三边支承板计算
第七章钢结构的连接和节点构造(四)

取格板弯矩最大值的M 取格板弯矩最大值的 m ax来计算板的厚度
6Mmax t≥ f
应注意将靴梁和隔板布置的使各区格板的弯矩 接 近 。 底 板 的 厚 度 一 般 取 20 ~ 40mm , 最 小 厚 度 40mm ≥14mm,以保证底板有足够的刚度。 14mm,以保证底板有足够的刚度。 mm,以保证底板有足够的刚度
3)靴梁的计算 ) 柱的内力一部分是柱与靴梁连接的竖直焊缝; 柱的内力一部分是柱与靴梁连接的竖直焊缝;另一 部分是靴梁与底板连接的水平焊缝。 部分是靴梁与底板连接的水平焊缝。偏安全地不考虑柱 与底板直接连接的焊缝受力。 与底板直接连接的焊缝受力。靴梁的高度由靴梁与柱的 连接焊缝决定(不应大于 连接焊缝决定 不应大于60hf) 。 不应大于 靴梁承受基础底面传来的均匀反力, 靴梁承受基础底面传来的均匀反力,按支承于柱边 的双悬臂简支梁计算其最大弯矩和最大剪力. 的双悬臂简支梁计算其最大弯矩和最大剪力 两块靴梁板 M=qBl2/2 , V=qBl l—靴梁板外挑长度 靴梁板外挑长度 4)隔板与肋板的计算 ) 隔板厚度不得小于其宽度的1/50,一般可取比靴梁的 , 隔板厚度不得小于其宽度的 厚度小些。 厚度小些。隔板可视为支承在靴梁上的简支梁计算其强 度及连接焊缝。 度及连接焊缝。
七、单层框架的刚性连接
单层单跨钢框架横梁与柱的连接都 是刚性连接, 、 和 属于加腋节点 属于加腋节点。 是刚性连接,b、d和e属于加腋节点。 加腋的目的是梁端增加抗弯能力。 加腋的目的是梁端增加抗弯能力。
第十一节 柱脚设计 柱脚的作用是把柱固定于基础,并把柱所受的力 柱脚的作用是把柱固定于基础, 传给基础。由于柱下基础是钢筋混凝土结构, 传给基础。由于柱下基础是钢筋混凝土结构,其强度 比钢材低,所以必须把柱的底部放大。 比钢材低,所以必须把柱的底部放大。 柱与基础的连接方式有刚接和铰接两种形式。 柱与基础的连接方式有刚接和铰接两种形式。刚 接柱脚与混凝土基础的连接方式有支承式(也称外露 接柱脚与混凝土基础的连接方式有支承式 也称外露 式)、埋入式(也称插入式 、外包式三种。铰接柱脚均 、埋入式 也称插入式)、外包式三种。 也称插入式 为支承式。 为支承式。
规范中关于剪力墙墙体稳定性的应用与探讨

规范中关于剪力墙墙体稳定性的应用与探讨作者:曾伟健来源:《城市建设理论研究》2014年第09期摘要:剪力墙作为主要的抗侧力构件,在高层建筑结构中的应用十分普遍。
在实际工程中,常常需要按《高规》附录D验算剪力墙墙肢的稳定性。
文章以规范提出的方法,对剪力墙的稳定性计算方法及应用进行探讨。
关键词:高层建筑;抗侧力构件;剪力墙;稳定性中图分类号: TU973+.16 文献标识码:A剪力墙具有较大的刚度,在结构中往往承受水平力的大部分,成为一种有效的抗侧力结构。
在地震设防地区,设置剪力墙可以改善结构的抗震性能。
在实际工程中,对于设置剪力墙的高层建筑,剪力墙不仅作为水平力抗侧构件,同时也是竖向受力构件。
在对剪力墙设计的过程中,往往会遇到错层或越层剪力墙,又或者塔楼周边剪力墙存在楼梯间等PKPM不能按实际层高设计的情况,通常都需要手动对剪力墙的稳定性进行验算。
《高规》附录D提供了具体的公式对剪力墙的稳定性进行验算:D.0.1剪力墙墙肢应满足下式的稳定要求:(D.0.1)式中:q——作用于墙顶组合的等效竖向均布荷载设计值;Ec——剪力墙混凝土的弹性模量;t ——剪力墙墙肢截面厚度;l0——剪力墙墙肢计算长度,应按本附录第D.0.2条确定。
D.0.2剪力墙墙肢计算长度应按下式采用:l0=βh(D.0.2)式中:β——墙肢计算长度系数,应按本附录第D.0.3条确定;h——墙肢所在楼层的层高。
由公式D.0.1可知,影响剪力墙墙体稳定性的因素包括:1).剪力墙墙顶荷载;剪力墙平面外稳定性与该层墙体顶部所受的轴向压力的大小密切相关。
竖向荷载越大,墙肢越容易失稳。
2).混凝土弹性模量;即与剪力墙混凝土强度等级的选取有关。
混凝土强度等级越高,混凝土的弹性模量越大。
3).剪力墙截面的厚度;为保证剪力墙平面外的刚度和稳定性,《高规》7.2.1条强调剪力墙的截面厚度应满足剪力墙截面的最小厚度规定。
