spss聚类分析结果解释

合集下载

SPSS统计分析 第八章 聚类分析与判别分析

SPSS统计分析 第八章 聚类分析与判别分析

聚类分析小结

聚类分析是研究“物以类聚”的一种数理统计方法。它把一些个 体或研究对象分成若干个未知母体,事先并不知道它们可以分为 几类及哪些个体是属于同一类。 聚类的原则是样品间距离最小,指标(变量)间相似性最大。 样品聚类的基本思想是:把每个样品当作一类,几个样品就有几 类;逐次并类(先定义类间距离),并类时总是把距离最近的两 类合为一类,再计算新类与合并类的距离,等等。这样每次减少 一类,直至所有样品都合成一类为止。
变量聚类实例

有10个测验项目,分别用变量x1~x10表示,50 名学生参加测试。
数据编号data14-03。


要求:对十个变量进行变量聚类;计算并打印 各变量间的相关矩阵,用相关测度各变量间的 距离。打印出聚为两类的结果即各变量属于两 类中的哪一类;打印出聚类全过程的冰柱图, 以便对于变量分类进行进一步的探讨。

聚类法的选择:定义、计算两项间距离和相似 性的方法,系统默认值:组间平均连接法。
测度方法的选择:对距离和相似性的测度方法 又有多种,例如是用欧氏距离还是用欧氏距离 的平方测度其相近程度,还是用相关系数测度 其相似性?这一点体现在测度方法(Measure)的 选择上。如果对测度方法不熟悉,可以采用系 统默认的测度方法:欧氏距离平方。
CLUSTER过程可以很快将观测量分到各 类中去。其特点是处理速度快,占用内存 少。适用于大样本的聚类分析。

可以完全使用系统默认值进行聚类
2、分层聚类(Hierarchical Cluster)
分层聚类的概念与聚类分析过程

分层聚类反映事物的特点的变量很多,往 往根据所研究的问题选择部分变量对事物 的某一方面进行分析。 聚类的方法有多种,除了前面介绍的快速 聚类法外,最常用的是分层聚类法。根据 聚类过程不同又分为凝聚法和分解法。

