调递增区间是和,单调递减区间是.11.若函数f(x)=x2+ax+在上是增函数,则a的取值范围是________.【答案】a≥3【解析】f′(x)=2x+a-≥0在上恒成立,即a≥-2x在上恒成立.令g(x)=-2x,求导可得g(x)在上的最大值为3,所以a≥3.12.函数y=(3-x2)e x的单调递增区间是()A.(-∞,0)B.(0,+∞)C.(-∞,-3)和(1,+∞)D.(-3,1)【答案】D【解析】y'=-2xe x+(3-x2)e x=e x(-x2-2x+3)>0x2+2x-3<0-3<x<1,∴函数y=(3-x2)e x的单调递增区间是(-3,1).13.若函数f(x)=x3-x2+ax+4恰在[-1,4]上单调递减,则实数a的值为________.【答案】-4【解析】∵f(x)=x3-x2+ax+4,∴f′(x)=x2-3x+a.又函数f(x)恰在[-1,4]上单调递减,∴-1,4是f′(x)=0的两根,∴a=-1×4=-4.14.函数f(x)=x2-ln x的单调递减区间为 ().A.(-1,1]B.(0,1]C.[1,+∞)D.(0,+∞)【答案】B【解析】由题意知,函数的定义域为(0,+∞),又由f′(x)=x-≤0,解得0<x≤1,所以函数的单调递减区间为(0,1].15.已知函数,(1)求函数的单调区间;(2)若方程有且只有一个解,求实数m的取值范围;(3)当且,时,若有,求证:.【答案】(1)的递增区间为,递减区间为和;(2);(3)详见解析.【解析】(1)对求导可得,令,或,由导数与单调性的关系可知,所以递增区间为,递减区间为;(2)若方程有解有解,则原问题转化为求f(x)的值域,而m只要在f(x)的值域内即可,由(1)知,,方程有且只有一个根,又的值域为,;(3)由(1)和(2)及当,时,有,不妨设,则有,,又,即,同理,又,,且在上单调递减,,即.试题解析:(1),令,即,解得,令,即,解得,或,的递增区间为,递减区间为和. 4分(2)由(1)知,, 6分方程有且只有一个根,又的值域为,由图象知8分(3)由(1)和(2)及当,时,有,不妨设,则有,,又,即, 11分,又,,且在上单调递减,,即. 13分【考点】1.导数在函数单调性上的应用;2. 导数与函数最值.16.某地区注重生态环境建设,每年用于改造生态环境总费用为亿元,其中用于风景区改造为亿元。
高二数学利用导数研究函数的单调性试题答案及解析

高二数学利用导数研究函数的单调性试题答案及解析1.已知(1)如果函数的单调递减区间为,求函数的解析式;(2)对一切的,恒成立,求实数的取值范围.【答案】(1);(2).【解析】(1)三个二次间的关系,其实质是抓住二次函数的图像与横坐标的交点、二次不等式解集的端点值、二次方程的根是同一个问题.解决与之相关的问题时,可利用函数与方程的思想、化归的思想将问题转化,结合二次函数的图象来解决;(2)若可导函数在指定的区间上单调递增(减),求参数问题,可转化为恒成立,从而构建不等式,要注意“=”是否可以取到;(3)(3)对于恒成立的问题,常用到两个结论:(1)(2)试题解析:解:(1)由题意的解集是即的两根分别是.将或代入方程得..……4分(2)由题意:在上恒成立即可得设,则令,得(舍)当时,;当时,当时,取得最大值, =-2.的取值范围是.【考点】(1)利用函数的单调性求函数解析式;(2)利用导数解决横成立的问题.2.函数的单调递增区间是().A.B.C.D.【答案】C【解析】,;令,得,即函数的单调递增区间是.【考点】利用导数研究函数的单调性.3.已知为定义在(0,+∞)上的可导函数,且恒成立,则不等式的解集为.【答案】【解析】因为为定义在(0,+∞)上的可导函数,且恒成立,所以在上恒成立,即在上为减函数;可化为,所以,解得.【考点】解抽象不等式.4.已知函数f(x)是偶函数,在上导数>0恒成立,则下列不等式成立的是( ).A.f(-3)<f(-1)<f(2)B.f(-1)<f(2)<f(-3)C.f(2)<f(-3)<f(-1)D.f(2)<f(-1)<f(-3)【答案】B【解析】因为函数在上,所以函数在上为增函数;又因为为偶函数,所以,,所以,即.【考点】函数的奇偶性.5.函数有极值点,则的取值范围是()A.B.C.D.【答案】D【解析】∵函数有极值点,∴f(x)的导数 f′(x)=x2-2x+a=0有两个实数根,∴,故选D.【考点】函数存在极值的条件.6.