9 小学奥数——算式谜 试题及解析

合集下载

小学奥数 加减法数字谜 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  加减法数字谜 精选练习例题 含答案解析(附知识点拨及考点)

数字谜从形式上可以分为横式数字谜与竖式数字谜,从运算法则上可以分为加减乘除四种形式的数字谜。

横式与竖式亦可以互相转换,本讲中将主要介绍数字谜的一般解题技巧。

主要涉及小数、分数、循环小数的数字谜问题,因此,会需要利用数论的知识解决数字谜问题一、数字迷加减法1.个位数字分析法2.加减法中的进位与退位3.奇偶性分析法二、数字谜问题解题技巧1.解题的突破口多在于竖式或横式中的特殊之处,例如首位、个位以及位数的差异;2.要根据不同的情况逐步缩小范围,并进行适当的估算;3.题目中涉及多个字母或汉字时,要注意用不同符号表示不同数字这一条件来排除若干可能性;4.注意结合进位及退位来考虑;模块一、加法数字谜【例 1】 “华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?0191杯华24+例题精讲知识点拨教学目标5-1-2-1.加减法数字谜【考点】加法数字谜 【难度】1星 【题型】填空 【关键词】华杯赛,初赛,第1题【解析】 由0+“杯”=4,知“杯”代表4(不进位加法);再由191+“华”=200,知“华”代表9.因此,“华杯”代表的两位数是94.【答案】94【例 2】 下面的算式里,四个小纸片各盖住了一个数字。

被盖住的四个数字的总和是多少?1+49【考点】加法数字谜 【难度】2星 【题型】填空 【关键词】华杯赛,初赛,第5题【解析】 149的个位数是9,说明两个个位数相加没有进位,因此,9是两个个位数的和,14是两个十位数的和。

于是,四个数字的总和是14+9=23。

【答案】23【例 3】 在下边的算式中,被加数的数字和是和数的数字和的三倍。

问:被加数至少是多少?【考点】加法数字谜 【难度】3星 【题型】填空 【关键词】第四届,华杯赛,初赛,第2题【解析】 从“被加数的数字和是和的数字和的三倍”这句话,可以推断出两点:①被加数可以被3整除。

小学奥数训练题 竖式谜

小学奥数训练题 竖式谜

竖式谜1.在下列竖式中,有若干个数字被遮盖住了,求各竖式中被遮盖住的几个数字之和:2.在下列各式的□中填入适当的数码,使得两位数乘法的乘积是正确的.要求各式的四个□中填入的数码互不相同:3.下列各式中的a,b,c分别代表1,2,3中的不同的数字,求出下列各式和的最大值:4.右式中的a,b,c,d分别代表0~9中的一个数码,并且满足a+b=2(c+d),被加数最大是多少?5.右式中的a,b,c,d分别代表1—9中的一个数码,并且满足2(a+b)=c+d,被减数最小是几?6.在下列各式中,相同的符号代表相同的数字,不同的符号表示不同的数字,求出下列各式:7.在□内填入适当的数字,使下列加法竖式成立:8.在□内填入适当的数字,使下列减法竖式成立:9.将1~9九个数码分别填入右式的九个□中,要求先填1,再在与1相邻(左、右或上、下)的□中填2,再在与2相邻的□中填3 最后填9,使得加法竖式成立.10.在右式的四个□中填入同一个数字,使得“迎”、“新”、“世”、“纪”四个字所代表的各数之和等于2000.中应填几?11.在□内填入适当的数字,使下列乘法竖式成立:12.在□内填入适当的数字,使下列除法竖式成立:13.□内填入适当的数字,使得下列除法竖式成立:14.用代数方法求解下列竖式:15.求出左下式的商.16.求出右上式的被除数和除数.17.在□内填入适当的数字,使下列小数除法竖式成立:18.在□内填入适当的数字,使下列小数除法竖式成立:19.在□内填入适当的数字,使下列竖式成立,并使乘积尽可能小:20☆在□内填入适当的数字,使下列竖式成立,并使商尽可能小:21.在下列加、减法竖式中,每个不同的汉字代表0~9中不同的数字,求出它们使竖式成立的值:22.在下列各式中,不同的汉字代表不同的数字,求出它们使竖式成立的值:23.在下列乘法竖式中,每个不同的汉字代表0~9中不同的数字,求出它们使竖式成立的值:24.在下列乘法竖式中,每个不同的汉字代表1~9中不同的数字,而被乘数与积正好是反序数,求出这些竖式:25.在下列乘法竖式中,每个不同的汉字代表0~9中不同的数字,求出它们使竖式成立的值:26.在下列乘法竖式中,每个不同的汉字代表0~9中不同的数字,求出它们使竖式成立的值:27.在下列竖式中,每个不同的字母代表0~9中不同的数字,请用数字重新写出各竖式:28.将1~7七个数码分别填入下列竖式的□内,使得竖式成立:29.将1~8分别填入下列竖式的八个□中,每题都有两种不同填法,请至少找出其中一种:30.下列每个竖式都是由0~9十个数码组成的,请将空缺的数码填上:31.下列每个竖式都是由1,2,3,4,5,6,7,8七个数码组成,请将空缺的数码填上,使得竖式成立:32.在□内填入小于10的质数,使得下列竖式成立:33.在下列竖式的□内填入4~9中的适当数码,使得组成第一个加数的四个数码与组成第二个加数的四个数码相同,只是排列顺序不同.34.下面两个算式中,相同的字母代表相同的数字,不同的字母代表不同的数字,求ABCDEFG.35.一个四位数除以一个一位数得(1)式,它除以另一个一位数得(2)式,求这个四位数.36.一个五位数除以一个一位数得(1)式,它除以另一个一位数得(2)式,求这个五位数.37.将1~9九个数码分别填入下式的九个□中,使得竖式成立(注意:因为是六十进制,所以分、秒前面的数字要小于60).。

小学四年级奥数趣味学习——算式谜(知识点+练习解析)

小学四年级奥数趣味学习——算式谜(知识点+练习解析)

一般是指那些含有未知数字或缺少运算符号的算式.解决这类问题,可以根据已学过的知识,运用正确的分析推理方法,确定算式中的未知数字和运用符号.由于这类题目的解答过程类似全平时进行的猜谜语游戏,所以,我们把这类题目称为“算式谜题”.解答算式谜问题时,要先仔细审题,分析数据之间的关系,找到突破口,逐步试验,分析求解,通常要运用倒推法、凑整法、估值法等.例1:在下面算式的括号里填上合适的数.分析:根据题目特点,先看个位:7+5=12,在和的个位()中填2,并向十位进一;再看十位,()+4+1的和个位是1,因此,第一个加数的()中只能填6,并向百位进1;最后来看百位、千位,6+()+1的和的个位是2,第二个加数的()中只能填5,并向千位进1;因此,和的千位()中应填8.例2:下面各式中“巨”、“龙”、“腾”、“飞”分别代表不同的数字,相同的汉字代表相同的数字.当它们各代表什么数字时,下列的算式成立.分析:先看个位,3个“飞”相加的和的个位数字是1,可推知“飞”代表7;再看十位,3个“腾”相加,再加上个位进来的2,所得的和的个位是0,可推知“腾”代表6;再看百位,两个“龙”相加,加上十位进上来的2,所得和的个位是0,“龙”可能是4或9,考虑到千位上的“巨”不可能为0,所以“龙”只能代表4,“巨”只能代表1.例3:下面各式中的“兵”、“炮”、“马”、“卒”各代表0—9这十个数字中的某一个,相同的汉字代表相同的数字.这些汉字各代表哪些数字?分析:这道题应以“卒”入手来分析.“卒”和“卒”相加和的个位数字仍然是“卒”,这个数字只能是0.确定“卒”是0后,所有是“卒”的地方,都是0.注意到百位上是“兵”+“兵”=“卒”,容易知道“兵”是5,“车”是1;再由十位上的情况可推知“马”是4,进而推得“炮”是2.例4:将0、1、2、3、4、5、6这七个数字填在圆圈和方格内,每个数字恰好出现一次,组成一个整数算式.分析:要求用七个数字组成五个数,这五个数有三个是一位数,有两个是两位数.显然,方格中的数和被除数是两位数,其他是一位数.0和1不能填入乘法算式,也不能做除数.由于2×6=12(2将出现两次),2×5=10(经试验不合题意),2×4=8(7个数字中没有8),2×3=6(6不能成为商).因此,0、1、2只能用来组成两位数.经试验可得:3×4=12=6=÷5例5:把“+、-、×、÷”分别放在适当的圆圈中(运算符号只能用一次),并在方框中填上适当的数,使下面的两个等式成立.分析:先从第一个等式入手,等式右边是15,与等式左边最后一个数15相同,因为0+15=15,所以,只要使36与0的运算结果为0就行.显然,36×0+15=15因为第一个等式已填“×”、“+”,在第二个等式中只有“-”、“÷”可以填,题目要求在方框中填整数,已知3不能被5整除,所以“÷”只能填在21与3之间,而3与5之间填“-”.。