SPSS聚类分析实验报告

SPSS聚类分析实验报告

SPSS聚类分析实验报告一、实验目的本实验的目的是通过应用SPSS软件进行聚类分析,对样本进行分类和分组,通过群组间的比较来发现变量之间的关系和特征。

通过聚类分析的结果,可以帮助我们更好地理解和解释数据。

二、实验步骤1.数据准备:选择合适的数据集进行分析。

数据集应包含若干个已知变量,以及我们需要进行聚类的目标变量。

2.打开SPSS软件,导入数据集。

3.对数据集进行数据清洗和预处理,包括处理缺失数据、异常值等。

4.进行聚类分析:选择合适的聚类方法和变量,进行聚类分析。

5.对聚类结果进行解释和分析,确定最佳的聚类数目。

6.对不同的聚类进行比较,看是否存在显著差异。

7.结果展示和报告撰写。

三、实验结果及分析在实验过程中,我们选择了学校学生的体测数据作为聚类分析的样本。

数据集共包含身高、体重、肺活量等指标,共有200个样本。

首先,我们进行了数据预处理,包括处理缺失数据和异常值。

对于缺失数据,我们选择用平均值进行填充;对于异常值,我们使用离群值检测方法进行处理。

然后,我们选择了合适的聚类方法和变量,使用K-means聚类算法对样本进行分组。

我们尝试了不同的聚类数目,从2到10进行了分析。

根据轮廓系数和手肘法定量评估了不同聚类数目下聚类效果的好坏。

最终,我们选择了聚类数目为4的结果进行进一步分析。

通过比较不同聚类结果的均值,我们发现不同聚类之间的身高、体重和肺活量等指标存在较大差异。

这说明聚类分析对样本的分类和分组是合理和有效的。

四、实验总结本次实验通过应用SPSS软件进行聚类分析,对样本进行分类和分组,通过群组间的比较来发现变量之间的关系和特征。

通过分析聚类结果,我们发现不同聚类之间存在显著差异,这为进一步研究和探索提供了参考。

聚类分析是一种常用的数据分析方法,可以帮助我们更好地理解和解释数据,对于从大量数据中发现规律和特征具有重要的应用价值。

总之,聚类分析是一种有力的数据分析工具,可以帮助我们更好地理解和解释数据。

SPSS聚类分析具体操作步骤spss如何聚类

SPSS聚类分析具体操作步骤spss如何聚类

算法步骤:初始 化聚类中心、分 配数据点到最近 的聚类中心、重 新计算聚类中心、 迭代直到聚类中 心不再变化
适用场景:探索 性数据分析、市 场细分、异常值 检测等
注意事项:选择 合适的聚类数目、 处理空值和异常 值、考虑数据的 尺度问题
定义:根据数据点间的距离或相似性,将数据点分为多个类别的过程 常用方法:层次聚类、K-均值聚类、DBSCAN聚类等 适用场景:适用于探索性数据分析,发现数据中的模式和结构 注意事项:选择合适的距离度量方法、确定合适的类别数目等
常见的聚类分析方法包括层次聚类、Kmeans聚类、DBSCAN聚类等。
聚类分析基于数据的相似性或距离度量, 将相似的数据点归为一类,使得同一类 中的数据点尽可能相似,不同类之间的 数据点尽可能不同。
聚类分析广泛应用于数据挖掘、市场细分、 模式识别等领域。
K-means聚类:将数据划分为K个簇,使得每个数据点到所在簇中心的距离之和最小
聚类结果的可视化:通过图表展示聚类结果 聚类质量的评估:使用适当的指标评估聚类效果的好坏 聚类结果的解释:根据实际需求和背景知识,对聚类结果进行合理的解释和解读 聚类结果的应用:探讨聚类结果在各个领域的应用场景和价值
SPSS聚类分析常 用方法
定义:将数据集 划分为K个聚类, 使得每个数据点 属于最近的聚类 中心
聚类结果展示:通过图表或表格展示聚类结果,包括各类别的样本数和占比
聚类质量评估:采用适当的指标评估聚类效果,如轮廓系数、Davies-Bouldin指数等
聚类结果解读:根据业务背景和数据特征,解释各类别的含义和特征 聚类结果应用:说明聚类分析在具体场景中的应用,如市场细分、客户分类等
SPSS聚类分析注 意事项
确定聚类变量:选 择与聚类目标相关 的变量,确保变量 间无高度相关性。

spss使用教程 聚类分析与判别分析

spss使用教程 聚类分析与判别分析

表8-1
学生的数学成绩 姓 名 hxh yaju 数 学 99.00 88.00 入学成绩 98.00 89.00
yu
shizg hah john watet jess wish
79.00
89.00 75.00 60.00 79.00 75.00 60.00

80.00
78.00 78.00 65.00 87.00 76.00 56.00
4.样本数据与小类、小类与小类之间的 亲疏程度测量方法
SPSS默认的变量为Var00001、Var00002 等,用户也可以根据自己的需要来命名变量。 SPSS变量的命名和一般的编程语言一样,有一 定的命名规则,具体内容如下。
所谓小类,是在聚类过程中根据样本之间 亲疏程度形成的中间类,小类和样本、小类与 小类继续聚合,最终将所有样本都包括在一个 大类中。 在SPSS聚类运算过程中,需要计算样本与 小类、小类与小类之间的亲疏程度。SPSS提供 了多种计算方法(计算规则)。
本节讲述Q型聚类的原理和SPSS的实现过 程,下一节将讲述R型聚类的实现过程。
8.2.1 统计学上的定义和计算公式
定义:层次聚类分析中的Q型聚类,它使 具有共同特点的样本聚齐在一起,以便对不同 类的样本进行分析。
层次聚类分析中,测量样本之间的亲疏程 度是关键。聚类的时候会涉及到两种类型亲疏 程度的计算:一种是样本数据之间的亲疏程度, 一种是样本数据与小类、小类与小类之间的亲 疏程度。下面讲述这两种类型亲疏程度的计算 方法和公式。
图8-4 “Hierarchical Cluster Analysis:Plots” 对话框(一)
图8-5 “Hierarchical Cluster Analysis:Statistics”对话框(一)