若定义在R上的函数f(x)的导函数为,且满足,则与的大小关系为().A.<B.=C.>D.不能确定【答案】C【解析】构造函数,则,因为,所以;即函数在上为增函数,则,即.【考点】利用导数研究函数的单调性.7.函数是定义在上的奇函数,且.(1)求函数的解析式;(2)证明函数在上是增函数;(3)解不等式:.【答案】(1)(2)证明见解析(3)【解析】(1)(由是定义在上的奇函数,利用可求得,再由可求得,即可求得;(2)由(1)可得,即得函数在上是增函数;(3)由,再利用为奇函数,可得,即可求得结果.试题解析:(1)是定义在上的奇函数,;又,,;(2),,即,∴函数在上是增函数.(3),又是奇函数,,在上是增函数,,解得,即不等式的解集为.【考点】函数的奇偶性;利用导数判断函数单调性.8.已知定义域为R的函数,且对任意实数x,总有/(x)<3则不等式<3x-15的解集为()A.(﹣∞,4)B.(﹣∞,﹣4)C.(﹣∞,﹣4)∪(4,﹢∞)D.(4,﹢∞)【答案】【解析】设,则所求的不等式解集可理解为使的解集.的导函数为,根据题意可知对任意实数恒成立,所以在上单调递减.则,令,则根据单调递减可知:.【考点】导数法判断单调性;根据单调性解不等式.9.在区间内不是增函数的是()A.B.C.D.【答案】D【解析】选项中,时都有,所以在上为单调递增函数,所以在是增函数;选项在,而在上为增函数,所以在是增函数;选项,令得或,所以在为增函数,而,所以在上增函数;选项,令,得。
利用导数探究函数的单调性(共10种题型)

利用导数探究函数的单调性一.求单调区间例1:已知函数2()ln (0,1)x f x a x x a a a =+->≠,求函数)(x f 的单调区间 解:()ln 2ln 2(1)ln x x f x a a x a x a a '=-=-++.则令()()g x f x '=因为当0,1a a >≠ 所以2()2ln 0x g x a a '=+> 所以()f x '在R 上是增函数, 又(0)0f '=,所以不等式()0f x '>的解集为(0,)∞+,故函数()f x 的单调增区间为(0,)∞+ 减区间为:(0)-∞,变式:已知()x f x e ax =-,求()f x 的单调区间解:'()x f x e a =- 当0a ≤时,'()0f x >,()f x 单调递增当0a >时,由'()0x f x e a =->得:ln x a >,()f x 在(ln ,)a +∞单调递增由'()0x f x e a =-<得:ln x a <,()f x 在(ln )a -∞,单调递增 综上所述:当0a ≤时,()f x 的单调递增区间为:-∞+∞(,),无单调递减区间当0a >时,()f x 的单调递增区间为:(ln ,)a +∞,递减区间为:(ln )a -∞,二.函数单调性的判定与逆用例2.已知函数32()25f x x ax x =+-+在1132(,)上既不是单调递增函数,也不是单调递减函数,求正整数a 的取值集合 解:2()322f x x ax '=+-因为函数32()25f x x ax x =+-+在1132(,)上既不是单调递增函数,也不是单调递减函数 所以2()322=0f x x ax '=+-在1132(,)上有解 所以''11()()032f f <又*a N ∈ 解得:5542a << 所以正整数a 的取值集合{2}三.利用单调性求字母取值范围 例3. 已知函数()ln xf x ax x=-,若函数()y f x =在1+?(,)上是减函数,求实数a 的最小值. 解:因为()ln xf x ax x=-在1+?(,)上是减函数 所以'2ln 1()0(ln )x f x a x -=-?在1+?(,)上恒成立 即2ln 1(ln )x a x -³在1+?(,)上恒成立令ln ,(1)t x x =>,则0t >21()(0)t h t t t -=> 则max ()a h t ³因为222111111()=()()24t h t t t t t -=-+=--+ 所以max 1()=(2)4h t h =所以14a ³变式:若函数3211()(1)132f x x ax a x =-+-+在区间1,4()上为减函数,在区间(6,)+?上为增函数,试求实数a 的取值范围. 解:2'()=1f x x ax a -+-因为函数()y f x =在区间1,4()上为减函数,在区间(6,)+?