人教版八年级数学上册《分式的基本性质》典型例题

合集下载

人教版八年级数学上册16.分式的基本性质约分与通分

人教版八年级数学上册16.分式的基本性质约分与通分

x2 2
2x 28
已知,1 1 3 ,求分式 2a 3ab 2b 的值。
ab
a ab b
练习:
P8 1.约分. 2.通分.
作业: P9 6. 7.
例 2.不改变分式的值,使下列分子与分母 都不含“-”号



不改变分式的值,把下列各式的分 子与分母的各项系数都化为整数.


5x1 y
(3)
6 5
x
5 1
y
,
65
5x1 y
6 5
x
5 1
y
,
65
3.不改变分式的值,把下列各式的分子与分母都不含 “-”号.
(1) 3x 2y
(2) abc d
2q (3) p
(4) 3m 2n
巩固练习
1.若把分式
x y B y 的 和 都扩大两倍,则分式的值( )
x y
A.扩大两倍 B.不变 C.缩小两倍 D.缩小四倍
(1)

(2)

例3.填空,使等式成立.


(其中 x+y ≠0 )
2.填空:
(1)
9mn2 36n3
m ()
(2)
x2
xy x2
x (
y )
(3) a b. ( ) ab a2b
分数的约分与通分
1.约分:
约去分子与分母的最大公约数,化
为最简分数。
2.通分:
先找分子与分母的最简公分母,再
分式的分子与分母同时乘以(或除以)同 一个不等于零的整式 ,分式的值不变.
用 公 式 表 示 为:
A AM , A AM . B BM B BM (其 中M是 不 等 于 零 的 整 式)

八年级数学上册 15.1《分式》分式的基本性质典型例题素材 新人教版(2021年整理)

八年级数学上册 15.1《分式》分式的基本性质典型例题素材 新人教版(2021年整理)

八年级数学上册15.1《分式》分式的基本性质典型例题素材(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上册15.1《分式》分式的基本性质典型例题素材(新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上册15.1《分式》分式的基本性质典型例题素材(新版)新人教版的全部内容。

《分式的基本性质》例1 下列分式的变形是否正确,为什么?(1)2a ab a b = (2)acbc a b = 例2 写出下列等式中的未知分子或未知分母.(1)322) (ba ab b a =- (2)) (111232+=+++a a a a例3 不改变分式的值,将下列各分式中的分子和分母中的各项系数都化为整数.(1)y x y x 02.05.03.02.0-+ (2)y x y y x 324112.0--例4 不改变分式的值,使下列各分式中的分子、分母的最高次项系数为正数.(1)32211a a a a -+-- (2)2332-+-+x x x例 5 已知不论x 取什么数时,分式53++bx ax (05≠+bx )都是一个定值,求a 、b 应满足的关系式,并求出这个定值。

例6 已知一个圆台的下底面是上底面的4倍,将圆台放在桌面上,桌面承受压强为P 牛顿/2米,若将圆台倒放,则桌面受到的压强为多少?例7 不改变分式的值,使下列分式的分子、分母前都不含“-”号:例8 不改变分式的值,使分式yx y x 4.05.03121-+的分子、分母中的多项式的系数都是整数.例9 判定下列分式的变形是不是约分变形,变形的结果是否正确,并说明理由:(1)b b a a +=+11; (2)ba b a b a +=++122; (3)x x x x x x 2222323-=--+-; (4)ba ab b a +-=--122.例10 化简下列各式:(1)323453b a b a -; (2)bb a a 821624+-;(3)()()()()62332222-+-+-+x x x x x x x x参考答案例 1 分析 分式恒等变形的根据是分式的基本性质,应该严格地用基本性质去衡量,0≠M 是基本性质的生果组成部分,应特别注意.解 (1)∵已知分式a b /中已隐含了0≠a ,∴用a 分别乘以分式的分子、分母,分式的值不变,故(1)是正确的.(2)因为已知分式b a /中,没限制c ,c 可以取任意数,当然也包括了0=c ,当分式的分子、分母都乘以0=c 时,分式没意义,故(2)是错误的.例2 分析(1)式中等号两边的分母都是已知的,所以从观察分母入手,显然,32b a 是由2ab 乘以ab 得到的,由分式的基本性质,b a -也要乘以ab ,所以括号内应填ab b a )(-(2)式中等号两边分子都已知,所以先观察分子,22)1(12+=++a a a 除以1+a 得到右边分子1+a ,按照分式的基本性质,1)1()1(23+-=+÷+a a a a ,故括号内应填.12+-a a解:(1)322)(ba ab b a ab b a ⋅-=- (2))1(1112232+-+=+++a a a a a a 例3 分析 要把分式的分子、分母中各项系数都化为整数,可根据分式的基本性质,将分子、分母都乘以一个恰当的不为零的数,怎样确定这个数呢?(1)中分子、分母中的各项系数是小数,这个数应是各项系数的最小公倍数。