9小学奥数——算式谜试题及解析

9小学奥数——算式谜试题及解析

9小学奥数——算式谜试题及解析小学奥数——算式谜一.选择题(共49小题)1.“凑24点”游戏规则是:从一副扑克牌中抽去大小王剩下52张,(如果初练也可只用1~10这40张牌)任意抽取4张牌(称牌组),用加、减、乘、除(可加括号)把牌面上的数算成24,每张牌必须用一次且只能用一次,并不能用几张牌组成一个多位数,如抽出的牌是3、8、8、9,那么算式为(98)83-÷?等,在下面4个选项中,唯一-??或(988)3无法凑出24点的是()A.1、2、3、3B.1、5、5、5C.2、2、2、2D.3、3、3、32.在下面的每个方框中填入“+”或“-”,得到所有不同计算结果的总和是()25□9□7□5□3□1.A.540B.600C.630D.6503.将6、7、8、9填入右边算式的方格中:“□?□+□□”那么这个算式的结果最大为()A.152B.145C.1404.在5()4()6()3的括号中.选用+、-、?、÷符号填入(每个符号只用一次),能得到的最大结果是()A.17B.19C.23D.265.在10口10口10口10口10的四个口中填入“+”“-”“?”“÷”运算符号各一个,所成的算式的最大值是()A.104B.109C.114D.1196.在下面乘法竖式的每个方格中填入一个非零数字,使算式成立.那么,乘积的最大值等于()A.6292B.6384C.6496D.66887.在下列算式中加一括号后,算式的最大值是()+÷-.791232A.75C.89D.908.某校买来36套单座课桌椅,不料发票给墨水弄污了,单价只剩下两个数字:□23.□□元,总价只剩下四个数字:4□44.2□元,那么总价应是()元.A.4944.24B.4444.20C.4544.28D.4644.209.在下边的乘法算式中,“二”、“月”、“四”、“日”、“数”、“学”、“科”、“普”、“节”分别表示1~9中的不同数字,且“二”2=,如果四位数“二月四日”的22倍=,“四”4等于五位数“数学科普节”,那么,“数”+“学”+“科”+“普”+“节”的和等于()A.12B.15C.16D.2710.如果一个整数,与1,2,3这三个数,通过加减乘除运算(可以添加括号)组成算式,结果等于24,那么这个整数称为可用的,那么,在4,5,6,7,8,9,10这七个数中,可用的整数有()个.A.7B.6C.5D.411.已知□□□+□□□1199=,那么6个□中的6个数字之和是()A.30B.29C.28D.2012.下面的算式中,同一个汉字代表同一个数字,不同的汉字代表不同的数字.团团?圆圆=大熊猫,则“大熊猫”代表的三位数是()A.123B.968C.258D.23613.在下面的五组数中:①4,4,4,4;②5,5,5,5;③6,6,6,6;④7,7,7,7;⑤9,9,9,9.通过添上合适的运算符号(+、-、?、)÷,使计算结果等于24,那么满足条件的组数是()A.1B.2C.3D.4E.514.3☆86是一道三位数乘一位数的算式,那么下面三个数中()可能是它的得数.A.2028B.1508C.196415.若两个三位数的和为□□□+□□□1949=,那么6个□中的数字之和是()A.14B.23C.32D.4116.用四则运算符号+、-、?、÷(每种可用多次,也可不用),括号(如果需要的话)及四个数3、4、6、10组成算式,使最后得数为24.算式为()A.(1046)324+-?= B.4631024+÷?=C.3641024-+= D.以上都可以17.如果÷的商用数字来表示是()+?+?+?=,那么??+-=?,?A.8B.4C.618.金鸡唱响圆中国梦?□=中中中中中中中中中上面的横式中不同的汉字代表不同的数字,□代表某个一位数.那么,“中”字所代表的数字是()A.3B.5C.7D.919.请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是()A.2986B.2858C.2672D.275420.加法算式中,七个方格中的数字和等于()A.51B.56C.49D.4821.如图所示竖式成立时的除数与商的和为()A.589B.653C.723D.73322.如图竖式成立时除数与商的和为()A.289B.351C.723D.113423.如图的两个竖式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么ABCD所代表的四位数是()A.5240B.3624C.7362D.756424.如图算式的有()种不同的情况.A.2B.3C.4D.525.如图所示,将乘法竖式补充完整后,两个乘数的差是()A.564B.574C.664D.67426.下面的除法算式给出了部分数字,请将其补充完整.当商最大时,被除数是()A.21944B.21996C.24054D.2411127.在竖式中填入适当的数字,使竖式成立,那么第一个竖式的和(也就是第二个竖式的被减数)是()A.1000B.1001C.1002D.100328.在图所示的算式中,每个字母代表一个非零数字,不同的字母代表不同的数字,则和的最小值是()A.369B.396C.459D.54929.在右面的加法算式中,每个汉字代表一个非零数字,不同的汉字代表不同的数字.当算式成立吋,贺+新+春(=)A.24B.22C.20D.1830.在如图所示的两位数的加法运算式中,已知22A B C D +++=,则(X Y += )A.2B.4C.7D.1331.在下面竖式乘法中,*代表任何数字(不必相同),而P 代表某个数字,要使竖式成立,则P 可能为下列选项中的( )A.7B.6C.5D.9E.832.a 、b 、c 、d 表示09-中不同的四个整数,如果它们满足下面的整式,那么(acac bcc bc ++= )A.2017B.2016C.2015D.201433.如图6个空格中分别放有1、2、3、4、5、6六个数,并且要使计算结果正确.如果每个数字只能使用一次,带问号的空格中的数是( )A.2B.3C.4D.5E.634.图中表示三个3位数相加.三位数各位数上的数字不重复地使用了1~9中的数字.这一加法算式不可能得到下列答案中的( )A.1500B.1503C.1512D.153935.如图乘法竖式中P、Q及R分别代表不同的数字.则P、Q及R 的和等于()A.16B.14C.13D.1236.不同字母表示不同的数字,关于下面四进制的加法运算,描述正确的有()A.字母A的值是2B.字母B的值是3C.字母C的值是2D.字母D的值是037.如图,这个乘式中,PQRS是一个四位数,且P、Q、R及S分别为不同的数码.下列叙述不正确的是()A.PQRS是9的倍数B.1P=C.0Q= D.7R=E.9S=38.在如图的算式中,每个汉字代表0至9中的一个数字,不同汉字代表不同的数字.当算式成立时,“好”字代表的数字是()A.1B.2C.439.如图,在55的空格内填入数字,使每行、每列及每个粗线框中的数字为1,2,3,4,5,且不重复.那么五角星所在的空格内的数字是()A.1B.2C.3D.440.将1、2、3、4、5、6、7、8这8个数字分别填入图中的八个“〇”内(每个数字只用一次),如果两个大圆圈上五个“〇”内的数字之和都是22,那么A、B两个“〇”内不可能填()A.1和7B.4和8C.3和5D.2和641.下列算式中,乘积的千位数是()A.0B.1C.342.在下面的乘法算式中“骐骐?骥骥=奇奇迹迹”,不同的汉字代表不同的数字,相同的汉字代表相同的数字,汉字“奇迹”表示的数是?()A.38B.83C.64D.5443.在如图所示的竖式里,四张小纸片各盖住了一个数字.被盖住的4个数字的总和是()A.14B.24C.23D.2544.如图所示的算式中,如果七个方格中的数字互不相同,那么和的最大值是( )A.153B.176C.183D.19645.在如图的33?的各格中每行每列都包含1、2、3三个数,则(AB += )A.1C.4D.5 .6E46.将1到8这8个自然数分别填入如图数阵中的8个圆圈,使得数阵中各条直线上的三个数之和都相等,那么A 和B 两个圆圈中所填的数之和最大是( )A.8B.10C.12D.1447.在竖式中有若干个数字被遮盖住了,则竖式被遮盖住的几个数字的和为( )A.33B.34C.35D.3648.将1~8这八个数字分别填入下图的圆圈内,每个数字只能用一次,如果两个大圆上五个圆圈内的数之和为22,那么A 、B 两个圆圈内不可能填( )A.1和7B.4和8C.3和5D.2和649.下列选项正确的是( )A.趣5=,味6=B.趣4=,味7=C.趣6=,味5=D.趣3=,味8=参考答案与试题解析一.选择题(共49小题)1.“凑24点”游戏规则是:从一副扑克牌中抽去大小王剩下52张,(如果初练也可只用1~10这40张牌)任意抽取4张牌(称牌组),用加、减、乘、除(可加括号)把牌面上的数算成24,每张牌必须用一次且只能用一次,并不能用几张牌组成一个多位数,如抽出的牌是3、8、8、9,那么算式为(98)83-÷?等,在下面4个选项中,唯一-??或(988)3无法凑出24点的是()A.1、2、3、3B.1、5、5、5C.2、2、2、2D.3、3、3、3【解析】A、(12)332724+??=>,有可能凑出24点;+??=>,有可能凑出24点;B、(15)5515024=<,不可能凑出24点;C、22221624D、33338124=>,有可能凑出24点;故选:C.2.在下面的每个方框中填入“+”或“-”,得到所有不同计算结果的总和是()25□9□7□5□3□1.A.540B.600C.630D.650【解析】由于259753150+++++=,所以我们猜测0~50之间的所有偶数都有可能得到,+?÷=;0~50所有偶数的总和是(050)262650当把1前面的+号变成-号,可得259753148,++++-=,比50小12当把3前面的+号变成-号,可得259753144,+++-+=,比50小32当把3和1前面的+号变成-号,可得259753142,+++--=,比50小42当把5前面的+号变成-号,可得259753140,++-++=,比50小52---+-=,221579=+++,因此当把1,5,7,9前面的+号变成-号,可得25975316----+=,=+++,因此当把3,5,7,9前面的+号变成-号,可得25975312 243579=++++,因此当把1,3,5,7,9前面的+号变成-号,可得25975310-----=,2513579根据上述规律可得,但是数字2和23无法凑出来,那么偶数4和46无法取到,所以答案是:650446600--=.故选:B.3.将6、7、8、9填入右边算式的方格中:“□?□+□□”那么这个算式的结果最大为()A.152B.145C.140D.154【解析】同类枚举找最大:67981506789+=>?+.+=.6897145+=.6987141+=.7896152+=.7986149+=.8976148经比较152为最大.故选:A.4.在5()4()6()3的括号中.选用+、-、?、÷符号填入(每个符号只用一次),能得到的最大结果是()A.17B.19C.23D.26【解析】试算如:546323-+?=,546317-+=,+?-=,546319+-=,546326所以能得到的最大结果是26,故选:D.5.在10口10口10口10口10的四个口中填入“+”“-”“?”“÷”运算符号各一个,所成的算式的最大值是()A.104B.109C.114D.119【解析】因为减号只能用一次,减数不能为0,那么10101÷=做减数时,运算的结果最大:?+-÷1010101010=+-100101=故选:B.6.在下面乘法竖式的每个方格中填入一个非零数字,使算式成立.那么,乘积的最大值等于()A.6292B.6384C.6496D.6688【解析】满足条件的竖式有或故选:D.7.在下列算式中加一括号后,算式的最大值是()+÷-.791232A.75B.147C.89D.90【解析】791232+÷-加上括号最大是:+÷-7(9123)2=?-7132=-=89加上一个括号后算式的最大值是89.故选:C.8.某校买来36套单座课桌椅,不料发票给墨水弄污了,单价只剩下两个数字:□23.□□元,总价只剩下四个数字:4□44.2□元,那么总价应是()元.A.4944.24B.4444.20C.4544.28D.4644.20【解析】根据题意,单价百位为1,123364428=,∴总价为4444.2□元,Q,4444.236123.45÷=故可得总价为4444.20,单价为123.45元,故选:B.9.在下边的乘法算式中,“二”、“月”、“四”、“日”、“数”、“学”、“科”、“普”、“节”分别表示1~9中的不同数字,且“二”2=,如果四位数“二月四日”的22倍=,“四”4等于五位数“数学科普节”,那么,“数”+“学”+“科”+“普”+“节”的和等于()A.12B.15C.16D.27【解析】二月四日22为23492251678=,++++=,5167827“数”+“学”+“科”+“普”+“节”的和等于27.故选:D.10.如果一个整数,与1,2,3这三个数,通过加减乘除运算(可以添加括号)组成算式,结果等于24,那么这个整数称为可用的,那么,在4,5,6,7,8,9,10这七个数中,可用的整数有()个.A.7B.6C.5D.4【解析】因为123424=,所以4可用;因为(51)2324-??=,所以5可用;因为(321)624+-?=,所以6可用;因为371224++=,所以7可用;因为38(21)24-=,所以8可用;因为392124--=,所以9可用;因为1021324++=,所以10可用.答:可用的数字是7个.故选:A.11.已知□□□+□□□1199=,那么6个□中的6个数字之和是()A.30B.29C.28D.20【解析】根据分析可得,个位数+个位数9=,=,百位数+百位数11=,十位数+十位数9所以6个数字之和是:991129++=.答:6个□中的6个数字之和是29.故选:B.12.下面的算式中,同一个汉字代表同一个数字,不同的汉字代表不同的数字.团团?圆圆=大熊猫,则“大熊猫”代表的三位数是()A.123B.968C.258D.236【解析】设a、b分别代表汉字团、圆,则(10)(10)1111121=+?+=?=;aa bb a a b b a b ab121ab是一个三位数,ab可能的取值为:2,3,4,5,6,7,8,对应的三位数分别为:242、363、484、605、726、847、968,根据不同的汉字代表不同的数字,可得三位数只能是968.故选:B.13.在下面的五组数中:①4,4,4,4;②5,5,5,5;③6,6,6,6;④7,7,7,7;⑤9,9,9,9.通过添上合适的运算符号(+、-、?、)÷,使计算结果等于24,那么满足条件的组数是()A.1B.2C.3D.4E.5【解析】因为,444424++=;-÷=;555524+++=;6666247,7,7,7和9,9,9,9怎么添加运算符号都得不到24.故选:C.14.3☆86是一道三位数乘一位数的算式,那么下面三个数中()可能是它的得数.A.2028B.1508C.1964【解析】根据乘数是一位数乘法的计算方法可知,因为因数6乘三位数个位上的8,6848=,满四十,所以在积的个位上要写8并向前一位进4,首先排除C;用因数6乘三位数百位上的3,6318=,再排除B;所以根据这两种情况判断,只有选项A符合要求.故选:A.15.若两个三位数的和为□□□+□□□1949=,那么6个□中的数字之和是()A.14B.23C.32D.41【解析】由两个3位数的和为1949知,9□□9=,+□□1949则□□+□□19492900149=-?=,所以第1个三位数的后两位数字在50~99,第2个三位数与之对应的后两位数字为99~50,其组合方式有50~99、49~98、48~97、?、99~50,每种组合方式其四个数字之和均为509923+++=,则6个□中的数字之和是239941++=,故选:D.16.用四则运算符号+、-、?、÷(每种可用多次,也可不用),括号(如果需要的话)及四个数3、4、6、10组成算式,使最后得数为24.算式为()A.(1046)324+-?= B.4631024+÷?=C.3641024-+= D.以上都可以【解析】选项A、(1046)38324+-?=?=,正确;选项B、4631042024+÷?=+=,正确;选项C、364101841024-+=-+=,正确;又各选项中的算式数字及运算符号的使用符合要求,所以选项A、B、C都正确,故选:D.17.如果÷的商用数字来表示是()+-=?,?+?+?+?=,那么??A.8B.4C.6【解析】+-=?可得:?=?;因为?+?+?+?=,所以4?=,=,即4??则??4??4÷=÷=;故选:B.18.金鸡唱响圆中国梦?□=中中中中中中中中中上面的横式中不同的汉字代表不同的数字,□代表某个一位数.那么,“中”字所代表的数字是()A.3B.5D.9【解析】根据题意可以得到答案为:故选:C.19.请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是()A.2986B.2858C.2672D.2754【解析】首先根据结果中的首位数字是2,如果有进位那么0上边只能是9,根据910多除以7得130多,7前面只能是1,与数字0矛盾那么乘数中的三位数的首位只能是1或者2,因为乘数中有7而且结果是三位数,那么乘数中三位数首位只能是1.那么已知数字7前面只能是2,根据已知数字0再推出乘数三位数中的十位数字是0.再根据乘数中的数字7与三位数相乘有1的进位,尾数只能是2.所以是102272754=.故选:D.20.加法算式中,七个方格中的数字和等于()A.51C.49D.48【解析】依题意可知:根据两数相加最大进位是1可知.个位数字相加结果是14,十位和百位数字相加和为18,千位有1个进位1.+++=.141818151故选:A.21.如图所示竖式成立时的除数与商的和为()A.589B.653C.723D.733【解析】依题意可知用字母表示如图:S 首先判断0A =,4B =.再根据除数的2倍是四位数,那么E 是大于4的.除数与D 的积是三位数,那么D 就是小于2的非零数字,即1D =.再根据顺数第三行最后一位为1可以确定D 和C 的取值为(1,1).根据1C =,4B =,那么商的十位数字就是4,根据有余数推理5E =.再根据除数的2倍的数字中有6.那么除数的十位数字可能是3或者8.枚举得知除数是581商是142.581142723+=.故选:C.22.如图竖式成立时除数与商的和为()A.289B.351C.723D.1134【解析】首先根据倒数第三行可以确定0B=;A=,4再根据顺数第三行最后一位为1可以确定,第一行D和C的取值为(1,1)或(3,7)或(9,9)或(7,3).根据除数的2倍是四位数,那么除数是大于500的数字,再根据第一个的结果是三位数,那么C和D只有是(1,1)符合条件.那么商的十位数字就是4才能满足个位是4,所以除数的百位数字只有5满足条件.再根据最后的四位数的十位数字是6,从而确定除数的十位数字是8.被除数为58114282502.581142723=+=故选:C.23.如图的两个竖式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么ABCD所代表的四位数是()。