上为增函数 所以''()0(1,4)()0,(6,)f x x f x x ìï??ïíï???ïî,恒成立即2210(1,4)10,(6,)x ax a x x ax a x ì-+-??ïïíï-+-???ïî, 所以2211,(1,4)111,(6,)1x a x x x x a x x x ì-ïï?+"?ïï-íï-ï?+"??ïï-ïî所以4161a a ì?ïïíï?ïî所以57a #四.比较大小例4. 设a 为实数,当ln 210a x >->且时,比较x e 与221x ax -+的大小关系. 解:令2()21(0)x f x e x ax x =-+-> 则'()=22x f x e x a -+ 令'()()g x f x = 则'()e 2x g x =- 令'()0g x =得:ln 2x =当ln 2x >时,'()0g x >;当ln 2x <时,'()0g x <所以ln2min ()()=(ln2)2ln2222ln22g x g x g e a a ==-+=-+极小值 因为ln 21a >- 所以'()()0g x f x =>所以()f x 在0+?(,)上单调递增所以()(0)0f x f >= 即2210x e x ax -+-> 所以221x e x ax >-+变式:对于R 上的可导函数()y f x =,若满足'(3)()0x f x ->,比较(1)(11)f f +与2(3)f 的大小关系.解:因为'(3)()0x f x ->所以当3x >时,'()0f x >,()f x 单调递增,故(11)(3)f f >当3x <时,'()0f x <,()f x 单调递减,故(1)(3)f f > 所以(1)(11)2(3)f f f +> 五.证明不等式例5.已知函数|ln |)(x x f =,()(1)g x k x =- (R)k ∈.证明:当1k <时,存在01x >,使得对任意的0(1,)x x ∈,恒有()()f x g x >. 证明:令()|ln |(1)=ln (1),(1,)G x x k x x k x x =----∈+∞ 则有'11(),(1,)kx G x k x x x-=-=∈+∞ 当01k k ≤≥或时,'()0G x >,故 ()G x 在1+∞(,)上单调递增,()G(1)0G x >=.故任意实数 (1,)x ∈+∞ 均满足题意.当 01k << 时,令'()=0G x ,得11x k=>. 当1(1,)x k ∈时,'()0G x >,故 ()G x 在1(1,)k上单调递增当1()x k∈+∞,时,'()0G x <,故 ()G x 在1()k +∞,上单调递减 取01x k=,对任意0(1,)x x ∈,有'()0G x >,故()G x 在0(1,)x 上单调递增所以()G(1)0G x >= 即()()f x g x >综上所述:当1k <时,存在01x >,使得对任意的0(1,)x x ∈,恒有()()f x g x >.变式:已知关于x 的方程2(1)x x e ax a --=有两个不同的实数根12x x 、.求证:120x x <+ 证明:因为2(1)x x e ax a --=所以2(1)1xx e a x -=+令2(1)()1xx e f x x -=+则222222(23)[(1)2]()11x xx x x e x x e f x x x --+--+'==++()()当0x >时()0f x '<,()f x 单调递减 当0x <时()0f x '>,()f x 单调递增因为关于x 的方程2(1)x x e ax a --=有两个不同的实数根12x x 、所以不妨设12(,0),(0,)x x ∈-∞∈+∞ 要证:120x x <+ 只需证:21x x <-因为210x x -∈+∞(,),且函数()f x 在0+∞(,)上单调递减 所以只需证:21()()f x f x >-,又因为21()=()f x f x 所以只需证:11()()f x f x >-即证:11112211(1)(1)11x x x e x e x x --+>++ 即证:(1)(1)0x x x e x e ---+>对0x ∈-∞(,)恒成立 令g()(1)(1)x x x x e x e -=--+,0x ∈-∞(,)则g ()()x x x x e e -'=-因为0x ∈-∞(,)所以0x x e e -->所以g ()()0x x x x e e -'=-<恒成立所以g()(1)(1)x x x x e x e -=--+在0-∞(,)上单调递减所以g()(0)0x g >= 综上所述:120x x <+ 六.