第1讲 分式的概念及性质 讲义 (知识精讲+典题精练)2023-2024学年人教八年级数学上册

 第1讲 分式的概念及性质 讲义 (知识精讲+典题精练)2023-2024学年人教八年级数学上册

第1讲分式的概念及性质【中考考纲】【知识框架】考点课标要求知识与技能目标了解理解掌握灵活应用分式的概念分式的概念√分式有意义的条件√分式值为零的条件√分式值的符号讨论√分式的基本性质分式的基本性质√分式的概念分式的基本性质分式有意义的条件分式值为零的条件分式值的符号讨论分式分式的概念1【知识精讲】一、分式的概念1.一般地,用A ,B 表示两个整式,A B 就可以表示成BA的形式.如果B 中含有字母,式子AB就叫做分式.2.分式有意义的条件:分式的分母不为零;3.分式的值为零的条件:分式的分子为零且分母不为零;4.分式值为正的条件:分式的分子分母符号相同(两种情况);5.分式值为负的条件:分式的分子分母符号不同(两种情况).【经典例题】【例1】下列各代数式:1x ,2x ,5xy ,()12a b +,x π,211x -,22a b a b --,13a-,1x y -中,整式有_____________,分式有_____________.【例2】若分式21x -有意义,则x 的取值范围是_____________.【例3】要使式子3234x x x x ++÷--有意义,则x 的取值是_____________.【例4】使分式2211a a -+有意义的a 的取值是__________.【例5】当3x =-时,下列分式中有意义的是().A.33x x +- B.33x x -+ C.()()()()3232x x x x +++- D.()()()()3232x x x x -++-【例6】x ,y 满足关系_____________时,分式x yx y-+ 无意义.【例7】当x =_________时,分式33x x -+的值是零.【例8】当x =_________时,分式293x x --的值为零.【例9】若分式223-1244x x x ++的值为0,则x 的值为_________.【例10】x 为何值时,分式2||656x x x ---:(1)值为零;(2)分式无意义?【例11】若分式21-2x x a+无论x 取何值时,分式的值恒为正,则a 的取值范围是_________.【例12】若使分式1-1m 的值为整数,这样的m 有几个?若使分式1-1m m +的值为整数,这样的m 有几个?【例13】若分式1||x a+对任何数x 的都有意义,求a 的取值范围.【例14】要使分式11x x-有意义,则x 的取值范围是_________.【例15】当x 取何值时,分式226x x -+的值恒为负?【例16】当x 取什么值时,分式25xx -值为正?2【知识精讲】一、分式的基本性质1.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变,用式子表示A A CB B C⋅=⋅,A A CB B C÷=÷(0C≠),其中A,B,C为整式.2.注意:(1)利用分式的基本性质进行分式变形是恒等变形,不改变分式值的大小,只改变形式;(2)应用基本性质时要注意0C≠,以及隐含的0B≠;(3)注意“都”,分子分母要同时乘以或除以.3.分式的通分和约分:关键是先分解因式.【经典例题】【例17】把分式yx中的x 和y 都扩大3倍,则分式的值______.【例18】如果把分式10xyx y+中的x ,y 都扩大十倍,则分式的值().A .扩大100倍B .扩大10倍C .不变D .缩小到原来的110【例19】对于分式11x -,恒成立的是().A.1212x x =--B .21111x x x +=--C .()21111x x x -=--D .1111x x -=-+【例20】下列各式中,正确的是().A .a m ab m b+=+B .0a ba b+=+C .1111ab b ac c +-=--D .221x y x y x y+=--【例21】与分式a ba b-+--相等的是().A .a b a b+-B .a b a b-+C .a b a b+--D .a b a b--+【例22】将分式253x yx y -+的分子和分母中的各项系数都化为整数,得().A .235x y x y -+B .1515610x y x y -+C .1530610x y x y -+D .253x y x y-+【例23】已知23a b =,求a bb+的值?【例24】化简:2323812a b cab c =________________.【例25】化简:22442y xy x x y-+=-________________.【例26】已知一列数1a ,2a ,3a ,4a ,5a ,6a ,7a ,且18a =,75832a =,356124234567a a a a a a a a a a a a =====,则5a 为().A .648B .832C .1168D .1944【例27】如果115x y +=,则2522x xy y x xy y-+=++____________.【例28】已知a b c d b c d a ===,则a b c da b c d-+-+-+的值是__________.【例29】化简:43211x x x x -+++.【例30】已知2215x x =+,求241x x +的值.【随堂练习】【习题1】若分式42121x x x --+的值为0,则x 的值是___________.【习题2】求证:无论x 取什么数,分式223458x x x x ---+一定有意义.【习题3】已知()1xf x x=+,求下列式子的值.111()()()(1)(0)(1)(2)(2011)(2012)201220112f f f f f f f f f ++++++++++ 【习题4】x 取______________值时,112122x +++有意义.【习题5】已知34y x =,求代数式2222352235x xy y x xy y -++-的值.【课后作业】【作业1】已知,,0a b c ≠,且0a b c ++=,则111111a b c b c c a a b ⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值是__________.【作业2】已知20y x -=,求代数式()()()()22222222xy x xy y xxy yxy+-+++-的值.【作业3】若实数x ,y 满足0xy ≠,则y xm x y=-的最大值是多少?【作业4】已知a ,b 为实数,且1ab =,设11a b P a b =---,1111Q a b =---,试比较P 和Q 的大小.【作业5】如果整数a (1a ≠)使得关于x 的一元一次方程:232ax a a x -=++的解是整数,则该方程所有整数解的和为__________.【作业6】已知分式()()811x x x -+-的值为零,则x 的值是__________.【作业7】要使分式241312a a a-++有意义,则a 的值满足__________.【作业8】已知210a a --=,且4232232932112a xa a xa a -+=-+-,求x 的值.。