墙体截面越大,剪力墙平面外稳定性越好。
筏板基础2011

03:47
37
三)筏板基础几何尺寸的确定
• 筏形基础分梁板式和平板式两种类型,应 根据地基土质、上部结构体系、柱距、荷 载大小以及施工等条件确定
03:47
38
1.梁板式筏基
• 5.3.2 梁板式筏基底板的板格应满足受冲切 承载力的要求。梁板式筏基的板厚不应小 于300mm,且板厚与板格的最小跨度之比 不宜小于1/20。
方法缺点——同文克尔弹簧地基法假设。
03:47
51
5.弹性理论截条法 方法概述——将筏板横向截分为单位宽的条板并
置于均质半空间弹性地基上。
计算特点——由于积分上的困难,基底地基反力 与沉降之间的关系很难用解析函数表达。目前是 利用郭尔布诺夫-波萨多夫的《弹性地基上结构物 的计算》中的计算表格来简化计算。
27
柱钢筋在桩基承台板/桩承筏形基础 中的锚固
03:47
28
柱钢筋在梁板式筏形基础中的锚固
03:47
29
柱钢筋在梁板式筏形基础中的锚固
03:47
30
03:47
31
3.2 筏板基础设计要求
一、一般规定 (一)埋深 1/12h,1/15h桩筏 非抗震或抗震设防烈度为6度时,可适当减小 地下水位很高,可适当减小 设置地下一层地下室 岩基可不设地下室,但为保证结构的整体稳定,
03:47
52
6.弹性地基板法
方法概述——以双向受力的弹性地基板理 论为依据来分析筏板的内力和变形。
计算特点——假设筏板置于文克尔弹簧地 基上,并将不埋筏板四周边梁埋板的作用 归结为:不产生剪力、有约束弯矩、挠度 不等于零、转角等于零的半自由边界条件, 从而推导出弹性曲面的挠度方程式,建立 配筋弯矩的计算公式。
钢烟囱结构计算

钢烟囱结构计算一、筒身自重计算及拉索自重(1)筒身自重筒壁1220.2960.00878.5 1.17/G rt kN m πρπ==⨯⨯⨯=烟囱全高自重13541G G kN =⨯=筒(2)拉索自重钢丝绳采用镀锌钢丝绳16NAT6(6+1)+NF1470ZZ124 89.9 GB/T 8918-1996 拉索自重:8.99N/m 每根索长:2538.9cos50S m ==︒每根拉索自重:28.9938.9350G m N =⨯=近似计算三根索,自重全部由筒身承担:3350=1.05k G N =⨯索二、风荷载产生的弯矩设计值及拉索拉力设计值(1)风荷载另行计算,结果如下:烟囱25m 位置设定拉索,25m 位置以上,风荷载设计值 1.4 1.74=2.44k /N m =⨯ 25m 位置以下,风荷载设计值 1.4 1.52=2.13k /N m =⨯(2)风荷载产生的弯矩设计值近似计算如下:22111= 2.4410=122kN m 22M q l =⨯⨯⨯⨯⋅ ()()2212221277.653535225122.3kN m 8825QH H h M h -⨯⨯-⨯===⋅⨯(公式参烟囱工程手册7.3-2) 作用在烟囱上总水平力: 2.4410 2.1325=77.65k Q N =⨯+⨯(3)拉索拉力设计值177.653570.95kN<124kN 2sin 225sin 50QH S h α⨯===⨯⨯︒(公式参烟囱工程手册7.3-3) 16φ钢丝绳最小破断拉力为124kN ,故16φ镀锌钢丝绳满足要求。
(4)拉索拉力焊缝计算假设拉索翼缘板厚8t mm =,焊缝长度200w l mm =32270.9501044.34/210/2008t w S N mm N mm l t σ⨯===<⨯ 满足要求。
(5)拉索拉力对烟囱产生的竖向压力P 设计值cos cos5070.9591.2k 180180cos cos 3P S N n α︒==⨯= 三、承重能力极限状态设计(1)筒壁局部稳定性的临界应力值按《烟囱工程手册》公式(7.2-7)计算如下:520.40.4 1.88108668.4/1.5600t crt E t N mm K d σ⨯⨯=⨯=⨯= 式中:300°温度作用下钢材的弹性模量550.92 2.0510 1.8810t E =⨯⨯=⨯局部抗压强度调整系数 1.5K =(2)在荷载(自重和风)作用下钢烟囱强度计算按《烟囱工程手册》公式(7.2-6)计算如下:i