求极值例6.已知函数2()()x f x x ax a e =++,是否存在实数a ,使得函数()f x 的极大值为3?若存在,求出a 的值,若不存在,请说明理由.解:'22()(2)()[(2)2]=()(2)x x x x f x x a e x ax a e x a x a e x a x e =++++=+++++ 令'()=0f x 得:2x a x =-=-或当2a =时,'()0f x ≥恒成立,无极值,舍去当2a <时,2a ->-由表可知:2()=(2)(42)3f x f a a e --=-+=极大值 解得:2432a e =-< 当2a >时,2a -<-由表可知:22()=()()3a f x f a a a a e --=-+=极大值,即3a ae -= 所以:=3a a e 令()3(2)a g a e a a =-> 则'2()31310a g a e e =->->所以()y g a =在2+∞(,)上单调递增又2(2)320g e =->所以函数()y g a =在2+∞(,)上无零点即方程=3a a e 无解综上所述:存在实数a ,使得函数()f x 的极大值为3,此时243a e =- 七.求最值例7. 已知函数2()ln (0,1)x f x a x x a a a =+->≠,若存在]1,1[,21-∈x x ,使得12()()e 1f x f x -≥-(其中e 是自然对数的底数),求实数a 的取值范围. 解:因为存在12,[1,1]x x ∈-,使得12()()e 1f x f x --≥成立, 而当[1,1]x ∈-时,12max min ()()()()f x f x f x f x --≤, 所以只要max min ()()e 1f x f x --≥即可又因为x ,()f x ',()f x 的变化情况如下表所示:所以()f x 在[1,0]-上是减函数,在[0,1]上是增函数,所以当[1,1]x ∈-时,()f x 的最小值()()m i n 01f x f ==,()f x 的最大值()max f x 为()1f -和()1f 中的最大值.因为11(1)(1)(1ln )(1ln )2ln f f a a a a a aa--=--=--+++,令1()2ln (0)g a a a a a =-->,因为22121()1(1)0g a a a a '=-=->+,所以1()2ln g a a a a=--在()0,a ∈+∞上是增函数.而(1)0g =,故当1a >时,()0g a >,即(1)(1)f f >-; 当01a <<时,()0g a <,即(1)(1)f f <-所以,当1a >时,(1)(0)e 1f f --≥,即ln e 1a a --≥,函数ln y a a =-在(1,)a ∈+∞上是增函数,解得e a ≥;当01a <<时,(1)(0)e 1f f ---≥,即1ln e 1a a+-≥,函数1ln y a a=+在(0,1)a ∈上是减函数,解得10ea <≤.综上可知,所求a 的取值范围为1(0,][e,)ea ∈∞+ 我变式:已知函数()ln()(0)x a f x e x a a -=-+>在区间0+∞(,)上的最小值为1,求实数a 的值.解:1()=x a f x e x a-'-+ 令()()g x f x '=则21()=0(x a g x e x a -'+>+)所以()y g x =在区间0+∞(,)单调递增所以存在唯一的00x ∈+∞(,),使得0001()0x a g x e x a-=-=+ 即001=x a e x a-+ 所以当0(0,)x x ∈时,()()0g x f x '=<,()y f x =单调递减当0()x x ∈+∞,时,()()0g x f x '=>,()y f x =单调递增 所以0min 00()()ln()x a f x f x e x a -==-+ 由001=x a e x a-+得:00=ln()x a x a --+ 所以0min 00001()()ln()=x a f x f x e x a x a x a-==-++-+001=()2222x a a x aa a++-+≥=- 当且仅当001=x a x a++即0=1x a +,min 0()()22f x f x a ==- 由22=1a -得12a =,此时01=2x ,满足条件 所以12a =八.