小学奥数数字谜试题及答案

小学奥数数字谜试题及答案

小学奥数数字谜试题及答案一、数字谜题在小学奥数竞赛中,数字谜题常常是考察学生逻辑思维和数学运算能力的重要题型之一。

下面是几个常见的数字谜题,希望能帮助你培养数学思维和解题能力。

1. 数字排列将数字1、2、3、4、5、6、7、8、9组成一个9位数,使得每个数字出现且仅出现一次,并且每两个相邻的数字之间的差值都是一个质数。

请问有多少种可能的排列方式?2. 数字替换给定一个四位数abcd,满足条件:abcd * 4 = dcba。

请问abcd是多少?3. 数字矩阵在3x3的方格中填写数字1-9,使得每一行、每一列和对角线上的数字之和都相等。

请找出所有满足条件的填法。

二、数字谜题答案1. 数字排列的可能性有5040种。

解析:由于质数只有2、3、5、7,所以9位数中第一个数字只能是2或者5。

然后,考虑到相邻数字之间的差值为质数,我们可以根据2和5的不同情况来排列剩下的数字。

根据计算可知,数字排列的可能性有5040种。

2. abc*d = dcba,其中a、b、c、d是0-9的数字。

解析:由于abc * 4 = dcba,根据乘法的性质可知,a最大为2,且a 只能为1或2。

根据计算可知abcd为21978。

3. 数字矩阵的填法有8种。

解析:考虑到每一行、每一列和对角线上的数字之和都相等,由此可得数字矩阵的可能解。

2 9 47 5 36 1 84 3 89 5 12 7 66 7 21 5 98 3 48 1 63 5 74 9 24 9 23 5 78 1 62 7 69 5 14 3 86 1 87 5 32 9 48 3 41 5 96 7 2通过以上数学谜题的解析,我们可以锻炼和提升自己的逻辑思维和数学运算能力。

希望能够对大家的数学学习起到一定的帮助作用。

小学奥数 数字谜(加减法)专项练习30题(有答案)

小学奥数 数字谜(加减法)专项练习30题(有答案)

