双向可控硅的调光电路

合集下载

可控硅调光原理

可控硅调光原理

3. 双向可控硅调光电路分析左图是一个典型的双向可控硅调光器电路,电位器POT1和电阻R1、R2 与电容C2构成移相触发网络,当C2的端电压上升到双向触发二极管D1的阻断电压时,D1击穿,双向可控硅TRIAC被触发导通,灯泡点亮。

调节POT1可改变C2的充电时间常数,TRAIC的电压导通角随之改变,也就改变了流过灯泡的电流,结果使得白炽灯的亮度随着POT1的调节而变化。

POT1上的联动开关SW1在亮度调到最暗时可以关断输入电源,实现调光器的开关控制。

可控硅可控硅一旦被触发导通后,将持续导通到交流电压过零时才会截止。

可控硅承担着流过白炽灯的工作电流,由于白炽灯在冷态时的电阻值非常低,再考虑到交流电压的峰值,为避免开机时的大电流冲击,选用可控硅时要留有较大的电流余量。

触发电路触发脉冲应该有足够的幅度和宽度才能使可控硅完全导通,为了保证可控硅在各种条件下均能可靠触发,触发电路所送出的触发电压和电流必须大于可控硅的触发电压UGT与触发电流I GT的最小值,并且触发脉冲的最小宽度要持续到阳极电流上升到维持电流(即擎住电流I L)以上,否则可控硅会因为没有完全导通而重新关断。

保护电阻 R2是保护电阻,用来防止POT1调整到零电阻时,过大的电流造成半导体器件的损坏。

R2太大又会造成可调光范围变小,所以应适当选择。

功率调整电阻 R1决定白炽灯可调节到的最小功率,若不接入R1,则在POT1调整到最大值时,白炽灯将完全熄灭,这在家庭应用中会造成一定不便。

接入R1后,当POT1调整到最大值时,由于R1的并联分流作用,仍有一定电流给C2充电,实现白炽灯的最小功率可以调节,若将R1换为可变电阻器,则可实现更精确的调节,以确保量产的一致性。

同时R1还有改善电位器线性的作用,使灯光变化更适合人眼的感光特性。

电位器小功率调光器一般都选择带开关的电位器,在调光至最小时可以联动切断电源,这种电位器通常分为推动式(PUSH)和旋转式(ROTARY )两种。

双向可控硅应用电路实例

双向可控硅应用电路实例

_____________________________________________________________________一款适合家用调光器的镇流器:IRPLCFL3引言:普通电子镇流器的一个的缺点是不能用标准类型的调光器(相控)进行调光,特别是在将灯和镇流器合二为一的家庭用节能小镇流器。

这是因为在无PFC 的实际应用中,由整流级和紧随其后的大储能电容组成的镇流器输入部分直接与交流主电源相连,提供直流总线电压。

DC 总线给高频半桥和输出部分供电。

系统仅在主电压峰值附近吸取电流和给储能电容充电,而在主半周期的其余时间不充电。

事实上所有的家用和专业的调光系统都是基于双向可控硅。

当器件被触发并且电流超过器件的保持电流时,这些器件才导通。

这些调光器对于阻性负载比如普通的球形钨丝灯工作的非常好。

双向可控硅能在主半周期内任意一点触发并且保持导通直到非常接近半周期末,在这个期间不断的吸取电流。

这种方法可使灯电流从最大值到零进行调整。

内容:引言调光器电路解决方案原理框图功能介绍电路图设计注意事项元件表电感设计_____________________________________________________________________ 120VAC基本调光电路当紧凑型镇流器与这种调光电路结合在一起时,双向可控硅仅在半周期内整流主电压比储能电容电压高时才触发导通。