i t ni niN M f A W ⨯≤ 及 crt σ 式中:计算截面处净截面面积()222600584148714ni A mm π=⨯-=计算截面处净截面抵抗矩2230.770.7760082217600ni W d t mm ==⨯⨯=2210/t f N mm = 2668.4/crt N mm σ=钢烟囱水平计算截面i 的轴向压力设计值: 1.2i ik N N =()1 1.2 1.171091.2105.2N kN =⨯⨯+=2251.2 1.1710 1.0591.2124kN 2N ⎡⎤⎛⎫=⨯⨯+++= ⎪⎢⎥⎝⎭⎣⎦()3 1.2 1.171025 1.0591.2141.6kN N =⨯⨯+++=⎡⎤⎣⎦钢烟囱水平计算截面i 的最大弯矩设计值: 1.4i ik M M =111.4122kN m k M M ==⋅221.4122.3kN m k M M ==⋅30kN m M ≈⋅(3)钢烟囱整体稳定验算拉索式钢烟囱整体稳定验算的计算简图可近似假定为两端简支的压杆。
刚接柱脚计算书

“箱形柱外露刚接”节点计算书计算软件:TSZ结构设计系列软件TS-MTS2023Ver6.8.0.0计算时间:2023年05月29日11:34:25节点基本资料设计依据:《高层民用建筑钢结构技术规程》JGJ99-2015《钢结构连接节点设计手册》(第四版)节点类型为:箱形柱外露刚接柱截面:200X8.0,材料:Q235柱全截面与底板采用对接焊缝,焊缝等级为:二级,采用引弧板;底板尺寸:1*B=400mm×400mm,厚:T=20mm锚栓信息:个数:8采用锚栓:普通化学锚栓_8.8级-M20方形锚栓垫板尺寸(mm):B*T=70×20底板下混凝土采用C30节点前视图如下:节点下视图如下:二.内力信息三.验算结果一览四.底板下混凝土局部承压验算控制工况:组合工况1,NZ=(To2)kN(受压);MX=9kN∙m;M y=(-3)kN∙m1按单向公式双向叠加计算1.1单独X向偏压下计算偏心距:e=3∕102X103=29.412mm底板计算方向长度:1x=400mm底板垂直计算方向长度:B x=400mm锚栓在计算方向离底板边缘距离:d=45nuneι=1x∕6=400∕6=66.667mme2=1x∕6+d∕3=400∕6+45∕3=81.667mme<eι=66.667,故底板下混凝土全部受压,受压区长度X产1X=40Ommσcx=N*(1+6*e∕1x)∕1x∕B x=102×(1+6X29.412/400)/400/400×103=0.919N∕mm2锚栓群承受的拉力:T ax=O单个锚栓承受的最大拉力:N1ax=O1.2单独Y向偏压下计算偏心距:e=9∕102×103=88.235mm底板计算方向长度:U=400mm底板垂直计算方向长度:B y=400mm锚栓在计算方向离底板边缘距离:d=45nuneι=1y∕6=400∕6=66.667mme2=1y∕6+d∕3=400∕6+45∕3=81.667mme>e2,底板下混凝土局部受压,受压区长度Xn计算如下:混凝土弹性模量:E c=30000N∕mm2钢材弹性模量:E s=206000N∕mm-2弹性模量比:n=E s∕Ec=206000∕30000=6.867锚栓的总有效面积:Ae=734.382mm2有一元三次方程的各系数如下:A=IB=3*(e-1∕2y)=3×(88.235-400/2)=(-335.294)C=6*n*A1∙∕B y*(e+1√2-d)=6X6.867X734.382/400X(88.235+400/2-45)=18398.643D=-C*(1-d)=(-18398.643)X(400-45)=(-6531518.343)解方程式:AXn3+BXn2+CXn+D=0,得底板受压区长度:Xn=338.028mm。
规范中关于剪力墙墙体稳定性的应用与探讨

规范中关于剪力墙墙体稳定性的应用与探讨摘要:剪力墙作为主要的抗侧力构件,在高层建筑结构中的应用十分普遍。
在实际工程中,常常需要按《高规》附录D验算剪力墙墙肢的稳定性。
文章以规范提出的方法,对剪力墙的稳定性计算方法及应用进行探讨。