小学奥数数字谜(加减法)专项练习30题(有答案)第9讲数字谜(二)专项练习30题(有答案)1.在如图所示的两位数的加法运算式中,已知A+B+C+D=22,则X+Y=()A .2 B.4 C.7 D.132.计算右面小题()A .趣=5味=6 B.趣=4味=7 C.趣=6味=5 D.趣=3味=83.下边的竖式加法算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字,当算式成立时,我+爱+奥+数=_________.4.在下面的加法算式中,不同的汉字代表不同的数字,相同的汉字代表相同的数字.那么,车+马+炮+卒=_________.5.如图式中,不同的汉字代表不同的数字,“马年好”代表的三位数是_________.6.图竖式A、B、C分别表示不同的数字,且A+B+C最小值是_________.7.图中的△、□、○分别代表不同的数字,要使算式成立,则△代表数字_________,□代表数字_________,○代表数字_________.8.竖式中“兔子”图案表示的数字是_________.9.在如图的算式中,每个字母代表一个1 至9 之间的数,不同的字母代表不同的数字,则A+B+C=_________.10.如图是两个两位数的减法竖式,其中A,B,C,D代表不同的数字.当被减数取最大值时,A×B+(C+E)×(D+F)=_________.11.在横线里填上汉字所代表的数字:“数”=_________,“学”=_________,“好”=_________.12.在右面的算式中,学习优秀=_________.13.不同的汉字表示不同的数,在下面的竖式中,“争”表示_________,“先”表示_________,“创”表示_________,“优”表示_________.14.在图所示的算式中,不同的汉字代表不同的数字,相同的汉字代表相同的数字.则“奥”表示数字_________,“数”表示数字_________,“好”表示数字_________.15.已知除法竖式如图:则除数是_________,商是_________.16.A、B、C、D各代表不同的数字.要使右式成立,A=_________B=_________C=_________D=_________.17.如图,式中不同的字母表示不同的数字,那么ABC表示的三位数是_________.18.下面的加法算式中,不同的汉字代表不同的数字,相同的汉字代表相同的数字.那么这些不同的汉字代表的数字之和是_________.19.在如图的式子中,字母A、B、C代表三个不同的数字,其中A比B大,B比C大,如果用数字A、B、C组成的三个三位数相加的和为777,其竖式如图,那么三位数ABC是_________.20.如图所示的算式中,相同的汉字表示相同的一位数字,不同的汉字表示不同的一位数字.则数+学+竞+赛=_________或_________.21.下面各式中“巨”、“龙”、“腾”、“飞”分别代表不同的数字,相同的汉字代表相同的数字.当它们各代表什么数字时,下列的算式成立.巨=_________龙=_________腾=_________飞=_________.22.在如图的加法算式中,每个汉字分别代表1至9中的一个数字,且相同的汉字代表相同的数字,不同的汉字代表不同的数字,那么这个加法算式的和是_________.23.下面的算式中相同的汉字代表相同的数字,不同的汉字代表不同的数字.24.不同汉字表示不同数字,用数字0﹣9组成了下面一个加法算式,已经填出了数字6,4,0,请补充完算式,那么这个算式的和是_________.25.如图的加法竖式的申、办、奥、运四个汉字,分别代表四个不同的数字,请问:申办奥运分别为何数字时算式成立.申=_________;办=_________;奥=_________;运=_________.26.“爱好数学”代表的四位数是_________.27.在右边的加法竖式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字.如果“纪”=3,那么“北京奥运新世纪”七个字的乘积是_________.28.在右图的算式中,不同的汉字表示不同的数字,相同的谜汉字表示相同的数字,如果,巧+解+数+字+谜=30,那么,字谜“数字谜”所代表的三位数是_________.29.请你猜一猜,每个算式中的汉字各表示几?30.猜一猜,下面每个算式中的汉字所代表的数字是几?数=_________学=_________.参考答案:1.根据题干分析可得:B+D=9,则A+C=22﹣9=13,所以可得x=1,y=3,则x+y=1+3=4.故选:B.2.根据竖式可知,在个位上,趣+味的末尾数字1,这时有两种情况,一种是不向十位进1,0+1=1,十位上,2+ 趣=8,趣=8﹣2=6,与个位数字不符,所以,只能是个位数字相加向十位进1,即趣+味=11;十位上,2+趣+1=8,趣=8﹣1﹣2=5,那么,味=11﹣5=6;根据以上推算可得竖式是:故选:A3.由竖式可得:个位上,数×3的末尾是7,由9×3=27,可得,数=9,向十位进2;十位上,奥×3+2的末尾是0,由6×3+2=20,可得,奥=6,向百位进2;百位上,爱×2+2的末尾是0,由4×2+2=10,9×2+2=20,可得,爱是4或9,当爱为9时与数=9重复,不符合题意,故爱=4,向千位进1;千位上,我+1=2,可得:我=1.由以上分析可得竖式是:所以,我+爱+奥+数=1+4+6+9=20.故填:20.4.车=1,炮=0,马=8,卒=5,故车+马+炮+卒=14;故答案为:145.根据竖式可知,好×7的末尾是好,由5×7=35,可得,好=5,向十位进3;马×7+3=马年,由1×7+3=10,可得,马=1,年=0;由以上分析可得竖式是:故答案为:1056.根据竖式可知,B+B的末尾是4,由2+2=4.或7+7=14可得,B是2或7;当B=2时,十位上,A+C=4,那么,A+B+C=2+4=6;当B=7时,要向十位进1,十位上,A+C+1=4,A+C=4﹣1=3,那么,A+B+C=7+3=10;6<10,所以,A+B+C最小值是6.故答案为:67.竖式结果中千位上是2,可以得知△代表的数字可以能是1或2,在个位上,□+○=□,可以推知○代表的数字是0,那么百位上结果就是0,△、□、○分别代表不同的数字,可以推知千位上的2,是进位后和△相加得出来的,可以推知△代表的数字是1.十位上△+□=0可以知道1+9=10推知□代表的数字是9.故△代表数字1,□代表数字9,○代表数字08.根据题干分析可得:故答案为:69.解:根据题得:DEF+HIJ=ABC,又因为1+2+3+4+5+6+7+8+9=45,假设个位与十位相加都进位,则可得:F+J=10+C,E+I=10+B﹣1=9+B,D+H=A﹣1,则D+E+F+H+I+J=10+C+9+B+A﹣1=A+B+C+18,所以A+B+C+D+E+F+H+I+J=2(A+B+C)+18=45,即A+B+C=,不符合题意;则假设只有个位数字相加进位,则F+J=10+C,E+I=B﹣1,D+H=A,则D+E+F+H+I+J=10+C+B﹣1+A=A+B+C+9,所以A+B+C+D+E+F+H+I+J=2(A+B+C)+9=45,即A+B+C=18,符合题意;答:A+B+C=18.故答案为:18.10.A,B,C,D代表不同的数字.当被减数取最大值可以是98,所以C、D都是小于8的数,则F+D=B=8,C+E=A=9,所以A×B+(C+E)×(D+F)=9×8+9×8=72+72=144,故答案为:14411.根据题干分析可得:答:数=8,学=5,好=2.故答案为:8;5;212.根据竖式是特点,先确定学代表的数字,即为2或1,当学代表2时,此是习应该为8,这样千位上的数会是3,与题干矛盾,所以学代表1,习代表8,优代表0,秀代表3,根据以上推算可得竖式是:故答案为:180313. 根据竖式可知,优+优+优的末尾是2,由4+4+4=12可得,“优”表示4,向十位进1;创+创+创+1的末尾是6,由5+5+5+1=16可得,“创”表示5,向百位进1;先+先+1的末尾是3,由1+1+1=3,6+6+1=13可得,“先”表示3或6,当“先”表示3时,“争”只能表示4,与优重复不符合,所以,“先”表示6,向千位进1;争+1=4,争=4﹣1=3,所以,“争”表示3.由以上分析可得竖式是:故答案为:3,6,5,414.根据题意,由竖式可得:“数”代表的数字是1;千位上:“奥”+1要想得到11,最大的数字9+1才等于10,也就是9+1再加上进位的1才能得到11,因此“奥”代表的数字是9;个位上:9+1=10,那么,“好”代表的数字是0;由以上可得竖式是:.故答案为:9,1,015.根据竖式可知,除数与商的个位数相乘的积的末尾是5,可得,除数的个位数与商的个位数必有一个是5,另一个是奇数;假设,商的个位数是5,即商是25,由135÷5=27,27×2=54,大于被除数的前两位,不符合题意,那么除数的个位数字是5;由□5×2是两位数,并且小于4□,可知除数的十位数字小于或等于2,假设是2即25×2=50>4□,不符合题意,那么除数只能是15;又因为15×9=135,所以,商是29,被除数是29×15=435.竖式是:故答案为:15,2916. 根据题意,由竖式可得:A=1;百位上,B+A=9,B=8,或B+A+1=9,B=7;十位上,C+B+A=2,B+A大于2,所以,十位上一定满十,要向百位上进一,所以,B+A+1=9,B=7,符合题意;那么,C+B+A=12,C=4或C+B+A+1=12,C=3;个位上,D+C+B+A=7,因为C+B+A=12,大于10了,所以个位上也满十,向十位上进一,因此,C+B+A+1=12,C=3符合题意;那么,D+C+B+A=17,D=6.根据以上推算可得竖式是:故答案为:1,7,3,617.根据题意,由竖式可得:个位上:C+C+C=3C的末尾是8,由3×6=18,可得,C=6,向十位进1;十位上:B+B+B+1=3B+1的末尾是8,也就是3B的末尾是8﹣1=7,由3×9=27,可得,B=9,向百位进2;百位上:A+A+A+2=8,3A=6,A=2;由以上可得竖式是:;所以,ABC表示的三位数是276.故答案为:29618.由以上分析可知:“我”=1,“爱”=7,“数”=9,“学”=3;算式是:;数字之和是:1+7+9+3=20;故答案为:2019.根据题意可知,可知A+B+C=7,A、B、C都不是0,字母A、B、C代表三个不同的数字,A比B大,B比C大,可知A>B>C,因1+2+4=7,那么A=4,B=2,C=1,所以三位数ABC是421.故填:42120.根据竖式可知,赛×5的末尾是赛,由0×5=0,5×5=25,可得赛是0或5,当赛是0时,竞×4的末尾是竞,由0×4=0,可得,竞是0,与题意不符,所以,赛只能是5,向十位进2;十位上,竞×4+2的末尾是竞,由6×4+2=26,可得,竞是6.向百位进2;百位上,学×3+2的末尾是学,由4×3+2=14,9×3+2=29,可得,学是4或9;当学是4时,向千位进1,千位上,数×2+1的末尾是数,由9×2+1=19,可得数是9,向万位上进1,万位上1+1=2,符合题意;当学是9时,向千位进2,千位上,数×2+2的末尾是数,由8×2+2=18,可得数是8,向万位上进1,万位上1+1=2,符合题意;由以上分析可得竖式是:或所以,数+学+竞+赛=9+4+6+5=24,或数+学+竞+赛=8+9+6+5=28;故答案为:24,2821.根据题意.由竖式可得:个位上:“飞”+“飞”+“飞”的末尾是1,由7+7+7=21,可得:“飞”=7,向十位进2;十位上:“腾”+“腾”+“腾”+2的末尾是0,由6+6+6+2=20,可得:“腾”=6,向百位进2;百位上:“龙”+“龙”+2的末尾是0,由4+4+2=10,可得:“龙”=4,向千位进1;千位上:“巨”+1=2,“巨”=1;所以,“巨”=1,“龙”=4,“腾”=6,“飞”=7;由以上可得竖式是:故答案为:1,4,6,222.根据竖式可知,在最高位上,我+8=赛,不能有进位,所以,我=1,赛=9,个位上,9+2=11,向十位进1;爱+6=竞,也不能有进位,所以,爱只能是2或3,由竞+3的末尾是爱,当爱=3时,9+3+1=13,竞=9,与题意不符,当爱=2时,8+3+1=12,可得,爱=2,竞=8,十位上,8+3+1=12,向百位进1;由学+5+1=希,希+4=学,可知学+5+1有进位,末尾是希,8与9数字已经使用,当学是5时,5+5+1=11,与我=1重复,不符合,当学是6时,6+5+1=11,末尾是2,与爱=1重复,不符合,那么学只能是7,7+5+1=13,希=3,向千位进1;剩下的数字有4、5、6,由杯+9的末尾是杯,9+4=13,9+5=14,9+6=15,可得,数+7+1有进位,末尾是望,4+7+1=12,重复,不符合,5+7+1=13,重复,不符合,6+7+1=14,可得,数=5,望=4,那么杯只能是5.竖式是:1 2 3 4 5 6 7 8 9+8 6 4 1 9 7 5 3 2﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣9 8 7 6 5 4 3 2 1所以,这个加法算式的和是987654321.故答案为:98765432123.根据题意,由竖式可知,4×习的末尾是0,可得习是0或5;当习=0时,4×学的末尾也是0,那么学是0或5,当学=0,不符合题意,故学是5,向百位进2,3×爱+2的末尾是0,由3×6+2=20,可知爱是6,向千位进2,我+们+2的末尾是0,只能是我+们+2=10,向万位进1,我+1=2,可得我是1,们=10﹣2﹣1=7,竖式是:5 06 5 01 6 5 0+1 7 6 5 0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣2 0 0 0 0当习=5时,向十位进2,4×学+2的末尾是0,由4×2+2=10,4×7+2=30,可知,学是2或7;当学=2时,向百位进1,3×爱+1的末尾是0,由3×3+1=10,可知爱是3,向千位进1,我+们+1的末尾是0,只能是我+们+1=10,向万位进1,我+1=2,可得我是1,们=10﹣1﹣1=8,竖式是:2 53 2 51 32 5+1 8 3 2 5﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣2 0 0 0 0当习=5,学=7时,向百位进3,3×爱+3的末尾是0,由3×9+3=30,可知爱是9,向千位进3,我+们+1的末尾是0,只能是我+们+3=10,向万位进1,我+1=2,可得我是1,们=10﹣3﹣1=6,竖式是:7 59 7 51 9 7 5+1 6 9 7 5﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣2 0 0 0 024.根据题意可得:欢一定是1.嘉一定不小于3,因为要进位,迎可以取值不大于5(因为嘉最大取9,6+9=15),然后再从0﹣5中扣掉不合适的0、1、4,只剩2 3 5;中=2,则,你=6,不成立;以此类推得出祥可能的值3(对应你=7),5(9),8(2),9(3);由于十位为0,则七+祥=10 或者要么个位进一即七+祥+1=10;由上得出嘉大于等于3,迎=2、3、5,中=3、5、8、9对应的你=7、9、2、3,七+祥=10或者七+祥+1=10.假设,七+祥+1=10即中+4>10,那么,中可取值8、9,你=2、3.设,中=8,你=2,6+嘉+1=欢迎,嘉取值:3(迎=0)、4(重复)、5(迎=2)、6(重复)、7(迎=4)、8(与中重复)、9(迎=6)均不可取,所以中不能取8;设,中=9,你=3,6+嘉+1=欢迎,嘉取值:3、4、6、7、9不可,5、8可行;若嘉取5,剩余数值为7、8,即十位数7+8+1=10,不成立,所以嘉不能取5;嘉取8,剩余数值为2、7,十位数2+7+1=10,符合;所以,得出629+874=1503或者679+824=1503.再假设,七+祥=10即中+4<10,那么,中可取值3、5,你=7、9.设,中=3,你=7,6+嘉+1=欢迎,嘉取值:3(与中重复)、4(重复)、6(重复)、7(与你重复)、9(迎=6)不可,5、8可行;若嘉取5,剩余数值是8、9,即十位数8+9=10,不成立,所以嘉不能取5;嘉取8,剩余数值为2、9,十位数2+9=10,不成立,所以中不能取3;设,中=5,你=9,6+嘉+1=欢迎,嘉取值:3(迎=0)、4(重复)、5(与中重复)、6(重复)、7(迎=4)、8(迎=5)、9(与你重复)均不可取,所以中不能取5;所以,七+祥=10不成立.由以上分析可得竖式是:故答案为:150325.根据题干分析可得:所以申=1,办=6,奥=7,运=2.故答案为:1;6;7;2.26.根据题干分析可得:答:“爱好数学”代表的四位数是2156.故答案为:215627.根据以上分析知:北京奥运新世纪,这七个字可能是:(1)1,3,4,5,6,7,8,它们的乘积是20160;(2)0,3,4,5,6,7,9,它们的乘积是0.故答案为:20160或028.根据竖式可知:5×迷的末尾还是迷,因为5×5=25,所以迷为5,向十位进2;4×字+2的末尾是字,字只能是偶数,4×6+2=26,所以字为6,向百位进2;数×3+2的末尾是数,4×3+2=14,9×3+2=29,所以数为4或9,当数为4时,解×2+1的末尾为解,解只能为奇数,9×2+1=19,解为9;由巧+解+数+字+谜=30,可知,巧为6,与字为6重复,不符合题意,那么数只能是9,向千位进2;解×2+2的末尾为解,解只能为偶数,且不为4,6,8×2+2=18,解为8,向万位进1;由巧+解+数+字+谜=30,可知,巧为2,赛为1,符合题意.所以”数字谜”所代表的三位数是965.故填:96529.学=6﹣1=5,好=7﹣5=2,数=5+2+1=830.根据给出的竖式,得出学代表的字大于等于6,如果学等于6,则由个位学﹣数=3,得出数等于3,但这样就是636﹣63=573,得数的百位上不是6,与原题不一致,当学=7,这时数=4,此时为747﹣74=673,与题意相符;所以数=4,学=7,故答案为:4、7。