在这个实例中电容充电至相同整流电压时双向可控硅将关断。

这种方法有可能通过双向可控硅的触发点从90度到180度的调整使镇流器直流电压有很大的调整,然而这对于控制灯的输出并不是满意的方法。

另外遇到的问题是;因为这种调光器需要在双向可控硅上串联一个电感来限制可控硅触发时电流的上升时间。

若没有这个电感,将会产生大量高频谐波电流,并引起不可忽视的辐射和传导干扰问题。

因为镇流器电路的负载为容性,所以调光器中的抑制电感与容性负载产生谐振,当双向可控硅触发后会引起“振荡”。

双向可控硅调光电路原理

双向可控硅调光电路原理

双向可控硅调光电路原理1. 双向可控硅(Triac)简介双向可控硅是一种常用于交流电路中的半导体开关,它可以实现对交流电的调光控制。

Triac具有两个控制极,一个是主极,另一个是副极。

通过对两个控制极施加正弦波信号,Triac可以实现在每个交流周期内将电流进行截断。

(1)基本原理双向可控硅调光电路的基本原理是通过控制Triac的导通角来控制交流电的通断。

当Triac导通时,交流电可以通过,灯光亮度较高;当Triac截断时,交流电无法通过,灯光亮度较低。

通过改变控制Triac的导通角,可以实现对灯光的调光控制。

(2)控制电路控制电路主要由电阻、电容、双向可控硅、触发电压主机以及触发电压控制主机等组成。

控制电路的作用是接收外部控制信号,并将其转化为适合Triac控制的触发电压。

具体来说,当外部调光信号为低电平时,控制电路将触发电压控制主机输出低电平信号,使Triac截断;当外部调光信号为高电平时,控制电路将触发电压控制主机输出高电平信号,使Triac导通。

(3)调光原理当外部调光信号改变时,调光控制信号将通过控制电路传达给Triac,从而改变Triac的导通角,进而改变灯光的亮度。

也就是说,通过改变外部调光信号,即可实现对灯光亮度的调节。

3.优缺点- 控制灵敏度高:通过控制Triac导通角来控制灯光亮度,具有较高的调光精度和控制灵敏度。

-调光范围广:可根据不同的需求实现大范围的调光,满足不同场景的照明需求。

-结构简单:电路结构简单,成本低,易于实现。

然而,双向可控硅调光电路也存在一些限制:-电磁干扰:由于双向可控硅是通过接通交流电进行控制的,因此在一些灯光调光场景中可能会产生较大的电磁干扰。

-无功功率损耗:在调光过程中,双向可控硅会引入无功功率损耗,降低照明效率。

总结:双向可控硅调光电路通过控制Triac的导通角来实现照明灯光的调光控制。

它由双向可控硅和控制电路组成,通过控制电路接收外部调光信号,并将其转化为触发电压,进而改变Triac的导通角,从而实现对灯光亮度的调节。

双向可控硅调光电路图

双向可控硅调光电路图

双向可控硅调光电路图
简介:上图为双向可控硅调光电路图,其工作原理为:接通电源,220V经过灯泡VR4 R19对C23充电...由于电容二端电压
是不能突变的...充电需要一定时间的...充电时间由V ...
关键字:双向可控硅
上图为双向可控硅调光电路图,其工作原理为:接通电源,220V经过灯泡VR4 R19对C23充电...由于电容二端电压是不能突变的...充电需要一定时间的...充电时间由VR4和R19大小决定...越小充电越快...越大充电越慢...当C23上电压充到约为33V左右的时候...DB1导通..可控硅也导通...可控硅导通后...灯泡中有电流流过...灯泡就亮了...随着DB1导通...C23上电压被完全放掉...DB1又截止...可控硅也随之截止...灯泡熄灭...C23上又进行刚开始一样的循环...因为时间短人眼有暂留的现象,所以灯泡看起来是一直亮的,充放电时间越短...灯泡就越亮,反之...R20 C24能保护可控硅...如果用在阻性负载上可以省掉.
如果是用在感性负载,比如说电动机上就要加上去,这个电路也可以用于电动机调速上。

pic单片机控制双向可控硅调节交流电压的电路设计

pic单片机控制双向可控硅调节交流电压的电路设计

p i c单片机控制双向可控硅调节交流电压的电路设计Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998由于项目需要根据光照传感器采集到的光照强度或上位机的指令调节交流灯泡的亮度。