解不等式例8. 函数2)0())((=∈f R x x f ,,对任意1)()('>+∈x f x f R x ,,解不等式:1)(+>x x e x f e 解:令()()x x g x e f x e =-则()()()(()()1)x x x x g x e f x e f x e e f x f x '''=+-=+-因为对任意1)()('>+∈x f x f R x , 所以()0g x '>,所以()y g x =为R 上的单调递增函数 又(0)(0)11g f =-=所以当1)(+>x x e x f e 即()1x x e f x e -> 所以()(0)g x g > 所以0x >即不等式:1)(+>x x e x f e 的解集为0+∞(,)变式:已知定义在R 上的可导函数()y f x =满足'()1f x <,若(12)()13f m f m m -->-,求m 的取值范围.解:令()()g x f x x =- 则()()1g x f x ''=- 因为'()1f x <所以()()10g x f x ''=-<所以()()g x f x x =-为R 上递减函数 由(12)()13f m f m m -->- 得:(12)()f m m f m m ---(1-2)> 即(12)()g m g m -> 所以12m m ->即13m <九.函数零点个数(方程根的个数)例9. 已知2()2ln()f x x a x x =+--在0x =处取得极值.若关于x 的方程()0f x b +=在区间[1,1]-上恰有两个不同的实数根,求实数b 的取值范围.解: '2()21f x x x a=--+ 因为2()2ln()f x x a x x =+--在0x =处取得极值 所以'2(0)1=0f a=-, 即2a =,检验知2a =符合题意.令2()()2ln(2)[1,1]g x f x b x x x b x =+=+--+∈-,'52()22()21(11)x x g x x x +=--=--≤≤ 所以()=(0)2ln 2g x g b =+极大值因为方程()0f x b +=在区间[1,1]-上恰有两个不同的实数根所以(1)0(0)0(1)0g g g -≤⎧⎪>⎨⎪≤⎩,即02ln 202ln 320b b b ≤⎧⎪+>⎨⎪-+≤⎩解得:2ln 222ln 3b -<≤-所以实数b 的取值范围是:2ln 222ln3]--(, 变式:已知函数()y f x =是R 上的可导函数,当0x ¹时,有'()()0f x f x x+>,判断函数13()()F x xf x x=+的零点个数解:当0x ¹时,有'()()0f x f x x+> 即'()()0xf x f x x+> 令()()g x xf x =,则'()()()g x xf x f x ¢=+所以当0x >时,'()()()0g x xf x f x ¢=+>,函数()y g x =在0+∞(,)单调递增 且()g(0)=0g x >所以当0x >时,13()()0F x xf x x=+>恒成立,函数()y F x =无零点 当0x <时,'()()()0g x xf x f x ¢=+<,函数()y g x =在0∞(-,)单调递减 且()g(0)=0g x >恒成立 所以13()()F x xf x x=+在0∞(-,)上为单调递减函数 且当0x →时,()0xf x ®,所以13()0F x x? 当x →-∞时,10x®,所以()()0F x xf x ? 所以13()()F x xf x x=+在0∞(-,)上有唯一零点 综上所述:13()()F x xf x x =+在0∞∞(-,)(0,+)上有唯一零点 十.探究函数图像例10.设函数在定义域内可导,()y f x =的图像如图所示,则导函数()y f x '=的图像可能为下列图像的 .解:由()y f x =的图像可判断出:()f x 在(,0)-∞递减,在(0)+∞,上先增后减再增 所以在(,0)-∞上()0f x '<,在(0)+∞,上先有()0f x '>,后有()0f x '<,再有()0f x '>. 