小学奥数知识讲解-算式迷宫

小学奥数知识讲解-算式迷宫

第五讲算式迷小朋友们?你猜过算式迷吗?算式迷是由一些数字与算式构成的。

日本人形象地称之为“虫食算”,即算式中一些数字被虫子咬去了。

要想猜出算式迷,也得先分析这些数字和算式构成的“谜面”,再运用一些推理方法找到“谜底”。

典型例题例【1】将数字0、1、3、4、5、6成立,每个空格只填入一个数字,并且所填的数字不能重复。

= =分析,乘积是个两位数,个位数是2,所给的数字0,1,3,4,6中只有3×4的个位数是23×4=12,余下的0,5,6要组成一个两位数除以一个一位数,商是12的除法算式,只能是60÷5。

解=例【2】将数字1~9分别填在下面9个方格中,使算式成立。

+===-×(1)(2)(3)分析算式(1)、(2)是加减算式。

可填的数字较多。

而算式(3)是乘法算式,要考虑数字1~9中,哪两个数字的积等于另一个数字,所以先从乘法算式填起。

1.乘法算式(3)中可以先填成2×3=6,余下的数字再分别填入(1)、(2)中。

1+4=5,剩下的7,8,9不能组成(2)式。

1+7=8,剩下的4,5,9能组成9-5=4,或9-4=5。

1+8=9,剩下的1,7,8能组成8-7=1,或8-1=7。

2.乘法算式(3)也可以填成2×4=8,那么:1+5=6,剩下的3,7,9不能组成(2)式。

1+6=7,剩下的3,5,9不能组成(2)式。

3+6=9,剩下的1,5,7不能组成(2)式。

所以,此题答案是:)例【3】把数字1~9填在方格里,使等式成立,每个数字只能用一次。

分析一位数组成除法算式商相等的情况:4÷2=6÷3,6÷2=9÷3,8÷2=4÷1,所以可先填写等式中的前4个数。

如果先填4÷2=6÷3,剩下的1,5,7,8,9要组成一个三位数除以一个两位数,商是23所得的积的个位一定是个双数,只能填8。

四年级奥数之算式谜(一)

四年级奥数之算式谜(一)