最好的方式便是调节供电的交流电压。

参考了许多资料,最后决定采用采集交流信号的同步信号,并根据此交流信号输出延时脉冲控制可控硅导通角的方式进行交流调压。

1.交流电压过零点信号提取图1 交流同步信号提取如上图1所示,左侧为两个30K/2W的电阻,这样限制输入电流为:220V/60K=,由于该路仅仅是为了提取交流信号,因此小电流输入即可。

整流桥芯片采用小功率(2W)的KBP210,之后接入一个光耦(P521),这样如图1整流后信号电压值超过光耦前段二极管的导通电压时,即产生一次脉冲,光耦右侧为一上拉电路,VCC为单片机供电电压:+。

光耦三极管导通时,输出低电平,关闭时输出高电平。

输出同步信号如上图1同步信号。

2.PIC单片机的输入信号及输出脉冲图2 单片机的输入同步信号及输出脉冲如上图2所示,采集到的同步信号进入PIC单片机的一个数值I/O口,作为外部中断的触发信号,每触发一次,单片机进一次中断,然后人为定义一个延时,一定导通角后输出可控硅触发信号,延时时间越长(注意应小于半个周期的时间:10ms),一个周期内的导电时间越短,即输出电压平均值越小,灯泡越暗。

3.双向可控硅驱动电路图3双向可控硅驱动电路如上图3所示,PIC单片机的数字输出口DO,输出触发信号。

此处考虑到单片机引脚的输出电流有限,电路用单片机引脚输出触发三极管,控制电路的通断。

(此处电路可考虑进一步精简,如单片机引脚串联一小电阻:200Ω,直接驱动光耦可控硅)触发信号为高电平时,光耦可控硅MOC3021基极触发已承受压降的集电极和发射极导通,使用一30K/2W的电阻限制双向可控硅TLC336A的基极电流最大为:220V/30K=。

双向可控硅的工作原理及原理图

双向可控硅的工作原理及原理图

双向可控硅的工作原理及原理图双向可控硅(Bilateral Switch)是一种常用的半导体器件,它具有双向导通的特性,可以在两个方向上控制电流的流动。

在电子电路中,双向可控硅常用于交流电的控制和开关电路中。

一、双向可控硅的工作原理双向可控硅由两个PN结组成,其中一个PN结正向偏置,另一个PN结反向偏置。

当双向可控硅的正向电压超过其额定触发电压时,正向PN结会发生击穿,形成一个电流通路,此时双向可控硅处于导通状态。

当正向电压降低到一定程度时,正向PN结会恢复正常,双向可控硅进入封锁状态,不导电。

双向可控硅的工作原理可以通过以下几个步骤来解释:1. 初始状态:双向可控硅处于封锁状态,两个PN结都没有击穿,不导电。

2. 正向触发:当正向电压超过双向可控硅的额定触发电压时,正向PN结会发生击穿,形成一个电流通路。

此时,双向可控硅进入导通状态,电流可以从正向PN结流向负向PN结。

3. 反向触发:当反向电压超过双向可控硅的额定触发电压时,反向PN结会发生击穿,形成一个电流通路。

此时,双向可控硅同样处于导通状态,电流可以从负向PN结流向正向PN结。

4. 关断状态:当正向电压降低到一定程度时,正向PN结恢复正常,双向可控硅进入封锁状态,不导电。

同样地,当反向电压降低到一定程度时,反向PN结恢复正常,双向可控硅同样进入封锁状态,不导电。

二、双向可控硅的原理图双向可控硅的原理图如下所示:```+---|>|---|<|---+| |+---|<|---|>|---+```在原理图中,上方的箭头表示正向电流的流动方向,下方的箭头表示反向电流的流动方向。