关键词:高层建筑;抗侧力构件;剪力墙;稳定性中图分类号: TU973+.16 文献标识码:A剪力墙具有较大的刚度,在结构中往往承受水平力的大部分,成为一种有效的抗侧力结构。
在地震设防地区,设置剪力墙可以改善结构的抗震性能。
在实际工程中,对于设置剪力墙的高层建筑,剪力墙不仅作为水平力抗侧构件,同时也是竖向受力构件。
在对剪力墙设计的过程中,往往会遇到错层或越层剪力墙,又或者塔楼周边剪力墙存在楼梯间等PKPM不能按实际层高设计的情况,通常都需要手动对剪力墙的稳定性进行验算。
《高规》附录D提供了具体的公式对剪力墙的稳定性进行验算:D.0.1剪力墙墙肢应满足下式的稳定要求:(D.0.1)式中:q——作用于墙顶组合的等效竖向均布荷载设计值;Ec——剪力墙混凝土的弹性模量;t ——剪力墙墙肢截面厚度;l0——剪力墙墙肢计算长度,应按本附录第D.0.2条确定。
D.0.2剪力墙墙肢计算长度应按下式采用:l0=βh(D.0.2)式中:β——墙肢计算长度系数,应按本附录第D.0.3条确定;h——墙肢所在楼层的层高。
由公式D.0.1可知,影响剪力墙墙体稳定性的因素包括:1).剪力墙墙顶荷载;剪力墙平面外稳定性与该层墙体顶部所受的轴向压力的大小密切相关。
竖向荷载越大,墙肢越容易失稳。
2).混凝土弹性模量;即与剪力墙混凝土强度等级的选取有关。
混凝土强度等级越高,混凝土的弹性模量越大。
3).剪力墙截面的厚度;为保证剪力墙平面外的刚度和稳定性,《高规》7.2.1条强调剪力墙的截面厚度应满足剪力墙截面的最小厚度规定。
墙体截面越大,剪力墙平面外稳定性越好。
4).剪力墙的计算长度;即与剪力墙的截面形式以及所在楼层的层高有关。
柱脚设计

焊缝布置原则:
考虑施焊的方便与可能
靴梁 隔板 底板 L
a
b1
N An l fc
(4 63)
式中:fc--混凝土轴心抗压设计强度; βl--基础混凝土局部承压时的强度提高系数。 fc 、βl均按《混凝土结构设计规范》取值。
An—底版净面积,An =B×L-A0。 Ao--锚栓孔面积,一般锚栓孔直径为锚栓直径的
2 a1 8 M q
q’
a1
V qa1 2
t 2 a1 50 (取整)
(5)靴梁及隔板与底板间的焊缝的计算 按正面角焊缝,承担全部轴力计算,焊脚尺寸由 构造确定。
N w ff f 0.7h f l w
h1
为线荷载按实际上式中的q4隔板的计算隔板的厚度不得小于其宽度的150高度由计算确定且略小于靴梁的高度
4.7
柱脚设计
为了使柱子安全承载并将荷载传至基础,必须合理 构造柱头、柱脚。
设计原则是:传力明确、过程简洁、经济合理、 安全可靠,并具有足够的刚度且构造又不复杂。
一、铰接柱脚 1、柱脚的型式和构造
实际的铰接柱脚型式有以下几种:
M2 β q a
b1
2 2
L
式中: a 2--对角线长度; β --系数,与 b2 / a 2 有关。
b2/a2
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 ≥1.2
β
0.026
0.042
0.056
0.072
0.085
0.092
0.104
0.111
0.120
a1 t1 B t1
0.048
0.055
0.063
0.069
埋入式柱脚计算

埋入式柱脚计算书一、基本信息柱下基础(梁)、承台均为C35混凝土,2/7.16mm N f c =,柱脚四周均配置HRB335级钢筋,2/300mm N f y =钢柱、柱脚加劲板及底板材质均为Q345B ,)35~16(/170,/29522>==mm N f mm N f v 、)50~35(/155,/26522>==mm N f mm N f v柱脚采用4个M30的安装锚栓,具体位置、尺寸如图十字型钢柱截面:2 H650×300×14×18柱底内力:m kN M m kN M kN N kN V kN V y x y x ⋅-=⋅-===-=2.229,1.19,8.15129,1.12,9.167二、柱脚基本尺寸如下图三、计算1、柱脚埋入深度mm H S d 195065033=⨯=≥,取埋入深度mm S d 2000=2、柱脚底板尺寸验算c c