算式谜(一)1 .在下面算式的括号里填上合适的数。

2 .在方框里填上合适的数。

1 .下面的竖式里,有4个数字被遮住了,求竖式中被盖住的4个数字的和。

3 .下面各式中“巨”、“龙”、“腾”、“飞”分别代表不同的数字,相同的汉字代表相同的数字。

当它们各代表什么数字时,下列的算式成立。

4 .下面各式中的“兵”、“炮”、“马”、“卒”各代表0—9这十个数字中的某一个,相同的汉字代表相同的数字。

这些汉字各代表哪些数字?5 .将0、1、2、3、4、5、6这七个数字填在圆圈和方格内,每个数字恰好出现一次,组成一个整数算式。

○×○=□=○÷○6 .将0、1、3、5、6、8、9这七个数字填在圆圈和方筐里,每个数字恰好出现一次组成一个整数算式。

○×○=□=○÷○7 .填入1、2、3、4、7、9,使等式成立。

□÷□=□÷□8 .用1、2、3、7、8这五个数字可以列成一个算式:(1+3)×7=28。

请你用0、1、2、3、4、6这六个数字列成一个算式。

9 .把“+、-、×、÷”分别放在适当的圆圈中(运算符号只能用一次),并在方框中填上适当的数,使下面的两个等式成立。

36○0○15=15 21○3○5=□10 .把“+、-、×、÷”分别填入下面的圆圈中,并在方框中填上适当的整数,使下面每组的两个等式成立。

①9○13○7=100 14○2○5=□② 17○6○2=100 5○14○7=□11 .将1~9这九个数字填入□中(每个数字只能用一次),组成三个等式。

□+□=□□-□=□□×□=□。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数——算式谜一.选择题(共49小题)1.“凑24点”游戏规则是:从一副扑克牌中抽去大小王剩下52张,(如果初练也可只用1~10这40张牌)任意抽取4张牌(称牌组),用加、减、乘、除(可加括号)把牌面上的数算成24,每张牌必须用一次且只能用一次,并不能用几张牌组成一个多位数,如抽出的牌是3、8、8、9,那么算式为(98)83-÷⨯等,在下面4个选项中,唯一-⨯⨯或(988)3无法凑出24点的是()A.1、2、3、3B.1、5、5、5C.2、2、2、2D.3、3、3、32.在下面的每个方框中填入“+”或“-”,得到所有不同计算结果的总和是()25□9□7□5□3□1.A.540B.600C.630D.6503.将6、7、8、9填入右边算式的方格中:“□⨯□+□□”那么这个算式的结果最大为()A.152B.145C.140D.1544.在5()4()6()3的括号中.选用+、-、⨯、÷符号填入(每个符号只用一次),能得到的最大结果是()A.17B.19C.23D.265.在10口10口10口10口10的四个口中填入“+”“-”“⨯”“÷”运算符号各一个,所成的算式的最大值是()A.104B.109C.114D.1196.在下面乘法竖式的每个方格中填入一个非零数字,使算式成立.那么,乘积的最大值等于()A.6292B.6384C.6496D.66887.在下列算式中加一括号后,算式的最大值是()⨯+÷-.791232A.75B.147C.89D.908.某校买来36套单座课桌椅,不料发票给墨水弄污了,单价只剩下两个数字:□23.□□元,总价只剩下四个数字:4□44.2□元,那么总价应是()元.A.4944.24B.4444.20C.4544.28D.4644.209.在下边的乘法算式中,“二”、“月”、“四”、“日”、“数”、“学”、“科”、“普”、“节”分别表示1~9中的不同数字,且“二”2=,如果四位数“二月四日”的22倍=,“四”4等于五位数“数学科普节”,那么,“数”+“学”+“科”+“普”+“节”的和等于()A.12B.15C.16D.2710.如果一个整数,与1,2,3这三个数,通过加减乘除运算(可以添加括号)组成算式,结果等于24,那么这个整数称为可用的,那么,在4,5,6,7,8,9,10这七个数中,可用的整数有()个.A.7B.6C.5D.411.已知□□□+□□□1199=,那么6个□中的6个数字之和是()A.30B.29C.28D.2012.下面的算式中,同一个汉字代表同一个数字,不同的汉字代表不同的数字.团团⨯圆圆=大熊猫,则“大熊猫”代表的三位数是()A.123B.968C.258D.23613.在下面的五组数中:①4,4,4,4;②5,5,5,5;③6,6,6,6;④7,7,7,7;⑤9,9,9,9.通过添上合适的运算符号(+、-、⨯、)÷,使计算结果等于24,那么满足条件的组数是()A.1B.2C.3D.4E.514.3☆86⨯是一道三位数乘一位数的算式,那么下面三个数中()可能是它的得数.A.2028B.1508C.196415.若两个三位数的和为□□□+□□□1949=,那么6个□中的数字之和是()A.14B.23C.32D.4116.用四则运算符号+、-、⨯、÷(每种可用多次,也可不用),括号(如果需要的话)及四个数3、4、6、10组成算式,使最后得数为24.算式为()A.(1046)324+-⨯= B.4631024+÷⨯=C.3641024⨯-+= D.以上都可以17.如果???÷的商用数字来表示是()⨯+⨯+⨯+⨯=,那么??+-=⨯,?A.8B.4C.618.金鸡唱响圆中国梦⨯□=中中中中中中中中中上面的横式中不同的汉字代表不同的数字,□代表某个一位数.那么,“中”字所代表的数字是()A.3B.5C.7D.919.请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是()A.2986B.2858C.2672D.275420.加法算式中,七个方格中的数字和等于()A.51B.56C.49D.4821.如图所示竖式成立时的除数与商的和为()A.589B.653C.723D.73322.如图竖式成立时除数与商的和为()A.289B.351C.723D.113423.如图的两个竖式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么ABCD所代表的四位数是()A.5240B.3624C.7362D.756424.如图算式的有()种不同的情况.A.2B.3C.4D.525.如图所示,将乘法竖式补充完整后,两个乘数的差是()A.564B.574C.664D.67426.下面的除法算式给出了部分数字,请将其补充完整.当商最大时,被除数是()A.21944B.21996C.24054D.2411127.在竖式中填入适当的数字,使竖式成立,那么第一个竖式的和(也就是第二个竖式的被减数)是()A.1000B.1001C.1002D.100328.在图所示的算式中,每个字母代表一个非零数字,不同的字母代表不同的数字,则和的最小值是()A.369B.396C.459D.54929.在右面的加法算式中,每个汉字代表一个非零数字,不同的汉字代表不同的数字.当算式成立吋,贺+新+春(=)A.24B.22C.20D.1830.在如图所示的两位数的加法运算式中,已知22A B C D +++=,则(X Y += )A.2B.4C.7D.1331.在下面竖式乘法中,*代表任何数字(不必相同),而P 代表某个数字,要使竖式成立,则P 可能为下列选项中的( )A.7B.6C.5D.9E.832.a 、b 、c 、d 表示09-中不同的四个整数,如果它们满足下面的整式,那么(acac bcc bc ++= )A.2017B.2016C.2015D.201433.如图6个空格中分别放有1、2、3、4、5、6六个数,并且要使计算结果正确.如果每个数字只能使用一次,带问号的空格中的数是( )A.2B.3C.4D.5E.634.图中表示三个3位数相加.三位数各位数上的数字不重复地使用了1~9中的数字.这一加法算式不可能得到下列答案中的( )A.1500B.1503C.1512D.153935.如图乘法竖式中P、Q及R分别代表不同的数字.则P、Q及R的和等于()A.16B.14C.13D.12E.1036.不同字母表示不同的数字,关于下面四进制的加法运算,描述正确的有()A.字母A的值是2B.字母B的值是3C.字母C的值是2D.字母D的值是037.如图,这个乘式中,PQRS是一个四位数,且P、Q、R及S分别为不同的数码.下列叙述不正确的是()A.PQRS是9的倍数B.1P=C.0Q= D.7R=E.9S=38.在如图的算式中,每个汉字代表0至9中的一个数字,不同汉字代表不同的数字.当算式成立时,“好”字代表的数字是()A.1B.2C.4D.639.如图,在55⨯的空格内填入数字,使每行、每列及每个粗线框中的数字为1,2,3,4,5,且不重复.那么五角星所在的空格内的数字是()A.1B.2C.3D.440.将1、2、3、4、5、6、7、8这8个数字分别填入图中的八个“〇”内(每个数字只用一次),如果两个大圆圈上五个“〇”内的数字之和都是22,那么A、B两个“〇”内不可能填()A.1和7B.4和8C.3和5D.2和641.下列算式中,乘积的千位数是()A.0B.1C.3D.742.在下面的乘法算式中“骐骐⨯骥骥=奇奇迹迹”,不同的汉字代表不同的数字,相同的汉字代表相同的数字,汉字“奇迹”表示的数是?()A.38B.83C.64D.5443.在如图所示的竖式里,四张小纸片各盖住了一个数字.被盖住的4个数字的总和是()A.14B.24C.23D.2544.如图所示的算式中,如果七个方格中的数字互不相同,那么和的最大值是( )A.153B.176C.183D.19645.在如图的33⨯的各格中每行每列都包含1、2、3三个数,则(A B += )A.1B.3C.4D.5 .6E46.将1到8这8个自然数分别填入如图数阵中的8个圆圈,使得数阵中各条直线上的三个数之和都相等,那么A 和B 两个圆圈中所填的数之和最大是( )A.8B.10C.12D.1447.在竖式中有若干个数字被遮盖住了,则竖式被遮盖住的几个数字的和为( )A.33B.34C.35D.3648.将1~8这八个数字分别填入下图的圆圈内,每个数字只能用一次,如果两个大圆上五个圆圈内的数之和为22,那么A 、B 两个圆圈内不可能填( )A.1和7B.4和8C.3和5D.2和649.下列选项正确的是( )A.趣5=,味6=B.趣4=,味7=C.趣6=,味5=D.趣3=,味8=参考答案与试题解析一.选择题(共49小题)1.“凑24点”游戏规则是:从一副扑克牌中抽去大小王剩下52张,(如果初练也可只用1~10这40张牌)任意抽取4张牌(称牌组),用加、减、乘、除(可加括号)把牌面上的数算成24,每张牌必须用一次且只能用一次,并不能用几张牌组成一个多位数,如抽出的牌是3、8、8、9,那么算式为(98)83-÷⨯等,在下面4个选项中,唯一-⨯⨯或(988)3无法凑出24点的是()A.1、2、3、3B.1、5、5、5C.2、2、2、2D.3、3、3、3【解析】A、(12)332724+⨯⨯=>,有可能凑出24点;+⨯⨯=>,有可能凑出24点;B、(15)5515024⨯⨯⨯=<,不可能凑出24点;C、22221624D、33338124⨯⨯⨯=>,有可能凑出24点;故选:C.2.