双向可控硅由两个PN结组成,其中一个PN结正向偏置,另一个PN 结反向偏置。

通过控制正向电压和反向电压的大小,可以实现对双向可控硅的导通和封锁状态的控制。

三、双向可控硅的应用双向可控硅在电子电路中有广泛的应用。

以下是几个常见的应用场景:1. 交流电控制:双向可控硅可以用于交流电的控制,例如调光灯、电动窗帘等。

双向可控硅调光台灯电路实验报告

双向可控硅调光台灯电路实验报告

课程设计课程名称_____功率电子学课程设计____ 题目名称___双向可控硅调光台灯电路__ 学生学院_______________专业班级______学号_________________学生姓名____________________指导教师____________________2012年6月8日目录第一部分:摘要 (3)第二部分:方案的选择及改进 (4)第三部分:电路工作原理及其原理图 (5)电路工作原理 (5)电路原理图 (5)第四部分:主要元件介绍 (6)第五部分:所用仪器及元件清单 (7)第六部分:电路波形及数据分析 (8)电源电压 (8)负载两端 (9)可控硅两端 (11)电容两端 (14)可控硅门极 (17)波形处理及分析 (19)第七部分:总结 (19)第八部分:参考文献 (20)一、摘要交流调压电路是采用相位控制方式的交流电力控制电路,通常是将两个晶闸管反并联后串联在每相交流电源与负载之间。

在电源的每半个周期内触发一次晶闸管,使之导通。

与相控整流电路一样,通过控制晶闸管开通时所对应的相位,可以方便的调节交流输出电压的有值,从而达到交流调压的目的。

其晶闸管可以利用电源自然换相,无需强迫关掉电路,并可实现电压的平滑调节,系统响应速度较快,但它也存在深控时功率因数较低,易产生高次谐波等缺点。

单相交流调压电路是对单相交流电的电压进行调节的电路。

交流调压电路主要应用在电热控制、交流电动机速度控制、交流稳压器等场合,主要有灯光调节(如调光台灯、舞台灯光控制等),温度调节(如工频加热、感应加热、需控制的家用电器等),泵及风机等异步电动机的软起动,交流电机的调压调速(如纺织、造纸、冶金等领域的调压调速),随电机负载大小自动调压(对于起动机等有较长时间空载或轻载的负荷,自动调压可以节省电能),变压器初级调压(在高压小电流或低压大电流直流电源中,如采用晶闸管相孔整流电路,需要很多晶闸管串联或并联,若采用交流调压电路在变压器初级调压。

双向可控硅调光电路图

双向可控硅调光电路图

双向可控硅调光电路图上图为双向可控硅调光电路图,其工作原理为:接通电源,220V经过灯泡VR4 R19对C23充电...由于电容二端电压是不能突变的...充电需要一定时间的...充电时间由VR4和R19大小决定...越小充电越快...越大充电越慢...当C23上电压充到约为33V左右的时候...DB1导通..可控硅也导通...可控硅导通后...灯泡中有电流流过...灯泡就亮了... 随着DB1导通...C23上电压被完全放掉...DB1又截止...可控硅也随之截止...灯泡熄灭...C23上又进行刚开始一样的循环...因为时间短人眼有暂留的现象,所以灯泡看起来是一直亮的,充放电时间越短...灯泡就越亮,反之...R20 C24能保护可控硅...如果用在阻性负载上可以省掉.如果是用在感性负载,比如说电动机上就要加上去,这个电路也可以用于电动机调速上.简易混合调光电路图调光电路图如附图所示,其工作原理是:根据电学原理可知,电容器接入正弦交流电路中,电压与电流的最大值在相位上相差90°。

根据这一原理,把C1 和C2串联联接,并从中间取出该差为我所用,这比电阻与电容串联更稳定。

电路中,D1和D2分别对电源的正半波及负半波进行整流,并加到A触发和C1或 C2充电。

进一步用W来改变触发时间进行移相,只要调整W的阻值,就可达到改变输出电压的目的。

D1和D2还起限制触发极的反相电压保护双向可控硅的作用。

常用调光方法的工作原理核心提示: 1、脉冲宽度调制( PWM )调光法这种调光控制法是利用调节高频逆变器中功率开关管的脉冲占空比,从而实现灯输出功率的调节。

半桥逆变器的最大占空比为 0.5 ,以确保半桥逆变器中的两个功率开关管之间有一个死时间,以避免两个功率开关管由于共态导通1、脉冲宽度调制(PWM)调光法这种调光控制法是利用调节高频逆变器中功率开关管的脉冲占空比,从而实现灯输出功率的调节。