SPSS数据的聚类分析

SPSS数据的聚类分析

如何实现聚类?
---聚类分析的基本思想和方法
➢ 1、什么是聚类分析?
• 聚类分析: 是根据“物以类聚”的道理,对样品或指 标进行分类,使得同一类中的对象之间的相似性比与其 他类的对象的相似性更强的一种多元统计分析方法。
• 聚类分析的目的:把相似的研究对象归成类;即:使类 内对象的相似性最大化和类间对象的差异性最大化。
2023/5/3
4
zf
以系统聚类法为例
凝聚式
分解式
2023/5/3
5
zf
二、相似性度量
➢ 1、相似性的度量指标:
• 相似系数:性质越接近的变量或样品,它们的相似系数 越接近于1或-1,而彼此无关的变量或样品它们的相似系 数则越接近于0,相似的为一类,不相似的为不同类;
• 距离:变量或样本间的距离越近,说明其相似性越高, 应归为一类;距离越远则说明相似性越弱,应归为不同 的类。
为什么这样 分类?
20有23何/5/好3 处?
因为每一个类别里面的人消费方式都不一样,需要针对不同的 人群,制定不同的关系管理方式,以提高客户对公司商业活动的 参与率。 挖掘有价值的客户,并制定相应的促销策略:对经常购买酸奶 的客户;对累计消费达到12个月的老客户。
针对2潜在客户派发广告,比在大街上乱发传单命中率更高 ,成本z更f 低!
Dpq min d (xi , x j )
2023其/5/中3 ,d(xi,xj)表示点xi∈
Gp和xj
1∈4
zf
Gq之间的距离
以当前某个样本与 已经形成的小类中 的各样本距离中的 最小值作为当前样 本与该小类之间的
距离。
例1:为了研究辽宁省5省区某年城镇居民生活消费的 分布规律,根据调查资料做类型划分

第九章SPSS的聚类分析PPT课件

第九章SPSS的聚类分析PPT课件
–达到指定迭代次数(maximum iteration),默认10次。 –收敛标准(convergence),默认0.02,即:本次迭代产生的任意新类,各
中心位置变化较小.其中最大的变化率小于2%.
29
K-means快速聚类
(三)基本操作步骤
A.菜单选项:analyze->classify->k means cluster B.选定参加快速聚类分析的变量到variables框 C.确定快速聚类的类数(number of clusters).类数应小
第九章 SPSS的聚类分析
1
聚类分析概述
• 概念:
– 聚类分析是统计学中研究“物以类聚”的一种方法,属多元统计分析方法. – 例如:细分市场、消费行为划分
• 聚类分析是建立一种分类,是将一批样本(或变量)按照在性质上的“亲疏” 程度,在没有先验知识的情况下自动进行分类的方法.其中:类内个体具有 较高的相似性,类间的差异性较大.
•(张三,李四) 2: a=0 b=0 c=1 d=2 J(x,y)=1/1=1 (不相同)
11
聚类分析概述
• 品质型个体间的距离
– Jaccard系数举例:根据临床表现研究病人是否有类似的病
•姓名 性别 发烧 咳嗽 检查1 检查2 检查3 检查4
•张三 男 1 0 1 0 0
0
•李四 女 1 0 1 0 1
•姓名 授课方式 上机时间 选某门课程
•张三
1
1
1
•李四
1
1
0
•王五
0
0
1
•(张三,李四):a=2 b=1 c=0 d=0 d(x,y)=1/(1+2)=1/3
•(张三,王五):a=1 b=2 c=0 d=0 d(x,y)=2/(1+2)=2/3

SPSS成分分析与聚类分析

SPSS成分分析与聚类分析

PCA分析实例
因子 系数 矩阵
以回归方程的形式来定义提取得到的因子: PC=f1*zX1+f2*zX2+f3*zX3+f5*zX5+f6*zX6+f7*zX7+f8*zX8+f9*zX9
PCA分析实例
因子 系数 矩阵
PC1=0.121zX1+0.191zX2+0.091zX3+0.189zX5+0.190zX6+0.108zX7-0.203zX8+0.159zX9 PC2=0.312zX1- 0.226zX2-0.482zX3+0.125zX5-0.162zX6+0.105zX7+0.074zX8+0.377zX9 PC3=0.435zX1+0.096zX2+0.218zX3+0.250zX5-0.194zX6-0.603zX7+0.139zX8-0.049zX9
主成分分析
因子旋转:
在上述例子中,PC1,PC2,PC3分别 解释了59.6%、31.5%、17.1%的总体 变异度,分配并不均匀;x1在3个因 子中负荷过于接近,而无法确定其 归属 这些是常规的正交PCA方法的不足, 可以通过因子旋转进行改善
PCA分析实例
在“rotation”中 勾选旋转方法,常 用的为 “Varimax”- 方 差最大法
聚类分析实例
“Statistics…” 勾选 “Proximity matrix”
“Method…” : “cluster”选择“between group linkage”; ”measure”选择“Squared Euclidean distance(欧几里 得距离的平方)” “Plot…” 勾选 “dendrogram(关系树)”