2020分式的基本性质-八年级数学人教版(上册)(解析版)

2020分式的基本性质-八年级数学人教版(上册)(解析版)

一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.分式256x y -和24xyz 的最简公分母是A .12xyzB .212x yzC .24xyzD .224x yz【答案】B【解析】∵两个分式的分母分别是:6x 2y ,4xyz ,∴最简公分母是12x 2yz .故选B .2.分式251x x --与11x x -+的公分母是A .21x -B .21x +C .1x +D .1x -【答案】A【解析】x 2-1=(x +1)(x -1),所以分式251x x --与11x x -+的公分母是(x +1)(x -1),即x 2-1.故选A . 3.将代数式44x yx y -+的分子,分母都扩大5倍,则代数式的值 A .扩大5倍B .缩小5倍C .不变D .无法确定【答案】C4.把12x -,1(2)(3)x x -+,22(3)x +通分过程中,不正确的是 A .最简公分母是2(2)(3)x x -+B .221(3)2(2)(3)x x x x +=--+C .213(2)(3)(2)(3)x x x x x +=-+-+D .22222(3)(2)(3)x x x x -=+-+【答案】D5.下列分式从左到右边形正确的是A .11b b a a +=+B .(1)(1)b b m a a m +=+C .bm b am a =D .1a b b ab b ++=【答案】C【解析】A 、由左到右的变形不符合分式的基本性质,故A 错误; B 、当m +1=0时,不成立,故B 错误; C 、正确;D 、由左到右的变形不符合分式的基本性质,故D 错误.故选C .二、填空题:请将答案填在题中横线上.6.约分:269aba b =__________.【答案】23a【解析】2632=933ab ab a b ab a ⨯⨯=23a .故答案为:23a.7.下列各式:①3027ba ;②22y x x y-+;③22y x x y++;④2m m;⑤233x x +-中,分子与分母没有公因式的分式是__________.(填序号) 【答案】③⑤8.不改变分式的值,使分式的分子、分母中的首项的系数都不含“-”号.①23x y --=__________;②211x x --+=__________; ③2212x x x -+--=__________;④2131x x x ----+=__________.【答案】23x y ;211x x --;2212x x x -+-;2131x x x ++-【解析】①23x y --=23xy .②211x x --+=211x x --.③2212x x x -+--=2212x x x -+-.④2131x x x ----+=2131x x x ++-.故答案为:①23x y;②211x x--;③2212x x x -+-;④2131x x x ++-. 三、解答题:解答应写出文字说明、证明过程或演算步骤.9.通分:(1)x y ac bc ,;(2)229x x -,26xx +. 【解析】(1)∵:x yac bc ,的最简公分母是abc , ∴x xb ac abc =,y ya bc abc =.(2)∵229x x -,26xx +的最简公分母是2(3)(3)x x +-,∴22492(3)(3)x x x x x =-+-,(3)262(3)(3)x x x x x x -=++-.10.化简下列各分式.(1)2223ax yaxy ;(2)242x xy y -+.【解析】(1)2223ax y axy (2)2(3)3axy x xaxy y y ==. (2)原式=(2)(2)2(2)x x x y x y +--=+.。

人教版八年级数学上册《15.1.2分式的基本性质》同步训练题-附答案

人教版八年级数学上册《15.1.2分式的基本性质》同步训练题-附答案

人教版八年级数学上册《15.1.2分式的基本性质》同步训练题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题 1.根据分式的性质,分式a ab --可变形为( ) A .a a b --- B .a a b + C .a a b -+ D .a a b- 2.下列分式变形从左到右一定成立的是( )A .22a a b b= B .a ac b bc = C .a a b b -=-- D .ac a bc b = 3.使得等式4477m m⨯=⨯成立的m 的取值范围为( ) A .0m =B .1m =C .0m =或1m =D .0m ≠ 4.把分式 2a b ab-的 a ,b 都扩大到原来的 3 倍,则分式的值( ) A .扩大到原来的9倍B .扩大到原来的3倍C .不变D .缩小到原来的 13 5.下列分式中,最简分式是( )A .22x x B .21x x +- C .122x x -- D .211x x +- 6.下列分式中与x y x y -+--的值相等的分式是( ) A .+-x y x y B .x y x y -+ C .-+-x y x y D .-x y x y-+ 7.将分式11134312a b a b -+的分子与分母中的各项系数化为整数,正确的是 ( ) A .3234a b a b -+ B .4334a b a b -+ C .6334a b a b ++ D .6434a b a b-+ 8.下列分式的变形正确的是( )A .11a b a b=---- B .22x y x y x y +=++ C .11a a b b +=+ D .2111a a a -=-+ 9.分式2x21x x - 31x +的最简公分母是( )A.A=3,B=﹣2B.A=2,B=3C.A=3,B=2D.A=﹣2,B=3二、填空题三、解答题(1)比较1S 与2S 的大小,并说明理由:(2)该小区参与“最美小区”评选活动,其中一项评比指标是小区规划绿化区域的绿化覆盖率不低于50%,若6a b =,该区域能否通过该项指标的评比?(绿化覆盖率100%⨯绿地面积=规划绿化区域面积) 参考答案:1.C2.D3.D4.D5.B6.B7.D8.D9.B10.B11.分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.12.25103x y x y-+ 13.2x y x y-+ 14.310x y15.116.(1)3xy -;(2)2221455,3121212y x x x y xy x y==.。