f mm N B L N <=⨯⨯=⨯=23/13.1510001000108.15129σ 满足要求 3、计算柱脚底板厚度pb t1)两相邻边支承板498.025912922==a b ,查表得:060.0=α, m kN a M c i ⋅=⨯⨯⨯==-609.01025913.15060.05222ασ2)三边支承板 ①:859.021318322==a b ,查表得:1017.0=α, m kN a M c i ⋅=⨯⨯⨯==-698.01021313.151017.05222ασ ②:7.026018322==a b ,查表得:087.0=α, m kN a M c i ⋅=⨯⨯⨯==-89.01026013.15087.05222ασ4)四边支承板133233233==a b ,查表得:048.0=β, m kN a M c i ⋅=⨯⨯⨯==-8.01033213.15048.05223βσ柱脚底板厚度:mm f M t i pb 8.442651089.0665max =⨯⨯=≥,取柱脚底板厚mm t pb 50= 4、计算埋入钢柱所需的圆柱头栓钉数目选用φ19栓钉,一个圆柱头栓钉的受剪承载力设计值:kN N e v 52.90= 由于柱底弯矩M 作用,在埋入的钢柱单侧翼缘产生的轴压力:kN H M N F 6.352650102.2293=⨯== 翼缘单侧所需的栓钉数目:9.352.906.352==≥e v F e v N N n 个 按型钢混凝土柱构造要求在埋入深度内设置栓钉应可以满足要求,即每侧翼缘设置两排φ19@1005、验算埋入钢柱脚受压翼缘处的基础(梁)混凝土受压应力埋入的钢柱翼缘宽度和钢柱埋入深度的混凝土截面模量:3822100.2620003006mm S b W d FC c ⨯=⨯== c c d c f mm N W S V M <=⨯⨯⨯+⨯=⋅+=2836/99.1100.2)22000109.167102.229()2(σ 满足要求 6、计算设置在埋入钢柱四周的垂直纵向主筋柱脚底部弯矩:m kN S V M M d bc ⋅=⨯+=⋅+=5650.29.1672.229垂直纵向主筋合理点距离约为:mm h s 800=受拉(或受压)侧所需的钢筋面积:26235430080010565mm f h M A y s bc s =⨯⨯== 钢柱脚每侧6Φ25(22945mm A s =)的垂直纵向主筋箍筋为Φ10@100,柱脚埋入的顶部配置3Φ12@50的加强筋7、计算钢柱与底板间的连接钢柱与底板间采用冼平顶紧剖口全熔透对接焊,可视作与构件等强,不作验算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单块矩形板计算(BAN-1)
项目名称构件编号日期
设计校对审核
执行规范:
《建筑结构荷载规范》(GB 50009-2012), 本文简称《荷载规范》
钢筋:d - HPB300; D - HRB335; E - HRB400; F - RRB400; G - HRB500; P - HRBF335; Q - HRBF400; R - HRBF500
-----------------------------------------------------------------------
按弹性板计算:
1 计算条件
计算跨度: L x=1.500m
L y=4.000m
板厚h=130mm
板容重=25.00kN/m3;板自重荷载设计值=3.90kN/m2
恒载分项系数=1.20 ;活载分项系数=1.40
活载调整系数=1.00 ;
荷载设计值(不包括自重荷载):
均布荷载q=6.70kN/m2
砼强度等级: C25, f c=11.90 N/mm2, E c=2.80×104 N/mm2
支座纵筋级别: HRB400, f y=360.00 N/mm2, E s=2.00×105 N/mm2
板底纵筋级别: HRB400, f y=360.00 N/mm2, E s=2.00×105 N/mm2
纵筋混凝土保护层=20mm, 配筋计算as=25mm, 泊松比=0.20
支撑条件=