SPSS19.0之聚类分析

SPSS19.0之聚类分析

1.1 系统聚类本次实验的系统聚类都是凝聚系统聚类,为了控制变量,都采用平方Euclidean距离。

1.1.1 最短距离聚类法最短距离法聚类步骤如下:1.规定样本间的距离,计算样本两两之间的距离,得到对称矩阵。

开始每个样品自成一类。

2.选择对称矩阵中的最小非零元素。

将两个样品之间最小距离记为D1,将这两个样品归并成为一类,记为G1。

3.计算G1与其他样品距离。

重复以上过程直到所有样品合并为一类。

我们在SPSS中实现最短距离分析非常简单。

单击“”-->“”-->“”。

将弹出如图1-1所示的对话框,设置相应的参数即可。

图1-1 最短距离法我们的数据已经做过标准化,在“转化值”-->“标准化”选项上选无。

在统计量的聚类成员中选择“无”,因为这是非监督分类,不需要指定最终分出的类个数。

在绘制中选择绘制“树状图”。

单击确定,得到以下结果。

聚类表阶群集组合系数首次出现阶群集下一阶群集1 群集 2 群集 1 群集 21 21 28 .211 0 0 102 12 24 .465 0 0 63 2 27 .491 0 0 54 13 20 .585 0 0 95 2 14 .645 3 0 66 2 12 .678 5 2 77 2 7 .702 6 0 88 2 25 .773 7 0 99 2 13 .916 8 4 1110 21 29 1.085 1 0 1211 2 18 1.106 9 0 12表1-2 聚类过程我们可以通过更加形象直观的树状图来观察整个聚类过程和聚类效果。

如图1-2所示,最短距离法组内距离小,但组间距离也较小。

分类特征不够明显,无法凸显各个省份的能源消耗的特点。

但是我们可以看到广东省能源消耗组成和其他省份特别不同,在其他方法中也显现出来。

12 2 21 1.115 11 10 13 13 2 17 1.360 12 0 14 14 2 26 1.564 13 0 15 15 2 22 1.627 14 0 16 16 2 5 1.649 15 0 17 17 2 8 1.877 16 0 18 18 2 16 3.027 17 0 19 19 2 30 3.543 18 0 20 20 2 11 4.930 19 0 21 21 2 4 5.024 20 0 22 22 2 10 6.445 21 0 24 23 1 9 8.262 0 0 26 24 2 15 10.093 22 0 25 25 2 23 10.096 24 0 26 26 1 2 10.189 23 25 27 27 1 6 11.387 26 0 28 28 1 3 13.153 27 0 29 2911932.36728图1-2 最短距离法聚类图1.1.2 组间联接聚类组间联接聚类法定义为两类之间的平均平方距离,即。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14.1.2 判别分析
• 判别分析是根据表明事物特点的变量值和它们 所属的类,求出判别函数。根据判别函数对未 知所属类别的事物进行分类的一种分析方法。
• 在自然科学和社会科学的各个领域经常遇到需 要对某个个体属于哪一类进行判断。如动物学 家对动物如何分类的研究和某个动物属于哪一 类、目、纲的判断。
– 定距变量、分类变量、二值变量 – 标准化方法p353:Z Scores、Range -1 to 1、 Range 0 to 1等
14.3.4 用分层聚类法进行观测量聚类实例P358
• 对20种啤酒进行分类(data14-02),变量包括:Beername(啤酒名称)、
calorie(热量)、sodium(钠含量)、alcohol(酒精含量)、 cost(价格)
第14章 聚类分析与判别 分析
介绍: 1、聚类分析
2、判别分析
分类学是人类认识世界的基础科学。聚类分析 和判别分析是研究事物分类的基本方法,广泛地应 用于自然科学、社会科学、工农业生产的各个领域