分式的基本性质—数学人教版八年级上册随堂小练

分式的基本性质—数学人教版八年级上册随堂小练

分式的基本性质—数学人教版八年级上册随堂小练1.若把分式3x y xy +中的x 和y 都扩大2倍,那么分式的值()A.扩大2倍 B.不变 C.缩小2倍 D.缩小4倍2.下列分式中,属于最简分式的是()A.42x B.221xx + C.211x x -- D.11xx --A.11a a b b +=+B.()()2211a c abb c +=+C.0.220.122x x x y x y =++ D.x y x y x y x y ++-=---7.将分式2x ,23y ,4xy通分,依次为____________.8.回答下列问题:(1)约分:321218xy x y .(2)约分:22816m m --.(3)通分:223b a 与a bc.答案以及解析1.答案:C 解析:由题意,分式3x y xy +中的x 和y 都扩大2倍,∴3222(3)32242x y x y x y x y xy xy⨯+++==⋅;分式的值是原式的12,即缩小2倍;故选:C.2.答案:B 解析:422x x =,故A 项不符合题意;221x x +是最简分式,故B 项符合题意;21111x x x -=-+,故C 项不符合题意;111x x -=--,故D 项不符合题意.解析:A 、11a a b b +≠+,原变形错误,本选项不符合题意;B 、()()2211a c a b b c +=+,本选项符合题意;C 、0.2220.12202x x x x y x y x y=≠+++,原变形错误,本选项不符合题意;D 、()1x y x y x y x y x y x y+++-=-=≠---+-,原变形错误,本选项不符合题意;故选:B.7.答案:212xy ,212xy ,212xy 解析:分式2y x ,213y ,14xy的最简公分母为212xy ,所以各分式通分后为32612y xy ,2412x xy ,2312y xy.8.答案:(1)原式223x y=(2)原式24m =+(3)2222233b b c a a bc =,3233a a bc a bc=解析:(1)原式22622633xy xy x y x y ⋅==⋅.(2)原式2(4)2(4)(4)4m m m m -==+-+.(3)2222222333b b bc b c a a bc a bc ⋅==⋅,23223333a a a a bc a bc a bc⋅==.。

八年级数学上册15-1分式15-1-2分式的基本性质第1课时分式的基本性质与约分习题新版新人教版

八年级数学上册15-1分式15-1-2分式的基本性质第1课时分式的基本性质与约分习题新版新人教版

D. 无法确定
1
2
3
4
5
6
7
8
9
10
11
12
13
14
10. 利用分式的基本性质把下列各式的分子、分母中各项的
系数都变为整数.
(1)











解:(1)原式=
(2)
.+.
.
−.
解:(2)原式=
1
2





+
.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
(3)在下列三个整式中,任意选择2个式子构造分式,分
别作为分子、分母,要求构造的分式是“和谐分
式”,写出所有的结果.
m2- n2; m2+2 mn + n2; m - n .
解:(3)∵ m2- n2=( m + n )( m - n ), m2+2 mn + n2

+
(+)
+



.(选择一个即可)

− +
(−)
−+
1
2
3
4
5
6
7
8
9
10
11
12
13
14
13. 若2 x - y +4 z =0,4 x +3 y -2 z =0,则
值为



1
++
+ +
.

八年级数学人教版上册同步练习分式的基本性质(解析版)

八年级数学人教版上册同步练习分式的基本性质(解析版)