半桥逆变器的最大占空比为0.5,以确保半桥逆变器中的两个功率开关管之间有一个死时间,以避免两个功率开关管由于共态导通而损坏。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双向可控硅的调光电路
核心提示:双向可控硅的调光电路工作原理说明一接通电源,220V经过灯泡VR4 R19对C 23充电,由于电容二端电压是不能突变的,充电需要一定时间
双向可控硅的调光电路
工作原理说明
一接通电源,220V经过灯泡VR4 R19对C23充电,由于电容二端电压是不能突变的,充电需要一定时间的,充电时间由VR4和R19大小决定,越小充电越快,越大充电越慢。

当C23上电压充到约为33V左右的时候DB1导通,可控硅也导通,可控硅导通后灯泡中有电流流过,灯泡就亮了。

随着DB1导通C23上电压被完全放掉,DB1又截止可控硅也随之截止灯泡熄灭。

C23上又进行刚开始一样的循环,因为时间短人眼有暂留的现象,所以灯泡看起来是一直亮的,充放电时间越短灯泡就越亮,反之,R20 C24能保护可控硅,如果用在阻性负载上可以省掉,如果是用在感性负载,比如说电动机上就要加上去,这个电路也可以用于电动机调速上,当然是要求不高的情况下。

这个电路的优点是元件少、成本低、性价比高。

缺点是对电源干扰比较大、噪声大、驱动电动机时候在较小的时候可能会发热比较大。

可控硅相当于可以控制的二极管,当控制极加一定的电压时,阴极和阳极就导通了。

可控硅分单向可控硅和双向可控硅两种,都是三个电极。

单向可控硅有阴极(K)、阳极(A)、控制极(G)。

双向可控硅等效于两只单项可控硅反向并联而成。

即其中一只单向硅阳极与
另一只阴极相边连,其引出端称T2极,其中一只单向硅阴极与另一只阳极相连,其引出端称T2极,剩下则为控制极(G)。

1、单、双向可控硅的判别:先任测两个极,若正、反测指针均不动(R×1挡),可能是A、K或G、A极(对单向可控硅)也可能是T2、T1或T2、G极(对双向可控硅)。

若其中有一次测量指示为几十至几百欧,则必为单向可控硅。

且红笔所接为K极,黑笔接的为G极,剩下即为A极。

若正、反向测批示均为几十至几百欧,则必为双向可控硅。

再将旋钮拨至R×1或R×10挡复测,其中必有一次阻值稍大,则稍大的一次红笔接的为G极,黑笔所接为T1极,余下是T2极。

2、性能的差别:将旋钮拨至R×1挡,对于1~6A单向可控硅,红笔接K极,黑笔同时接通G、A极,在保持黑笔不脱离A极状态下断开G极,指针应指示几十欧至一百欧,此时可控硅已被触发,且触发电压低(或触发电流小)。

然后瞬时断开A极再接通,指针应退回∞位置,则表明可控硅良好。

对于1~6A双向可控硅,红笔接T1极,黑笔同时接G、T2极,在保证黑笔不脱离T2极的前提下断开G极,指针应指示为几十至一百多欧(视可控硅电流大小、厂家不同而异)。

然后将两笔对调,重复上述步骤测一次,指针指示还要比上一次稍大十几至几十欧,则表明可控硅良好,且触发电压(或电流)小。

若保持接通A极或T2极时断开G极,指针立即退回∞位置,则说明可控硅触发电流太大或损坏。

可按图2方法进一步测量,对于单向可控硅,闭合开关K,灯应发亮,断开K灯仍不息灭,否则说明可控硅损坏。

对于双向可控硅,闭合开关K,灯应发亮,断开K,灯应不息灭。

然后将电池反接,重复上述步骤,均应是同一结果,才说明是好的。

否则说明该器件已损坏。

相关文档
最新文档