所以图(4)符合.变式:已知函数ln(2)()x f x x =,若关于x 的不等式2()()0f x af x +>只有两个整数解,求实数a 的取值范围. 解:21ln(2)()=x f x x -',令()=0f x '得2e x = 所以当02e x <<时,()0,()f x f x '>单调递增 当2e x >时,()0,()f x f x '<单调递减 由当12x <时,()0f x <,当12x >时,()0f x >(1)(2)(3)(4)作出()f x 的大致函数图像如图所示: 因为2()()0f x af x +>(1)若0a =,即2()0f x >,显然不等式有无穷多整数解,不符合题意;(2)若0a >,则()()0f x a f x <->或,由图像可知,()0f x >,有无穷多整数解(舍)(3)若0a <则()0()f x f x a <>-或,由图像可知,()0f x <无整数解, 所以()f x a >-有两个整数解因为(1)(2)ln 2f f ==,且()f x 在(,)2e +∞上单调递减 所以()f x a >-的两个整数解为:1,2x x == 又ln 6(3)3f =所以ln 6ln 23a ≤-< 所以ln 6ln 23a -<≤-。
利用导数判断函数的单调性

1.y =8x 2-ln x 在(0,14)和(12,1)上分别为( ) A .增函数,增函数 B .增函数,减函数C .减函数,增函数D .减函数,减函数解析:y ′=16x -1x =(4x -1)(4x +1)x ,当x ∈(0,14)时,y ′<0,y =8x 2-ln x 在(0,14)上为减函数;当x ∈(12,1)时,y ′>0,y =8x 2-ln x 在(12,1)上为增函数. 答案:C2.若函数h (x )=2x -k x +k 3在(1,+∞)上是增函数,则实数k 的取值范围是( ) A .[-2,+∞)B .[2,+∞)C .(-∞,-2]D .(-∞,2]解析:因为h (x )在(1,+∞)上是增函数,所以h ′(x )=2+k x 2=2x 2+k x 2≥0在(1,+∞)上恒成立,即k ≥-2x 2在(1,+∞)上恒成立,所以k ∈[-2,+∞).答案:A3.(2012·辽宁高考)函数y =12x 2-ln x 的单调递减区间为( ) A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞) 解析:函数y =12x 2-ln x 的定义域为(0,+∞),y ′=x -1x =(x -1)(x +1)x ,令y ′≤0,则可得0<x ≤1.答案:B4.已知函数y =xf ′(x )的图象如图所示(其中f ′(x )是函数f (x )的导函数),y =f (x )的图象大致是下图中的( )解析:由y =xf ′(x )的图象,知当x >1时,f ′(x )>0,这时f (x )是增函数.同理,当0<x <1时,f ′(x )<0,这时f (x )是减函数,只有C 满足题意.答案:C5.若函数f (x )=x 3+bx 2+cx +d 的单调减区间为[-1,2],则b =________,c =________. 解析:f ′(x )=3x 2+2bx +c ,∵函数f (x )的单调减区间为[-1,2],∴f ′(x )=3x 2+2bx +c ≤0的解集是[-1,2].∴-1,2是方程3x 2+2bx +c =0的两个根.∴⎩⎨⎧-2b 3=(-1)+2,c 3=(-1)×2.∴b =-32,c =-6. 答案:-32 -6 6.已知f (x )=13x 3-12ax 2+(a -1)x +1在区间(1,4)内单调递减,在区间(6,+∞)内单调递增,则a 的取值范围是________.解析:f ′(x )=x 2-ax +a -1,令g (x )=f ′(x ),要满足函数f (x )在(1,4)内单调递减,在(6,+∞)内单调递增,需有⎩⎪⎨⎪⎧ g (1)≤0,g (4)≤0,g (6)≥0,解之得5≤a ≤7.答案:[5,7]7.设函数f (x )=x 3-3ax 2+3bx 的图象与直线12x +y -1=0相切于点(1,-11).(1)求a ,b 的值;(2)讨论函数f (x )的单调性.解:(1)求导得f ′(x )=3x 2-6ax +3b .