15.1.2分式的基本性质一、单选题1.下列约分计算结果正确的是 ( )A .22a b a b a b+=++ B .a m m a n n +=+ C .1a b a b -+=-- D .632a a a= 【答案】C 【分析】利用因式分解,确定分子,分母的公因式,后约分化简,计算即可.【详解】∵22a b +与a +b 没有公因式, ∴22a b a b++无法计算, ∴22a b a b a b+=++的计算是错误的, ∴选项A 不符合题意;∵a +m 与a +n 没有公因式, ∴++a m a n 无法计算, ∴a m m a n n+=+的计算是错误的; ∴选项B 不符合题意;∵-a +b = -(a +b )与a +b 的公因式是a +b , ∴()1a b a b a b a b-+--==---, ∴选项C 符合题意; ∵642a a a=, ∴632a a a=的计算是错误的; ∴选项D 不符合题意;故选C .【点评】本题考查了分式的化简,同底数幂的除法,熟练掌握化简计算的要领是解题的关键.2.下列分式中,属于最简分式的个数是( )①42x ,②221x x +,③211x x --,④11x x --,⑤22y x x y -+,⑥2222x y x y xy++. A .1个B .2个C .3个D .4个【答案】B【分析】根据最简分式的定义判断即可. 【详解】①422x x =,③21111x x x -=-+,④111x x -=--,⑤22y x y x x y-=-+,可约分,不是最简分式; ②221x x +,⑥2222x y x y xy++分子分母没有公因式,是最简分式,一共有二个; 故选:B .【点评】本题考查了最简分式,解题关键是明确最简分式的定义,准确判断分子分母是否含有公因式. 3.下列命题中的真命题是( )A .多项式x 2-6x +9是完全平方式B .若∠A ∶∠B ∶∠C =3∶4∶5,则△ABC 是直角三角形C .分式211x x +-是最简分式 D .命题“对顶角相等”的逆命题是真命题【答案】A【分析】根据完全平方公式、直角三角形性质、分式化简、和对顶角相等的逆命题进行判断即可.【详解】∵x 2-6x +9=(x -3)2,故A 选项是真命题;∵∠A ∶∠B ∶∠C =3∶4∶5,∴∠A =45°,∠B =60°,∠C =75°,故B 选项是假命题; ∵21111x x x +=--,故C 选项是假命题; “对顶角相等”的逆命题是相等的角是对顶角,是假命题,故D 选项是假命题;故选:A【点评】本题考查了分式的性质、完全平方公式、直角三角形性质、逆命题,解题关键是熟练掌握相关知识,准确进行判断.4.化简211x x --的结果是( ) A .11x -+ B .11x - C .11x + D .11x-【答案】A【分析】分母因式分解,再约分即可. 【详解】2111(1)(1)11x x x x x x --==-+-+-, 故选:A .【点评】本题考查了分式的约分,解题关键是把多项式因式分解,然后熟练运用分式基本性质进行约分. 5.若把x ,y 的值同时扩大为原来的2倍,则下列分式的值保持不变的是( )A .()22x y x + B .xy x y + C .22x y ++ D .22x y -- 【答案】A 【分析】根据分式的基本性质即可求出答案.【详解】A 、()22224x y x +=()22x y x +,故A 的值保持不变. B 、42=22xy xy x y x y++,故B 的值不能保持不变. C 、221=221x x y y ++++,故C 的值不能保持不变. D 、221=221x x y y ----,故D 的值不能保持不变. 故选:A .【点评】本题考查了分式,解题的关键是正确理解分式的基本性质,本题属于基础题型.6.下列关于分式2x x+的各种说法中,错误的是( ). A .当0x =时,分式无意义 B .当2x >-时,分式的值为负数C .当2x <-时,分式的值为正数D .当2x =-时,分式的值为0 【答案】B【分析】根据分式的定义和性质,对各个选项逐个分析,即可得到答案.【详解】当0x =时,分式无意义,选项A 正确;当2x >-时,分式的值可能为负数,可能为正数,故选项B 错误;当2x <-时,20x +<,分式的值为正数,选项C 正确;当2x =-时,20x +=,分式的值为0,选项D 正确;故选:B .【点评】本题考查了分式的知识;解题的关键是熟练掌握分式的性质,从而完成求解.7.下列命题中,属于真命题的是( )A .如果0ab =,那么0a =B .253x x x -是最简分式C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等【答案】C【分析】根据有理数的乘法、最简分式的化简、直角三角形的性质、对顶角的概念判断即可.【详解】A. 如果 ab=0,那么a=0或b=0或a 、b 同时为0,本选项说法是假命题,不符合题意; B. ()2555==333x x x x x x x ---,故253x x x-不是最简分式,本选项说法是假命题,不符合题意; C. 直角三角形的两个锐角互余,本选项说法是真命题,符合题意;D. 不是对顶角的两个角可能相等,本选项说法是假命题,不符合题意;故选:C .【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉教材中的性质定理.8.若a b ,则下列分式化简中,正确的是( ) A .22a a b b+=+ B .22a a b b -=- C .33a a b b = D .22a a b b = 【答案】C【分析】根据ab ,可以判断各个选项中的式子是否正确,从而可以解答本题; 【详解】∵ab A 、22a a b b+≠+ ,故该选项错误; B 、22a a b b-≠- ,故该选项错误; C 、33a a b b= ,故该选项正确; D 、22a a b b≠ ,故该选项错误; 故选:C .【点评】本题考查了分式的混合运算,解题时需要熟练掌握分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,熟练掌握分式的基本性质是解题的关键;二、填空题目9.