14.1.1 聚类分析
• 根据事物本身的特性研究个体分类的方法,原 则是同一类中的个体有较大的相似性,不同类 中的个体差异很大。
• 根据分类对象的不同,分为样品(观测量)聚 类和变量聚类两种:
n 样品聚类:对观测量(Case)进行聚类(不同的目的 选用不同的指标作为分类的依据,如选拔运动员与 分课外活动小组)
n 变量聚类:找出彼此独立且有代表性的自变量,而 又不丢失大部分信息。在生产活动中不乏有变量聚 类的实例,如:衣服号码(身长、胸围、裤长、腰 围)、鞋的号码。变量聚类使批量生产成为可能。
• Agglomeration Schedule 凝聚状态表 • Proximity matrix:距离矩阵 • Cluster membership:Single solution:4 显示分为4类时,各观测量
所属的类
– Method: Cluster (Furthest Neighbor), Measure-Interval (Squared Euclidean distance), Transform Value (Range 0-1/By variable (值最小值)/极差)
3. Discriminant:进行判别分析的过程
14.2 快速样本聚类过程(Quick
Cluster)
• 使用 k 均值分类法对观测量进行聚类 • 可使用系统的默认选项或自己设置选项,如分为几类、
指定初始类中心、是否将聚类结果或中间数据数据存入 数据文件等。 • 快速聚类实例(P342,data14-01a):使用系统的默认值 进行:对运动员的分类(分为4类) – AnalyzeClassifyK-Means Cluster
• Variables: x1,x2,x3 • Label Case By: no • Number of Cluster: 4 • 比较有用的结果:聚类结果形成的最后四类中心点(Final
Cluster Centers) 和每类的观测量数目(Number of Cases in each Cluster) • 但不知每个运动员究竟属于哪一类?这就要用到Save选项
• Analyze→Classify →Hierarchical Cluster:
– Variables: calorie,sodium,alcohol, cost 成分和价格 – Label Case By: Beername – Cluster:Case, Q聚类 – Display: 选中Statistics,单击Statistics
• 不同:判别分析和聚类分析不同的在于判别分 析要求已知一系列反映事物特征的数值变量的 值,并且已知各个体的分类(训练样本)。
14.1.3 聚类分析与判别分析的SPSS过程
• 在AnalyzeClassify下:
1. K-Means Cluster: 观测量快速聚类分析 过程
2. Hierarchical Cluster:分层聚类(进行观 测量聚类和变量聚类的过程
– Center: Read initial from: data14-01b – Save: Cluster membership和Distance from Cluster Center
– 比较有用的结果(可将结果与前面没有初始类中心比较): • 聚类结果形成的最后四类中心点(Final Cluster Centers) • 每类的观测量数目(Number of Cases in each Cluster) • 在数据文件中的两个新变量qc1_1(每个观测量最终被分配 到哪一类)和 qc1_2(观测量与所属类中心点的距离)
• 数据同上(data14-01a):以四个四类成绩突出者的数据为初始聚 类中心(种子)进行聚类。类中心数据文件data14-01b(但缺一列 Cluster_,不能直接使用,要修改)。对运动员的分类(还是分为4 类)
• AnalyzeClassifyK-Means Cluster – Variables: x1,x2,x3 – Label Case By: no – Number of Cluster: 4
14.3 分层聚类(Hierarchical Cluster)
• 分层聚类方法:
– 分解法:先视为一大类,再分成几类 – 凝聚法:先视每个为一类,再合并为几大类
• 可用于观测量(样本)聚类(Q型)和变量聚类(R型) • 一般分为两步(自动,可从Paste的语句知道,P359):
– Proximities:先对数据进行的预处理(标准化和计算距离等) – Cluster:然后进行聚类分析 • 两种统计图:树形图(Dendrogram)和冰柱图(Icicle) • 各类型数据的标准化、距离和相似性计算P348-354
14.2 快速样本聚类过程(Quick Cluster)中的选项
• 使用快速聚类的选择项:
• 类中心数据的输入与输出:Centers选项 • 输出数据选择项:Save选项 • 聚类方法选择项:Method选项 • 聚类何时停止选择项:Iterate选项 • 输出统计量选择项:Opti
相关文档
最新文档