在下面的每个方框中填入“+”或“-”,得到所有不同计算结果的总和是()25□9□7□5□3□1.A.540B.600C.630D.650【解析】由于259753150+++++=,所以我们猜测0~50之间的所有偶数都有可能得到,+⨯÷=;0~50所有偶数的总和是(050)262650当把1前面的+号变成-号,可得259753148⨯,++++-=,比50小12当把3前面的+号变成-号,可得259753144⨯,+++-+=,比50小32当把3和1前面的+号变成-号,可得259753142⨯,+++--=,比50小42当把5前面的+号变成-号,可得259753140⨯,++-++=,比50小52⋯---+-=,221579=+++,因此当把1,5,7,9前面的+号变成-号,可得25975316----+=,=+++,因此当把3,5,7,9前面的+号变成-号,可得25975312 243579=++++,因此当把1,3,5,7,9前面的+号变成-号,可得25975310-----=,2513579根据上述规律可得,但是数字2和23无法凑出来,那么偶数4和46无法取到,所以答案是:650446600--=.故选:B.3.将6、7、8、9填入右边算式的方格中:“□⨯□+□□”那么这个算式的结果最大为()A.152B.145C.140D.154【解析】同类枚举找最大:67981506789⨯+=>⨯+.⨯+=.6897145⨯+=.6987141⨯+=.7896152⨯+=.7986149⨯+=.8976148经比较152为最大.故选:A.4.在5()4()6()3的括号中.选用+、-、⨯、÷符号填入(每个符号只用一次),能得到的最大结果是()A.17B.19C.23D.26【解析】试算如:546323-+⨯=,546317⨯-+=,+⨯-=,546319⨯+-=,546326所以能得到的最大结果是26,故选:D.5.在10口10口10口10口10的四个口中填入“+”“-”“⨯”“÷”运算符号各一个,所成的算式的最大值是()A.104B.109C.114D.119【解析】因为减号只能用一次,减数不能为0,那么10101÷=做减数时,运算的结果最大:⨯+-÷1010101010=+-100101=109故选:B.6.在下面乘法竖式的每个方格中填入一个非零数字,使算式成立.那么,乘积的最大值等于()A.6292B.6384C.6496D.6688【解析】满足条件的竖式有或故选:D.7.在下列算式中加一括号后,算式的最大值是()⨯+÷-.791232A.75B.147C.89D.90【解析】791232⨯+÷-加上括号最大是:⨯+÷-7(9123)2=⨯-7132=-912=89加上一个括号后算式的最大值是89.故选:C.8.某校买来36套单座课桌椅,不料发票给墨水弄污了,单价只剩下两个数字:□23.□□元,总价只剩下四个数字:4□44.2□元,那么总价应是()元.A.4944.24B.4444.20C.4544.28D.4644.20【解析】根据题意,单价百位为1,123364428⨯=,∴总价为4444.2□元,Q,4444.236123.45÷=故可得总价为4444.20,单价为123.45元,故选:B.9.在下边的乘法算式中,“二”、“月”、“四”、“日”、“数”、“学”、“科”、“普”、“节”分别表示1~9中的不同数字,且“二”2=,如果四位数“二月四日”的22倍=,“四”4等于五位数“数学科普节”,那么,“数”+“学”+“科”+“普”+“节”的和等于()A.12B.15C.16D.27【解析】二月四日22⨯为23492251678⨯=,++++=,5167827“数”+“学”+“科”+“普”+“节”的和等于27.故选:D.10.如果一个整数,与1,2,3这三个数,通过加减乘除运算(可以添加括号)组成算式,结果等于24,那么这个整数称为可用的,那么,在4,5,6,7,8,9,10这七个数中,可用的整数有()个.A.7B.6C.5D.4【解析】因为123424⨯⨯⨯=,所以4可用;因为(51)2324-⨯⨯=,所以5可用;因为(321)624+-⨯=,所以6可用;因为371224⨯++=,所以7可用;因为38(21)24⨯⨯-=,所以8可用;因为392124⨯--=,所以9可用;因为1021324⨯++=,所以10可用.答:可用的数字是7个.故选:A.11.已知□□□+□□□1199=,那么6个□中的6个数字之和是()A.30B.29C.28D.20【解析】根据分析可得,个位数+个位数9=,=,百位数+百位数11=,十位数+十位数9所以6个数字之和是:991129++=.答:6个□中的6个数字之和是29.故选:B.12.下面的算式中,同一个汉字代表同一个数字,不同的汉字代表不同的数字.团团⨯圆圆=大熊猫,则“大熊猫”代表的三位数是()A.123B.968C.258D.236【解析】设a、b分别代表汉字团、圆,则(10)(10)1111121⨯=+⨯+=⨯=;aa bb a a b b a b ab121ab是一个三位数,ab可能的取值为:2,3,4,5,6,7,8,对应的三位数分别为:242、363、484、605、726、847、968,根据不同的汉字代表不同的数字,可得三位数只能是968.故选:B.13.在下面的五组数中:①4,4,4,4;②5,5,5,5;③6,6,6,6;④7,7,7,7;⑤9,9,9,9.通过添上合适的运算符号(+、-、⨯、)÷,使计算结果等于24,那么满足条件的组数是()A.1B.2C.3D.4E.5【解析】因为,444424⨯++=;⨯-÷=;555524+++=;6666247,7,7,7和9,9,9,9怎么添加运算符号都得不到24.故选:C.14.3☆86⨯是一道三位数乘一位数的算式,那么下面三个数中()可能是它的得数.A.2028B.1508C.1964【解析】根据乘数是一位数乘法的计算方法可知,因为因数6乘三位数个位上的8,6848⨯=,满四十,所以在积的个位上要写8并向前一位进4,首先排除C;用因数6乘三位数百位上的3,6318⨯=,再排除B;所以根据这两种情况判断,只有选项A符合要求.故选:A.15.若两个三位数的和为□□□+□□□1949=,那么6个□中的数字之和是()A.14B.23C.32D.41【解析】由两个3位数的和为1949知,9□□9=,+□□1949则□□+□□19492900149=-⨯=,所以第1个三位数的后两位数字在50~99,第2个三位数与之对应的后两位数字为99~50,其组合方式有50~99、49~98、48~97、⋯、99~50,每种组合方式其四个数字之和均为509923+++=,则6个□中的数字之和是239941++=,故选:D.16.用四则运算符号+、-、⨯、÷(每种可用多次,也可不用),括号(如果需要的话)及四个数3、4、6、10组成算式,使最后得数为24.算式为()A.(1046)324+-⨯= B.4631024+÷⨯=C.3641024⨯-+= D.以上都可以【解析】选项A、(1046)38324+-⨯=⨯=,正确;选项B、4631042024+÷⨯=+=,正确;选项C、364101841024⨯-+=-+=,正确;又各选项中的算式数字及运算符号的使用符合要求,所以选项A、B、C都正确,故选:D.17.如果???÷的商用数字来表示是()+-=⨯,?⨯+⨯+⨯+⨯=,那么??A.8B.4C.6【解析】???+-=⨯可得:?=⨯;因为?⨯+⨯+⨯+⨯=,所以4?=,⨯=,即4??则??4??4÷=÷=;故选:B.18.金鸡唱响圆中国梦⨯□=中中中中中中中中中上面的横式中不同的汉字代表不同的数字,□代表某个一位数.那么,“中”字所代表的数字是()A.3B.5C.7D.9【解析】根据题意可以得到答案为:故选:C.19.请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是()A.2986B.2858C.2672D.2754【解析】首先根据结果中的首位数字是2,如果有进位那么0上边只能是9,根据910多除以7得130多,7前面只能是1,与数字0矛盾那么乘数中的三位数的首位只能是1或者2,因为乘数中有7而且结果是三位数,那么乘数中三位数首位只能是1.那么已知数字7前面只能是2,根据已知数字0再推出乘数三位数中的十位数字是0.再根据乘数中的数字7与三位数相乘有1的进位,尾数只能是2.所以是102272754⨯=.故选:D.20.加法算式中,七个方格中的数字和等于()A.51B.56C.49D.48【解析】依题意可知:根据两数相加最大进位是1可知.个位数字相加结果是14,十位和百位数字相加和为18,千位有1个进位1.+++=.141818151故选:A.21.如图所示竖式成立时的除数与商的和为()A.589B.653C.723D.733【解析】依题意可知用字母表示如图:S 首先判断0A =,4B =.再根据除数的2倍是四位数,那么E 是大于4的.除数与D 的积是三位数,那么D 就是小于2的非零数字,即1D =.再根据顺数第三行最后一位为1可以确定D 和C 的取值为(1,1).根据1C =,4B =,那么商的十位数字就是4,根据有余数推理5E =.再根据除数的2倍的数字中有6.那么除数的十位数字可能是3或者8.枚举得知除数是581商是142.581142723+=.故选:C.22.如图竖式成立时除数与商的和为()A.289B.351C.723D.1134【解析】首先根据倒数第三行可以确定0B=;A=,4再根据顺数第三行最后一位为1可以确定,第一行D和C的取值为(1,1)或(3,7)或(9,9)或(7,3).根据除数的2倍是四位数,那么除数是大于500的数字,再根据第一个的结果是三位数,那么C和D只有是(1,1)符合条件.那么商的十位数字就是4才能满足个位是4,所以除数的百位数字只有5满足条件.再根据最后的四位数的十位数字是6,从而确定除数的十位数字是8.被除数为58114282502.581142723⨯=+=故选:C.23.如图的两个竖式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么ABCD所代表的四位数是()A.5240B.3624C.7362D.7564【解析】根据左边的数字谜中,可分析出A、C是相邻的,B、D是差2 的.右边的数字谜中,显然19GH=,若个位没有向十位进位,则F、J分别是0、4,E、I是8、3 或6、5,但无论是哪组解都不能满足左边数字谜“A、C相邻,B、D差2”的要求. 故知右边个位向十位进位了,14+=,E、I只能分别E IF J+=,F、J只能分别是8、6,10是3、7,此时得到5240ABCD=.故选:A.24.如图算式的有()种不同的情况.A.2B.3C.4D.5【解析】首先容易定出第一排百位是1,第二排个位是1,才能保证第三行的结果是100多.同时要保证第四排是4位数,第二排的百位必须大于5,要保证第四排的十位为4,当第二排百位数字是6时,没有满足已知数字4的情况.当第二排百位数字是7时,1927⨯符合条件.当第二排百位数字是8时,没有符合条件的数字,当第二排百位数字是9时,1729⨯满足条件.有两种情况:192701⨯;⨯,172901故选:A25.如图所示,将乘法竖式补充完整后,两个乘数的差是()A.564B.574C.664D.674【解析】依题意可知:如上图所示,可以直接判断第4行的前两位数字的值均为9,结果的前三位数字分别为1、0、0.根据数字6成第一个乘数结果为三位数,那么第一行的首位数字是1.在这个乘法竖式中,没有十位对应的乘积,所以可以得出十位数字为0第四行的三位数字结果是偶数那么只有990,992,994,996,998这5个数字.同时对应第一个乘数的尾数是2即可.÷=(不符合题意);9905198992不是6的倍数不能构成一个乘数尾数是2;9947142÷=(符合题意);÷不整除不符合题意9968所以,原来的两个乘数分别为:142和706,差为706142564-=.