正交分解法解决平衡问题
正交分解法求解合力和物体平衡问题

G
m g 解得: F cos sin
Fy N F sin mg 0
例题3:如图所示,质量为m的物体在倾角为θ的粗糙 斜面下匀速下滑,求物体与斜面间的滑动摩擦因数。
θ
解题步骤 1、画出物体的受力图 2、建立直角坐标系 3、正交分解各力 4、别写出x、y方向的方程 5、根据方程求解
练习一:如图所示,质量为m的光滑小球放在倾角为 θ的斜面上被挡板挡住,求斜面对小球的弹力及挡板 对小球的弹力。
θ
解题步骤 1、画出物体的受力图 2、建立直角坐标系 3、正交分解各力 4、别写出x、y方向的方程 5、根据方程求解
练习二:如图所示,质量为m的物体在与竖直方向成 θ角的恒力F作用下沿粗糙墙面向上匀速运动,求物 体与墙壁间的动摩擦因数。
Fx F1x F 2 x F3x 0
Fy F1y F 2 y F3 y 0
5、根据方程求解。
例题3:如图所示,质量为m的物体在倾角为θ的粗糙 斜面下匀速下滑,求物体与斜面间的滑动摩擦因数。
y
∵物体匀速运动,合外力为零 由x方向合外力为零,有:
f
N
Fx mg sin N 0
由y方向合外力为零,有:
x
θ
mg
Fy N mgcos 0
解得:
sin tan cos
F合 F x Fy
2 2
y
F1y F2y
F2
F2X
F1
F3x
F1x
O
F3y
x
F3 y
F合
Fy
tan
Fy Fx
O
Fx
x
1、目的: 把复杂的矢量运算化为普通的代数运算,将 力的合成化简为同向或反向或垂直方向。便于运 用普通代数运算公式来解决矢量的运算。
专题12:正交分解法解决共点力平衡问题—【稳扎稳打】备战2021高考物理一轮复习微专题

9.(2019·马关县第一中学校高一期末)如图所示,一物块在水平拉力 F 的作用下沿水平桌面 做匀速直线运动.若保持 F 的大小不变,而方向与水平面成 53°角时,物块也恰好做匀速直线运 动.则物块与桌面间的动摩擦因数为(不计空气阻力,sin53°=0.8,cos53°=0.6)( )
A. 3 3
B. 3 2
【解析】物体受重力 G,支持力 N 和摩擦力 f,将坐标轴建立在平行于斜面和垂直与斜面的方 向上,如图:
1 / 12
由于支持力和摩擦力都在坐标轴上,因此不需要进行分解,只需将不在坐标轴上的重力进行分 解,得分力重力的关系是:
G1 = mg sin G2 = mg cos
由平衡条件知: G1 = mg cos = f G2 = mg sin = N
根据共点力平衡条件:F=N ,G=f,当推力增大时,物体仍然保持静止,故静摩擦力的大小不 变,始终与重力平衡;B 错误,D 正确;
故选 D。 3. 如图,质量分别为 mA 和 mB 的两小球带有同种电荷,电荷量分别为 qA 和 qB,用绝缘细
4 / 12
线悬挂在天花板上.平衡时,两小球恰处于同一水平位置,细线与竖直方向间夹角分别为 θ1 与 θ2 (θ1>θ2).两小球突然失去各自所带电荷后开始摆动,最大速度分别 vA 和 vB,最大动能分别为 EkA 和 EkB.则( )
由②③联立可得
mgl(1− cos )
=
Ek
=
1 2
mv2
③
1 −1
v1 = cos1
v2
1 −1
cos2
由①②③联立利用三角函数关系可得
C 错误,D 正确。
EkA EkB
=
tan 1 2
处理平衡问题的八种方法