四边上:简支下:简支左:自由右:简支
角柱左下:无右下:无右上:无左上:无
2 计算结果
弯矩单位:kN.m/m, 配筋面积:mm2/m, 构造配筋率:0.20%
弯矩计算方法: 双向板查表
挠度计算方法: 双向板查表。
---------------------------------------------------------------
2.1 跨中: [水平] [竖向]
弯矩 2.5 3.8
面积 260(0.20%) 260(0.20%)
实配 E12@200(565) E12@200(565)
2.2 四边: [上] [下] [左] [右]
弯矩 0.0 0.0 0.0 0.0
面积 260(0.20%) 260(0.20%) 260(0.20%) 260(0.20%)
实配 E12@200(565) E12@200(565) E12@200(565) E12@200(565)
2.3 平行板边: [左] [中] [右]
左边弯矩: 0.0 6.4 0.0
左边配筋: 260(0.20%) 260(0.20%) 260(0.20%)
左边实配: E12@200(565) E12@200(565) E12@200(565)
2.4 挠度结果(按双向板计算): 经查<<结构静力计算手册>>: 挠度计算系数α0=0.002235 (1)截面有效高度:
=-=-=h 0h a s 13025105 mm
(2)计算构件纵向受拉钢筋的等效应力σsk ,根据《混凝土规范》式7.1.4-3计算:
===sk M q
0.87h 0A s 6351520.00
⨯⨯0.87105565
122.96
N/mm 2
(3)按有效受拉混凝土截面面积计算纵向受拉钢筋配筋率ρte :
===A te 0.5b h ⨯⨯0.5100013065000
mm
2
===te
A s
A te 565
65000
0.87%
(4)裂缝间纵向受拉钢筋应变不均匀系数ψ,根据《混凝土规范》7.1.2计算:
=-
=-
=1.10.65f tk
te sk 1.1⨯0.65 1.780⨯0.00870122.9551
0.018
ψ小于0.2,ψ取0.2
(5)短期刚度B s ,根据《混凝土规范》7.2.3 计算:
==
=
A s b h 0
565⨯1000105
0.005
==
='f
(
)
-b '
f b h '
f
b h 0
⨯(
)-010000
⨯1000105
0.000
==
=
B s E s A s h 2
+
+1.5
0.26
E
+1 3.5'
f
⨯⨯200000565105
2
+
+⨯1.150.2000.2⨯⨯60.0057.143+1⨯3.50.000
1.886921E+012
N.mm
2
(6)挠度增大的影响系数θ,根据《混凝土规范》7.2.5 计算:
==
=
'
A '
s
b h 0
565⨯1000105
0.54%
===min
()
,2.0max
(
),1.6+
1.60.4
(
)
-
'
min
(
)
,2.0max
(
),1.6+
1.6⨯0.4(
)
-0.540.54
0.54
1.60
(7)长期作用影响刚度B ,根据《混凝土规范》7.2.2 计算:
==
=
B B s
1886921293824.00
1.60
1.179326E+012
N.mm
2
=
=
f 0q 0l 4
x
B ⨯⨯0.0022358.6501500
4
1.179326e+012
=4.197 mm
挠度验算: 4.197<f max =7.50mm,满足
2.5 支座最大裂缝: 0.031<[ωmax ]=0.40mm,满足 2.6 跨中最大裂缝: 0.015<[ωmax ]=0.40mm,满足
-----------------------------------------------------------------------
【理正结构设计工具箱软件6.5PB3】计算日期: 2015-01-29 17:22:26 -----------------------------------------------------------------------。