已知a 、b 、c 、d 、e 、f 都为正数,12 bcdef a =,14 acdef b =,18 abdef c =,2 abcef d=,4 abcdf e=,8 abcde f =,则222222a b c d e f +++++=________. 【答案】1198【分析】根据等式性质及分式性质进行计算即可求得结果. 【详解】由12 bcdef a =,14 acdef b =,18 abdef c =,2 abcef d =,4 abcdf e=,8 abcde f =,可将每个等式的左右两边相乘得: ()51abcdef abcdef =,∴1abcdef =,2112bcdef a a a a ⋅==⋅, ∴22a =,同理可得:24b =,28c =,212d =,214e =,218f =, ∴2222221198a b c d e f +++++=; 故答案为1198. 【点评】本题主要考查等式性质及分式性质,熟练掌握等式性质及分式性质是解题的关键. 10.已知114y x -=,则分式2322x xy y x xy y+---的值为______. 【答案】112 【分析】先根据题意得出x-y=4xy ,然后代入所求的式子,进行约分就可求出结果. 【详解】∵114y x-=,∴x-y=4xy ,∴原式=2()383112422x y xy xy xy x y xy xy xy -++==---, 故答案为:112 . 【点评】此题考查分式的基本性质,正确对已知式子进行化简,约分,正确进行变形是关键.11.已知2310x x --=,求4231x x x x ++=-__________. 【答案】4 【分析】将分式整理成()()2222131x x x x -+-,根据2310x x --=可得213x x -=,代入分式并约分即可求解.【详解】∵2310x x --=,∴213x x -=∴4231x x x x++- ()()2222131x x x x -+=- ()223343x x x x+==⋅, 故答案为:4. 【点评】本题考查分式的性质,将分式整理成()()2222131x x x x -+-的形式是解题的关键. 12.将分式132132a b a b +-的分子、分母各项系数化为整数,其结果为_______________. 【答案】6243a b a b+- 【分析】根据分式的基本性质,分子分母都乘以最小公倍数6,分式的值不变,并且其分子、分母各项系数化为整数.【详解】1623214332a b a b a ba b ++=--. 故答案为:6243a b a b+-. 【点评】本题考查了分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.三、解答题13.我们知道:分式和分数有着很多的相似点,如类比分数的基本性质,我们得到了分式的基本性质,等等.小学里,把分子比分母小的数叫做真分数.类似的,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式.如:11211x x x x +-+=--=1211x x x -+-- =1+21x -. (1)请写出分式的基本性质 ;(2)下列分式中,属于真分式的是 ;A .21x x -B .11x x -+C .﹣321x -D .2211x x +- (3)将假分式231m m ++,化成整式和真分式的形式. 【答案】(1)分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变;(2)C ;(3)231m m ++=m ﹣1+41m + 【分析】(1)根据分式的基本性质回答即可;(2)根据分子的次数小于分母的次数的分式称为真分式进行判断即可;(3)先把23m +转化为214m -+得到22314111m m m m m +-=++++,其中前面一个分式约分后化为整式,后面一个是真分式.【详解】(1)分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变.(2)根据题意得:选项C 的分子次数是0,分母次数是1,分子的次数小于分母的次数是真分式.而其他选项是分子的次数均不小于分母的次数的分式,故AB D 选项是假分式,故选:C .(3)∵22231441411111m m m m m m m m +-+-=+=++++++=m ﹣1+41m +, ∴故答案为:m ﹣1+41m +. 【点评】本题考察了分式的基本性质以及未知数的次数问题,解答本题的关键是熟悉掌握未知数次数的判断以及分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变.14.约分(1)1232632418a x y a x; (2)ma mb mc a b c+-+-; (3)2222444a ab b a b-+-. 【答案】(1)6243a y ;(2)m ;(3)22a b a b-+ 【分析】(1)约去分子分母的公因式636a x 即可得到结果;(2)将分子进行因式分解,约去公因式(a b c +-)即可得到结果;(3)首先把分子分母分解因式,然后再约掉分子分母的公因式即可.【详解】(1)1232632418a x y a x=6362636463a x a y a x ⨯ =6243a y ; (2)ma mb mc a b c+-+- =()m a b c a b c +-+- =m ;(3)2222444a ab b a b-+-=2(2)(2)(2)a b a b a b -+- =22a b a b-+. 【点评】此题主要考查了分式的约分,关键是正确确定分子分母的公因式.15.先约分,再求值:32322444a ab a a b ab--+ 其中12,2a b ==-. 【答案】2123a b a b +-, 【分析】先把分式的分子分母分解因式,约分后把a 、b 的值代入即可求出答案.