处理平衡问题的八种方法一、力的合成法物体在三个共点力的作用下处于平衡状态,则任意两个力的合力一定与第三个力大小相等、方向相反;力的合成法是解决三力平衡问题的基本方法。
二、正交分解法物体受到三个或三个以上力的作用时,常用正交分解法列平衡方程求解:F x合=0,F y合=0。
为方便计算,建立坐标系时以尽可能多的力落在坐标轴上为原则。
三、整体法与隔离法整体法是把两个或两个以上物体组成的系统作为一个整体来研究的分析方法;当只涉及研究系统而不涉及系统内部某些物体的受力和运动时,一般可采用整体法。
隔离法是将所确定的研究对象从周围物体(或连接体)系统中隔离出来实行分析的方法。
研究系统(或连接体)内某个物体的受力和运动情况时,通常可采用隔离法。
【典例1】如下图,有一直角支架AOB,AO水平放置,表面粗糙,OB竖直向下,表面光滑,AO上套有小环P,OB上套有小环Q,两环质量均为m,两环间由一根质量可忽略,不何伸长的细绳相连,并在某一位置平衡,如图1所示,现将P环向左移一小段距离,两环将再达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO杆对P环的支持力F N和细绳拉力F T的变化情况是( )A.F N不变,F T变大 B.F N不变,F T变小C.F N变大,F T变大 D.F N变大,F T变小【解析】采取先整体后隔离的方法。
以P、Q、绳为整体研究对象,受重力、AO给的向上的弹力、OB给的水平向左的弹力、AO给的向右的静摩擦力,由整体处于平衡状态知AO对P的向右的静摩擦力与OB对Q的水平向左弹力大小相等;AO给P的竖直向上的弹力与整体重力大小相等,当P环左移一段距离后,整体重力不变;AO对P竖直向上的弹力也不变;再以Q环为隔离研究对象,受力如下图,Q环所受重力G、OB对Q的弹力F、绳的拉力F T处于平衡,P环向左移动一小段距离的同时F T移至F′T位置,仍能平衡,即F T竖直分量与G大小相等,F T应变小,B准确。
正交分解解决平衡问题

正交分解法解决平衡问题
例题:如图一物块的质量5Kg ,受水平拉力F=20N 作用下在粗糙的水平面上匀速直线运动求摩擦因数u 是多少?
变式:上题中水平拉力与改为与水平方向成37°角的拉力,问物体做匀速直线运动拉力应该多大 ?
例题:如图一质量为5 Kg 的物块,在倾角为37°的斜面上匀速下滑,求摩擦因数u
变式:(1)上题中用沿斜面向上的拉力F ,使物体匀速上滑求F
变式:(2)一质量为5 Kg 的物块,在倾角为37°的斜面上,在沿斜面向上的拉力F 作用下沿斜面下滑,物体与斜面的摩擦因数为0.2,求F
变式:(3)一质量为5 Kg 的物块,在倾角为37°的斜面上,物体与斜面的摩擦因数为0.2,用水平推力F 作用下沿斜面匀速上滑,求F
变式:(4)一质量为5 Kg 的物块,在倾角为37°的斜面上,物体与斜面的摩擦因数为0.2,用水平推力F 作用下沿斜面匀速下滑,求F
练习:1、如图所示,物体重G=100N ,并保持静止.绳子AC 与BC 分别与竖直方向成30°角和60°角,则绳子AC 和BC 的拉力分别为多大?
2、如图所示,绿妹将重10N 的气球用细绳拴在水平地面上,空气对其的浮力为16N .由于受到水平方向的风力的影响,系气球的绳子与水平方向成 =60°角.由此可知,绳子的拉力和水平方向的风力分别为多大?
3、如图,位于水平地面上的质量为M 的小木块,在大小为F 、方向与水平方向成a 角的拉力作用下沿地面作匀速直线运动。
求: (1) 地面对物体的支持力? (2) 木块与地面之间的动摩擦因数?。
正交分解法解共点力平衡

正交分解法解共点力平衡
共点力平衡,是物理学中比较常见的问题之一,解决这个问题需
要用到正交分解法。
正交分解法,顾名思义就是将问题拆解成正交方向上的分量,然
后再分别计算解决。
在共点力平衡问题中,我们需要寻找一个共点力的平衡点。
首先,需要用向量表示每个力的作用方向和大小。
然后,将这些向量按照一
个参考方向分解成正交方向的分量,得到每个力在横向和纵向的分量值。
接下来,我们需要利用正交性的特点,即每个方向上的分量彼此
独立,通过分别计算各自的合力,来找到平衡点。
在计算过程中,很可能遇到一些重叠或者冲突的力,这时候需要
利用向量的几何加法和减法来得到新的合力向量。
然后再将新的合力
向量重新分解成正交方向上的分量,得到新的合力大小和方向。
通过这样的分解、计算、重组的过程,我们可以准确、高效地解
决共点力平衡问题。
需要注意的是,正交分解法虽然具有很强的应用性,但也需要一
定的数学基础和实践经验,才能更好地理解和应用。
因此,我们建议
学习者在学习过程中,注重理论知识的掌握,同时也需要多尝试一些
具体的实例,以便更好地掌握分解和计算的技巧。
总之,正交分解法是解决共点力平衡问题的重要方法,也是学习物理学的重要内容之一。
通过深入学习和实践,我们可以更好地掌握这个方法,解决更多的物理问题。
正交分解法解决平衡问题