由于f (x )的图象与直线12x +y -1=0相切于点(1,-11),所以f (1)=-11,f ′(1)=-12,即⎩⎪⎨⎪⎧1-3a +3b =-11,3-6a +3b =-12,解得a =1,b =-3. (2)由a =1,b =-3得f ′(x )=3x 2-6ax +3b =3(x 2-2x -3)=3(x +1)(x -3). 令f ′(x )>0,解得x <-1或x >3;又令f ′(x )<0,解得-1<x <3.故当x ∈(-∞,-1)时,f (x )是增函数,当x ∈(3,+∞)时,f (x )也是增函数,当x ∈(-1,3)时,f (x )是减函数.8.已知f (x )=e x -ax -1.(1)若f (x )在定义域R 内单调递增,求a 的取值范围;(2)是否存在a 使f (x )在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在, 求出a 的值;若不存在,说明理由.解:(1)∵f (x )=e x -ax -1,∴f ′(x )=e x -a .∵f (x )在R 上单调递增,∴f ′(x )=e x -a ≥0(等号只能在有限个点处取得)恒成立,即a ≤e x ,x ∈R 恒成立. ∵x ∈R 时,e x ∈(0,+∞),∴a ≤0.(2)f ′(x )=e x -a .若f (x )在(-∞,0]上是单调递减函数⇒e x -a ≤0在x ∈(-∞,0]上恒成立⇒a ≥(e x )max , 当x ∈(-∞,0]时,e x ∈(0,1],∴a ≥1.①若f (x )在[0,+∞)上是单调递增函数⇒e x -a ≥0在x ∈[0,+∞)上恒成立⇒a ≤(e x )min ,当x ∈[0,+∞)时,e x ∈[1,+∞),∴a ≤1.②由①②知a =1,故存在a =1满足条件.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5、利用导数判断函数的单调性
一、选择题
1.函数y =x 3
的递减区间是( )
A .(-∞,+∞)
B .(0,+∞)
C .(-∞,0)
D .不存在
2.函数f (x )=x -e x 的单调增区间是( )
A .(1,+∞)
B .(0,+∞ )
C .(-∞,0)
D .(-∞,1)
3.函数y =f (x )的图象如图所示,则导函数y =f ′(x )的图象可能是( )
4.三次函数y =f (x )=ax 3
+x 在x ∈(-∞,+∞)内是增函数,则( )
A .a >0
B .a <0
C .a <1
D .a <13
5.若在区间(a ,b )内有f ′(x )>0,且f (a ) ≥0,则在(a ,b )内有( )
A .f (x )>0
B .f (x )<0
C .f (x )=0
D .不能确定
6.函数y =x sin x +cos x ,x ∈(-π,π)的单调增区间是( )
A.⎝ ⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫0,π2
B.⎝ ⎛⎭⎪⎫-π2,0和⎝
⎛⎭⎪⎫0,π2 C.⎝ ⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫π2,π D.⎝ ⎛⎭⎪⎫-π2,0和⎝ ⎛⎭
⎪⎫π2,π 7.设f (x )=ax 3+bx 2+cx +d (a >0),则f (x )为增函数的充要条件是( )
A .b 2-4ac ≥0
B .b 2-4ac ≤0
C .b 2-3ac ≤0
D .b 2-3ac ≥0
8.函数f (x )=2x 2-ln2x 的单调递增区间是( )
A.⎝ ⎛⎭⎪⎫0,12
B.⎝ ⎛⎭⎪⎫0,24
C.⎝ ⎛⎭⎪⎫12,+∞
D.⎝ ⎛⎭⎪⎫-12,0及⎝ ⎛⎭⎪⎫0,12
9.已知f (x )=-x 3
-x ,x ∈[m ,n ],且f (m )·f (n )<0,则方程f (x )=0在区间[m ,n ]上
( )
A .至少有三个实数根
B .至少有两个实根
C .有且只有一个实数根
D .无实根
10.设函数f (x )在定义域内可导,y =f (x )的图象如图所示,则导函数y =f ′(x )的图象可能为( )
二、填空题
11.函数y =(x +1)(x 2
-1)的单调减区间为________.