故选:A.26.下面的除法算式给出了部分数字,请将其补充完整.当商最大时,被除数是()A.21944B.21996C.24054D.24111【解析】明显商的百位乘以除数是二百零几,如果是100多那么余数是三位数.2 乘以除数是三位数,所以商最大时,结果中个位数字是4.所有除数的个位是2 或7,要满足0 的话就只能为2,这时除数为52.商最大为42,因为最后一行只能为一百多,最大是52的3倍,所以商最大为423.这时被除数为2199652423÷=,符合条件故选:B.27.在竖式中填入适当的数字,使竖式成立,那么第一个竖式的和(也就是第二个竖式的被减数)是()A.1000B.1001C.1002D.1003【解析】根据后面四位数减三位数可得,上个竖式的和是1000或1001,减数是998或者999,再根据两个加数可得最小是900和101,和为1001,所以只能是1001故选:B.28.在图所示的算式中,每个字母代表一个非零数字,不同的字母代表不同的数字,则和的最小值是()A.369B.396C.459D.549【解析】根据题干分析可得:答:和的最小值是459.故选:C.29.在右面的加法算式中,每个汉字代表一个非零数字,不同的汉字代表不同的数字.当算式成立吋,贺+新+春(=)A.24B.22C.20D.18【解析】(1)假设个位与十位相加都进位,则可得:炮+年10-=+=+新19=+春,鞭+龙10新,放+迎=贺1-,则炮+年+鞭+龙+放+迎10=+春9++新+贺1-=贺+新+春18+,所以放=鞭+炮+迎+龙+年+贺+新+春2=(贺+新+春)1845+=,即贺+新+春272=,不符合题意;(2)假设只有个位数字相加进位,则炮+年10=+春,鞭+龙=新1-,放+迎=贺,则炮+年+鞭+龙+放+迎10=+春+新1-+贺=贺+新+春9+,所以放=鞭+炮+迎+龙+年+贺+新+春2=(贺+新+春)945+=,即贺+新+春18=,符合题意;(3)假设只有十位数字相加进位,则炮+年=春,鞭+龙10=+新,放+迎=贺1-,则炮+年+鞭+龙+放+迎=春10++新+贺1-=贺+新+春9+,所以放=鞭+炮+迎+龙+年+贺+新+春2=(贺+新+春)945+=,即贺+新+春18=,符合题意;(4)假设都不进位,则炮+年=春,鞭+龙=新,放+迎=贺,则炮+年+鞭+龙+放+迎=春+新+贺,所以放=鞭+炮+迎+龙+年+贺+新+春2=(贺+新+春)45=,即贺+新+春452=,不符合题意. 综上所述,贺+新+春18=.故选:D .30.在如图所示的两位数的加法运算式中,已知22A B C D +++=,则(X Y += )A.2B.4C.7D.13【解析】根据题干分析可得:9B D +=,则22913A C +=-=,所以可得1x =,3y =,则134x y +=+=.故选:B .31.在下面竖式乘法中,*代表任何数字(不必相同),而P 代表某个数字,要使竖式成立,则P 可能为下列选项中的( )A.7B.6C.5D.9E.8 【解析】根据题干分析可得:原题可能是:所以3P =或8.故选:E .32.a 、b 、c 、d 表示09-中不同的四个整数,如果它们满足下面的整式,那么(acac bcc bc ++= )A.2017B.2016C.2015D.2014【解析】bcd ccd addd +=,从个位开始分析,可知0d =,再想10c c +=,5c =,再想5110b ++=,4b =,最后可知a 百位相加满10后进的1,所以1a =;再把1a =,4b =,5c =,0d =,代入算式1515455452015acac bcc bc ++=++=, 故选:C .33.如图6个空格中分别放有1、2、3、4、5、6六个数,并且要使计算结果正确.如果每个数字只能使用一次,带问号的空格中的数是( )A.2B.3C.4D.5E.6【解析】1与任何数相乘都得1,而每个数字只能使用一次,所以带问号的空格中的数不是1,1只能是积里的数字;带问号的空格中的数如是2,被乘数的个位数字只能是3,积的个位数字是6,被乘数的十位数字只能是5,2乘5为10,而六个数中没有0,所以带问号的空格中的数不是2;带问号的空格中的数如是4,被乘数的个位数字为1,2,5,6,积的个位数字应为4,8,0,4不合要求;被乘数的个位数字如是3,积的个位数字应是2,被乘数的十位数字只剩下5或6,一乘又会出现2,所以带问号的空格中的数不是4;带问号的空格中的数如是5,被乘数的个位数字为1,2,3,4,6,积的个位数字应为5,0,5,0,0不合要求,所以带问号的空格中的数不是5.所以带问号的空格中的数只能是3.故选:B .34.图中表示三个3位数相加.三位数各位数上的数字不重复地使用了1~9中的数字.这一加法算式不可能得到下列答案中的( )A.1500B.1503C.1512D.1539【解析】假设A 成立,(1)在最左侧竖行开头的 7,8一定不能定去了,因为不用进位,就超过了1500.(2)1,2,3,4,5,6两两相加没有进位,十位不为0,如果用6,8,那么进位的只有5,7,9,十位不为0.(3)如果用5,9 那么进为的只有6,7,8十位也不为0;所以确定答案A 错误.故选:A .35.如图乘法竖式中P 、Q 及R 分别代表不同的数字.则P 、Q 及R 的和等于( )A.16B.14C.13D.12E.10【解析】由题意知道,一个三位数乘以3以后还是一个三位数, P 的数值最大为3.当1P =时,可得Q 的数值133⨯=…,当3Q =时,1R =,结果不合题意;当4Q =时,8R =,其结果为:可以验证其它情况不成立;当2P =时,Q 的数值236⨯=…,所以Q 可取7,8,9,经验证均不成立;当3P =时,可得Q 的数值只能为339⨯=,那么3R =,P 与R 重合,不合题意;综合以上,P ,Q ,R 的和为:14813++=,故选:C .36.不同字母表示不同的数字,关于下面四进制的加法运算,描述正确的有( )A.字母A 的值是2B.字母B 的值是3C.字母C 的值是2D.字母D 的值是0【解析】因为所以:答:A 表示3,B 表示1,C 表示2,D 表示0.故选:C .37.如图,这个乘式中,PQRS 是一个四位数,且P 、Q 、R 及S 分别为不同的数码.下列叙述不正确的是( )A.PQRS 是9的倍数B.1P =C.0Q =D.7R =E.9S = 【解析】据以上分析可得,乘法竖式计算如下:1P =,0Q =,8R =,9S =.所以7R =是错误的.故选:D .38.在如图的算式中,每个汉字代表0至9中的一个数字,不同汉字代表不同的数字.当算式成立时,“好”字代表的数字是( )A.1B.2C.4D.6【解析】根据分析可得, “好好好”,表示为:111373n n =⨯⨯,不同汉字代表不同的数字,所以1n ≠,2n =,则“好好好” 376=⨯(符合要求)或743⨯(不符合要求), 3n =,则“好好好” 379=⨯(不符合要求), 4n =,则“好好好” 746=⨯(不符合要求), 5n =,则“好好好” 3715=⨯(不符合要求), 6n =,则“好好好” 749=⨯(不符合要求), 所以,“好好好” 376222=⨯=,即“好”字代表的数字是2.故选:B .39.如图,在55⨯的空格内填入数字,使每行、每列及每个粗线框中的数字为 1,2,3,4,5,且不重复.那么五角星所在的空格内的数字是( )A.1B.2C.3D.4【解析】依题意可知:首先根据在第一宫格中必须有4,那么第二行的第二列的数字只能为4.同理在第二行第四列的数字只能是1.继续推理可得:所以再五角星的空格位置填写1.故选:A.40.将1、2、3、4、5、6、7、8这8个数字分别填入图中的八个“〇”内(每个数字只用一次),如果两个大圆圈上五个“〇”内的数字之和都是22,那么A、B两个“〇”内不可能填()A.1和7B.4和8C.3和5D.2和6【解析】中间的数字之和应为222(12345678)8⨯-+++++++=,而1~8中,只有178+=,268+=,还剩4和8.+=,358故选:B.41.下列算式中,乘积的千位数是()A.0B.1C.3D.7【解析】为了便于表达把相应的空白处用字母代替,如下图①由9BB⨯+(进位)和的个位数是19⇒⨯积C⨯积的个位上的数是73C⇒=,进位2;92的个位数是91=⇒进位3=,91A⨯+(进位)和的十分位⨯+(进位)30⇒=;39B⇒=.34A②因3⇒=.D⨯=⨯积的个位数是17C D D③39341397331061⨯=⨯=ABC D故选:B.42.在下面的乘法算式中“骐骐⨯骥骥=奇奇迹迹”,不同的汉字代表不同的数字,相同的汉字代表相同的数字,汉字“奇迹”表示的数是?()A.38B.83C.64D.54【解析】因为44773388⨯=,所以汉字“奇迹”表示的数是38;故选:A.43.在如图所示的竖式里,四张小纸片各盖住了一个数字.被盖住的4个数字的总和是()A.14B.24C.23D.25【解析】个位上,两个数字的和是9;十位上,两个数字和是14,那么,被盖住的4个数字的总和就是:91423+=.故选:C .44.如图所示的算式中,如果七个方格中的数字互不相同,那么和的最大值是( )A.153B.176C.183D.196【解析】根据题干分析可得:故选:B .45.在如图的33⨯的各格中每行每列都包含1、2、3三个数,则(A B += )A.1B.3C.4D.5 .6E【解析】第一列已经有1,第二行已有2,则C 处方格只能填3,那么D 处只能填2,A 处只能填1, 所以,B 处只能填3,所以,134A B +=+=故选:C .46.将1到8这8个自然数分别填入如图数阵中的8个圆圈,使得数阵中各条直线上的三个数之和都相等,那么A 和B 两个圆圈中所填的数之和最大是( )A.8B.10C.12D.14【解析】设幻和为a,则52(1238)=⨯+++⋯+-,572a B=-a B又因两条斜线和下面一条横线的和也相等,可知=+++⋯++,可得336a A3(1238)a A=+÷,所以A只能是3或6=+,123a A当A是3时幻和是13,当A是6时幻和是14,再根据572=-a B可确定当3B=A=时,7当4A=时,6+=.B=,所以幻和最大是3710故选:B.47.在竖式中有若干个数字被遮盖住了,则竖式被遮盖住的几个数字的和为()A.33B.34C.35D.36【解析】19515++=因为每进位一次数字和减少9,当个位不进位时,则竖式被遮盖住的几个数字的和为:15924+=当个位进位时,则竖式被遮盖住的几个数字的和为:24933+=故选:A.48.将1~8这八个数字分别填入下图的圆圈内,每个数字只能用一次,如果两个大圆上五个圆圈内的数之和为22,那么A、B两个圆圈内不可能填()A.1和7B.4和8C.3和5D.2和6【解析】1234836++++⋯+=,22244⨯=,那么中间两个数的和是:44368-=,178+=,4812+=,358+=,268+=,故选:B .49.下列选项正确的是( )A.趣5=,味6=B.趣4=,味7=C.趣6=,味5=D.趣3=,味8=【解析】根据竖式可知,在个位上,趣+味的末尾数字1,这时有两种情况,一种是不向十位进1,011+=,十位上,2+趣8=,趣826=-=,与个位数字不符,所以,只能是个位数字相加向十位进1,即趣+味11=;十位上,2+趣18+=,趣8125=--=,那么,味1156=-=;根据以上推算可得竖式是:故选:A .。

相关文档
最新文档