【详解】原式=2222444a a b a a ab b ()()--+ =2(2)(2)(2)a a b a b a a b +-- =22a b a b +- 当122a b ==-,时 原式=2121-+=13. 【点评】本题考查了分式的约分,解题的关键是熟练进行分式的约分,本题属于基础题型.16.已知32(1)(1)11x A B x x x x -=++--+,求A 、B 的值. 【答案】A=12, B=52 【分析】先对等式右边通分,再利用分式相等的条件列出关于A 、B 的方程组,解之即可求出A 、B 的值. 【详解】∵()()()()(1)(1)()111111A B A x B x A B x A B x x x x x x ++-++-+==-++-+- , 又∵()()321111A B x x x x x -+=-++-, ∴()()()()()321111A B x A B x x x x x ++--=+-+-,∴32A B A B +=⎧⎨-=-⎩ , 解得1252A B ⎧=⎪⎪⎨⎪=⎪⎩. ∴A =12, B =52. 【点评】本题考查了分式的基本性质.利用分式的基本性质进行通分,再利用系数对应法列出方程组是解题的关键.17.若分式,A B 的和化简后是整式,则称,A B 是一对整合分式.(1)判断22244x x x ---与22x x -是否是一对整合分式,并说明理由; (2)已知分式M ,N 是一对整合分式,2a b M a b-=+,直接写出两个符合题意的分式N . 【答案】(1)是一对整合分式,理由见解析;(2)答案不唯一,如1224,b a a b N N a b a b -+==++. 【分析】(1)根据整合分式的定义即可求出答案.(2)根据整合分式的定义以及分式的运算法则即可求出答案.【详解】(1)是一对整合分式,理由如下: ∵2222222424(2)424x x x x x x x x x x x ----+++==---, 满足一对整合分式的定义,22244x x x --∴-与22x x -是一对整合分式. (2)答案不唯一,如1224,b a a b N N a b a b-+==++. 【点评】本题考查了分式的加减法,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18.已知430,4520,x y z x y z +-=⎧⎨-+=⎩0xyz ≠. (1)用含z 的代数式表示x ,y ;(2)求222232x xy z x y+++的值. 【答案】(1)13x z =,23y z =;(2)165. 【分析】(1)根据加减消元法解关于x 、y 的方程组即可(2)将(1)中的结果代入分式中进行运算即可【详解】(1)430,4520,x y z x y z +-=⎧⎨-+=⎩①② ①4⨯-②得21140y z -=,解得23y z =. 把23y z =代入①,得24303x z z +⨯-=, 解得13x z =. (2)2222222211232321633351233z z z z x xy z x y z z ⎛⎫⨯+⨯⨯+ ⎪++⎝⎭==+⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭. 【点评】本题考查了用加减法解方程组的特殊解法,把x 、y 看作未知数解方程组是解题的关键19.一个矩形的面积为223()x y -,如果它的一边为()x y +,求这个矩形的周长.【答案】这个矩形的周长为:84x y -【分析】根据整式的除法运算法则与合并同类项法则,即可求解.【详解】∵矩形的一边长为()x y +,面积为223()x y -, ∴矩形的另一边长为:223()3()()x y x y x y -=-+ ∴该矩形的周长为:2[()3()]x y x y ++-2(42)x y =-84x y =-.答:这个矩形的周长为:84x y -.【点评】本题主要考查整式的除法法则与加法法则,掌握因式分解与合并同类项法则,是解题的关键. 20.阅读理解:对于二次三项式a 2+2ab+b 2,能直接用完全平方公式进行因式分解,得到结果为(a+b )2.而对于二次三项式a 2+4ab ﹣5b 2,就不能直接用完全平方公式了,但我们可采用下述方法:a2+4ab﹣5b2=a2+4ab+4b2﹣4b2﹣5b2=(a+2b)2﹣9b2,=(a+2b﹣3b)(a+2b+3b)=(a﹣b)(a+5b).像这样把二次三项式分解因式的方法叫做添(拆)项法.解决问趣:(1)请利用上述方法将二次三项式a2+6ab+8b2分解因式;(2)如图,边长为a的正方形纸片1张,边长为b的正方形纸片8张,长为a,宽为b的长方形纸片6张,这些纸片可以拼成一个不重叠,无空隙的长方形图案,请画出示意图;(3)已知x>0,且x≠2,试比较分式2244812x xx x++++与22428xx x-+-的大小.【答案】(1)(a+2b)(a+4b);(2)见解析;(3)222244428812 x x xx x x x-++>+-++【分析】(1)根据题目的引导,先分组,后运用公式法对原式进行因式分解;(2)根据第一问的因式分解结果,对图形进行排列即可;(3)对两个分式的分子和分母分别进行因式分解,然后对分式进行化简并比较大小.【详解】(1)原式=a2+6ab+9a2﹣b2=(a+3b)2﹣b2=(a+3b﹣b)(a+3b+b)=(a+2b)(a+4b);(2)如图:(3)224(2)(2)(2)28(4)(2)(4)x x x xx x x x x-+-+==+-+-+;22244(2)(2)812(2)(6)(6)x x x xx x x x x++++==+++++;∵x>0,∴x+4<x+6,∴222244428812 x x xx x x x-++>+-++.【点评】本题考查了因式分解的应用,通过因式分解化简分式,根据分母大,分数值反而小来比较大小是解题的关键.祝福语祝你考试成功!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《分式的基本性质》典型例题
例1 下列分式的变形是否正确,为什么?
(1)
2a ab a b = (2)ac
bc a b =
例2 写出下列等式中的未知分子或未知分母。