图2 正交分解法解决平衡问题:1、水平桌面上重为50N 的物体,在与水平夹角为37。
的牵引力F=20N 的力作用下匀速运动,求物体与水平地面的摩擦因数。
2、一物体重为20N,放在倾角为30度的斜面上,它与斜面间的摩擦因数为0.4。
求要使物体沿斜面向上运动,至少用多大的水平推力?要使物体沿斜面向下匀速运动,应沿平行于斜面方向用多大的力,方向向如何?物体的平衡1.下列各组共点的三个力中,可能平衡的有( )A .3N ,4N ,8NB .3N ,5N ,1NC .4N ,7N ,8ND .7N ,9N ,12N2.质量为m 的物体放在水平桌面上,物体与水平桌面的动摩擦因数为μ,当用力F 水平拉物体时,物体仍保持静止,物体在水平方向受到的合力为 ( )A .零B .FC .F -μmgD .μmg3.如图2所示,物体静止在斜面上,斜面对物体的作用力的合力方向应是 ( )A .沿斜面向上B .垂直斜面向上C .竖直向上D .无法确定4.如图3所示,三角形劈块放在粗糙的水平面上,劈块上放一个质量为m 的物块,物块和劈块切处于静止状态,则粗糙水平面对三角形劈块( )A .有摩擦力作用,方向向左B .有摩擦力作用,方向向右C .没有摩擦力作用D .条件不足,无法判定图35.如图4所示,在绳下端挂一物体,用力F 拉物体使悬线偏离竖直方向的夹角为α且保持平衡。
若保持角不变,当拉力F 与水平方向的夹角β为多大时,F 有极小值 ( ) A .β=0B .β=2C .β=αD .β=2α6.如图5所示,质量为M 的物体,在与竖直线成θ角,大小为F 的恒力作用下,沿竖直墙壁匀速下滑,物体与墙壁间的动摩擦因数为μ,则物体受到的摩擦力大小的下列结论中正确的是( )①Mg -Fcos θ; ②μMg +F cos θ; ③μF sin θ; ④μ(Mg -Fcos θ)。
A .①③ B .②④C .①②D .③④7.已知物体在倾角为α的斜面上恰能匀速下滑,则物体与斜面间的动摩擦因数是________;如果物体质量为m ,当对物体施加一个沿着斜面向上的推力时恰能匀速上滑,则这个推力大小是_______。
正交分解法分析平衡问题

正交分解法分析平衡问题一、知识准备:1、共点力:物体所受的力的作用在同一点上,或者力的作用线交于同一点,这样的一组力称为共点力。
2、正交分解:将物体所受的力在互相垂直(正交)的方向上进行分解,这样的分解方法称为正交分解法。
正交分解法得到的分力互相垂直。
3、解题方法(1)当物体在两个共点力作用下平衡时,这两个力一定等值反向;(2)当物体在三个共点力作用下平衡时,任意两个力的合力一定和第三个力等值反向,往往采用平行四边形定则或三角形定则;(3)当物体在四个或四个以上共点力作用下平衡时,往往采用正交分解法。
①首先建立平面直角坐标系,并确定正方向.建立坐标系时以使尽可能多的力落在坐标轴上为原则.②把各个力向x轴、y轴上投影(分解),但应注意的是:与确定的正方向相同的力为正,与确定的正方向相反的为负,这样,就用正、负号表示了被正交分解的力的分力的方向.③求在轴上的各分力的代数和F x合和在y轴上的各分力的代数和F y合.④求合力的大小F2=F y合2+F x合2合力的方向:tana=F y合/ F x合(a为合力F与x轴的夹角).二、例题:例题1、一质量为2kg的铁块静止在水平地面上,现对铁块施加一个斜向左下方的推力,方向与水平线成30º角,大小为10N,铁块仍静止,试求铁块所受的摩擦力和地面支持力的大小。
(g=10m/s2)例题2、如图所示,细绳CO与竖直方向成30°角,A、B两物体用跨过滑轮的细绳相连,已知物体B所受到的重力为100N,地面对物体B的支持力为80N,试求(1)物体A所受到的重力;(2)物体B与地面间的摩擦力;(3)细绳CO受到的拉力。
例题3、如图,一木块质量为m,放在倾角为θ的固定斜面上,木块与斜面间的动摩擦因数为μ.当用水平方向的力F推这木块时,木块沿斜面匀速上升,则此水平推力多大?例题4、一质量为1kg的铁块静止在倾角为37º的斜面上,试用正交分解法求铁块所受到的支持力和摩擦力。
教科版物理一第四章物体的平衡7应用正交分解法解平衡问题(讲义)