12.若函数y =x 3-ax 2+4在(0,2)内单调递减,则实数a 的取值范围是____________.
13.若函数f (x )=x 3+bx 2+cx +d 的单调区间为[-1,2],则b =________,c =________.
14.若函数f (x )=x 3+x 2+mx +1是R 上的单调函数,则m 的取值范围是________.
三、解答题
15.求函数f (x )=13x 3+12
x 2-6x 的单调区间.
16.已知函数f (x )=x 3+ax +8的单调递减区间为(-5,5),求函数f (x )的递增区间.
17.已知x >0,求证:x >sin x .
18.(2010·山东卷文,21)已知函数f (x )=ln x -ax +1-a x
-1(a ∈R ). (1)当a =-1时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)当a ≤12
时,讨论f (x )的单调性.
解: (1)a =-1时,f (x )=ln x +x +2x -1,x ∈(0,+∞).f ′(x )=x 2+x -2x 2,x ∈(0,+∞), 因此f ′(2)=1,即曲线y =f (x )在点(2,f (2))处的切线斜率为1.
又f (2)=ln2+2,所以y =f (x )在(2,f (2))处的切线方程应为y -(ln2+2)=x -2,即x -y +ln2=0.
(2)因为f (x )=ln x -ax +1-a x -1,所以f ′(x )=1x -a +a -1x 2=-ax 2-x +1-a x 2 x ∈(0,+∞). 令g (x )=ax 2-x +1-a ,x ∈(0,+∞)
①当a =0时,g (x )=1-x ,x ∈(0,+∞),
有x ∈(0,1),g (x )>0,f ′(x )<0,f (x )递减;
当x ∈(1,+∞)时,g (x )<0,此时f ′(x )>0,f (x )递增;
②当a ≠0时,f ′(x )=a (x -1)[x -(1a
-1)], (ⅰ)当a =12
时,g (x )≥0恒成立,f ′(x )≤0,f (x )在(0,+∞)上递减; (ⅱ)当0<a <12时,1a
-1>1>0, x ∈(0,1)时,g (x )>0,此时f ′(x )<0,f (x )递减;
x ∈(1,1a
-1)时,g (x )<0,此时f ′(x )>0,f (x )递增; x ∈(1a
-1,+∞)时,g (x )>0,此时f ′(x )<0,f (x )递减; ③当a <0时,由1a
-1<0, x ∈(0,1)时,g (x )>0,有f ′(x )<0,f (x )递减;
x ∈(1,+∞)时,g (x )<0,有f ′(x )>0,f (x )递增.
综上所述:
当a ≤0时,函数f (x )在(0,1)上递减,(1,+∞)上递增;
当a =12
时,f (x )在(0,+∞)上递减; 当0<a <12时,f (x )在(0,1)上递减,在(1,1a -1)上递增,在(1a
-1,+∞)上递减. DCDAAACCCD 11 ⎝ ⎛⎭⎪⎫-1,13 12.[3,+∞) 13.-32 -6 14. ⎣⎢⎡⎭⎪⎫13,+∞。