二、重难点提示重点:利用正交分解法解决多力平稳问题。
难点:灵活建立正交坐标系。
例题1 如下图所示,质量为M 的斜面体A 置于粗糙水平面上,用轻绳拴住质量为m 的小球B 置于斜面上,整个系统处于静止状态。
已知斜面倾角θ=30°,轻绳与斜面平行且另一端固定在竖直墙面上,不计小球与斜面间的摩擦,则( )A. 斜面体对小球的作用力大小为mgB. 轻绳对小球的作用力大小为21mgC. 斜面体对水平面的压力大小为(M +m )gD. 斜面体与水平面间的摩擦力大小为43mg 思路分析:以小球为研究对象,对其受力分析如图所示。
因小球保持静止,因此由共点力的平稳条件可得:mgsin θ-FT =0 ① FN -mgcos θ=0 ②由①②两式可得 FT =mgsin θ=21mg FN =mgcos θ=23mg 即轻绳对小球的作用力(拉力)为21mg ,斜面对小球的作用力(支持力)为23mg ,故A 错误,B 正确。
把小球和斜面体作为一个整体进行研究,其受重力(M +m )g ,水平面的支持力FN ′、摩擦力Ff 以及轻绳的拉力FT 。
受力情形如图所示,因为研究对象处于静止状态,因此由平稳条件可得:Ff -FTcos θ=0③ FN ′+FTsin θ-(M +m )g =0④联立①③④式可得:FN ′=Mg +43mg ,Ff =43mg 由牛顿第三定律可知,斜面体对水平面的压力为Mg +43mg ,C 错误,D 正确。
答案:BD例题2 重为G 的木块与水平地面间的动摩擦因数为μ,一人欲用最小的作用力F ,使木块做匀速运动,则此最小作用力的大小和方向应如何?思路分析:木块在运动过程中受摩擦力作用,要减小摩擦力,应使作用力F 斜向上,设当F 斜向上与水平方向的夹角为α时,F 的值最小,木块受力分析如图所示,由平稳条件可知:Fcos α-μFN =0,Fsin α+FN -G =0解上述二式得:αμαμsin cos +=GF令tan φ=μ,则2211cos ,1sin μϕμμϕ+=+= 可得)cos(1sin cos 2ϕαμμαμαμ-+=+=GG F 可见当α=φ时,F 有最小值,即Fmin =21μμ+G答案:21μμ+G与水平方向成α角且tan α=μ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正交分解法解决平衡问题
一、解题思路
1、先对物体进行受力分析
2、建立直角坐标系,把不在坐标轴上的力分解在坐标轴上,(简单原则:让尽量多的力在轴上)
3、根据平衡条件,在x轴上和y轴上分别列出两个等式,并联立解出等式。
二、例题
例1:如图所示,一质量为m的物体恰好能沿倾角为θ的斜面匀速下滑,求:
(1)物体与斜面间的压力;
(2)物体与斜面间的动摩擦因数,并说明它与物体质量m的关系。
例2:如图所示,半圆柱固定在水平面上,质量为m的物块静置于圆柱体上的A处,O为横截面的圆心,OB为竖直的半径,∠BOA=300,求圆柱体对物块的支持力和摩擦力。
例3:如图所示,一质量为m,横截面为直角三角形的斜劈ABC,AB边靠在竖直墙面上。
F是垂直于斜面的推力。
(1)现物块静止不动。
斜劈受到的摩擦力大小为多大?(2)若斜劈与墙壁之间
的动摩擦因数为u,要使斜劈匀速下滑,则F为多大?
【作业】:
1、如图所示,一个质量为10kg的物体,在沿斜面方向推力的作用下,沿斜面向上匀速运动。
已知斜面倾角为370,物体与斜面间的动摩擦因数为0.2。
(已知sin370=0.6,cos370=0.8,g取
10m/s2)。
求推力的大小。
2、如图所示,重500N的物体在与水平方向成300的拉力F作用下,向右匀速运动,物体与地面之间的动摩擦因数u=0.2。
求:
(1)物体与地面之间的压力;
(2)拉力F的大小。
3、如图所示,质量为4kg的物体与竖直墙面间的动摩擦因数为0.2,它在受到与水平方向成370角斜向上的推力F作用时,沿竖直墙面匀速上滑。
(已知sin370=0.6,cos370=0.8,g取10m/s2)。
求:
(1)物体与竖直墙面之间的压力;
(2)推力F。