(1)322) (b
a a
b b a =− (2)) (111232+=+++a a a a
例3 不改变分式的值,将下列各分式中的分子和分母中的各项系数都化为整数.
(1)y x y x 02.05.03.02.0−+ (2)y x y y x 324112.0−−
例4 不改变分式的值,使下列各分式中的分子、分母的最高次项系数为正数.
(1)32211a a a a −+−− (2)2
332−+−+x x x
例5 已知不论x 取什么数时,分式5
3++bx ax (05≠+bx )都是一个定值,求a 、b 应满足的关系式,并求出这个定值.
例6 已知一个圆台的下底面是上底面的4倍,将圆台放在桌面上,桌面承受压强为P 牛顿/2米,若将圆台倒放,则桌面受到的压强为多少?
例7 不改变分式的值,使下列分式的分子、分母前都不含“-”号:
例8 不改变分式的值,使分式y
x y x 4.05.0312
1−+的分子、分母中的多项式的系数都是整数.
例9 判定下列分式的变形是不是约分变形,变形的结果是否正确,并说明理由:
(1)b b a a +=+11; (2)b
a b a b a +=++122; (3)x x x x x x 2222323−=−−+−; (4)b
a a
b b a +−=−−122.
例10 化简下列各式:
(1)323453b a b a −; (2)b
b a a 821624+−; (3)()()()()62332222−+−+−+x x x x x x x x
参考答案
例 1 分析 分式恒等变形的根据是分式的基本性质,应该严格地用基本性质去衡量,0≠M 是基本性质的生果组成部分,应特别注意.
解 (1)∵已知分式a b /中已隐含了0≠a ,∴用a 分别乘以分式的分子、分母,分式的值不变,故(1)是正确的.
(2)因为已知分式b a /中,没限制c ,c 可以取任意数,当然也包括了0=c ,当分式的分子、分母都乘以0=c 时,分式没意义,故(2)是错误的.
例2 分析 (1)式中等号两边的分母都是已知的,所以从观察分母入手,显然,32b a 是由2ab 乘以ab 得到的,由分式的基本性质,b a −也要乘以ab ,所以括号内应填ab b a )(−
(2)式中等号两边分子都已知,所以先观察分子,2
2)1(12+=++a a a 除以1+a 得到右边分子1+a ,按照分式的基本性质,1)1()1(23+−=+÷+a a a a ,故括号内应填.12+−a a
解:(1)322)(b
a a
b b a ab b a ⋅−=− (2))
1(1112232+−+=+++a a a a a a 例3 分析 要把分式的分子、分母中各项系数都化为整数,可根据分式的基本性质,将分子、分母都乘以一个恰当的不为零的数,怎样确定这个数呢?
(1)中分子、分母中的各项系数是小数,这个数应是各项系数的最小公倍数.
(2)中分子、分母中各项系数(5
12.0=)是分数,这个数应该是各项系数的分母的最小公倍数,即5,2,4,3的最小公倍数60.
解:(1)法1:原式50
)02.05.0(50)3.02.0(⨯−⨯+=y x y x y x y x −+=
251510
法2:原式100
)02.05.0(100)3.02.0(⨯−⨯+=y x y x y x y x y x y x −+=−+=
2515102503020 (2)原式y
x y x y x y x 4015301260)3
241(60)2151(−−=⨯−⨯−= 说明 在将分式的分子、分母都乘以(或除以)同一个不为零的数时,要遍乘分子分母的每一项,防止漏乘.
例4 分析 (1)式中分子要变号,分母也要变号,所以应该同时改变分子、分母的符号.
(2)式中分母需要变号,分子不需要变号,所以需要同时改变分母和分式本身的符号.
解:(1)32211a a a a −+−−)1()1(322a a a a −+−−−−=1
1232−−−+=a a a a (2)2332−+−+x x x )23(32−+−−+=x x x 2
332+−+=x x x 例5 分析 在研究某些有关特值的数学问题时,我们可以不考虑一般值,而是直接利用取符合条件特殊值代入研究解决,这就是所谓的特殊值法.
解:当0=x 时,5
353=++bx ax 1=x 时,5
353++=++b a bx ax ∵不论x 取什么实数,5
3++bx ax 是一个定值 ∴5
353=++b a ,∴153155+==a a ∵b a 35= ∴b a 5
3= 把b a 5
3=代入原式,得 5
35)5(53535353=++=++=++bx bx bx bx bx ax
∴a 、b 的关系为b a 35=;定值为5
3 例6 解:设圆台的压力为G 牛顿,下底面积为1S 2米,上底面积为2S 2米. 则1
S G P =,214S S = ∴214PS PS G ==
∴当圆台倒放时,桌面受到的压强为:
P S P S S G 442
22==(牛顿/2米) 答:桌面受到的压强为P 4牛/2米.
说明 运用分式知识,有助于解决物理中问题
(1)n m 25−; (2)a b −4; (3)y x x −−−63; (4)b a b a 32+−+. 例7 分析 根据“分式的变号法则:分子、分母、分式的符号中,同时改变其中任意两个,分式的值不变”.
解:(1)同时改变分子和分式的符号,得
n
m n m 2525−=−; (2)同时改变分母和分式的符号,得
a b a b 44−=−; (3)先确定是分母的符号,再变号,得
()y
x x y x x y x x +=+−−=−−−636363; (4)先确定是分子的符号,然后变号,得
()b
a b a b a b a b a b a +−−=+−−=++−323232. 说明 1.分式中的分数线实际上起到了括号的作用.如果分式的分子或分母是多项式,要把它看成是一个整体,考虑这个整体的符号,如(3),(4)题,千万不可误解成y x x y x x −=−−−6363或b
a b a b a b a +−−=++−3232;
2.对于(4)题,也可处理成b
a a
b b a b a +−=++−2332的形式. 例8 分析 此分式分子中各系数的最小公倍数是6,分母中各系数的最小公倍数是10,而10和6的小公倍数是30.于是可利用分式的基本性质:分子、分母同时乘以30.
解:y x y x y x y x y x y x 1215101530522
13031214.05.03121−+=⨯⎪⎭⎫ ⎝⎛−⨯⎪⎭⎫ ⎝⎛+=−+. 说明 1.利用分式基本性质将分式的分子、分母化成整系数形式,体现了数学化繁为简的策略,并为分式作进一步处理,提供了便利条件.
2.操作过程中,用数30的确定是问题的关键所在.因此不仅要考虑到分子、分母,还要考虑分式,使化成整系数一次到位.
例9 分析 约分变形的前提是分子、分母有公因式.
解:(1)、(2)、(3)题的变形都不是约分,结果都是错误的.
(1)分式的分子和分母分别是一个整式,利用分式的基本性质,“除以一个整式a ”是对分子、分母的整体进行的.而只对分子和分母中的某一项进行,就违背了分式基本性质的使用前提,所以是错误的.
(2)分式的分母是个平方和的形式,不能分解.因此分子、分母没有公因式,它是最简分式.故此题的变形是毫无根据的.
(3)当分子、分母都是乘积的形式,才有约分的可能,而这里232x x −与2−x 是和的形式,因此不能进行约分.正确的结果解法是:
()()222222223−−+−=−−+−x x x x x x x x ()()12
1222+=−++−=x x x x (4)此题是约分变形.因此分母化成()()b a b a −+−的形式,与分子约去公因式b a −可得.
说明 1.对于代数式的恒等变形形式多样,但每一种变形却是运用定义、定理,并根据法则规范操作,而绝不能随心所欲;
2.对(1)、(2)、(3)题的变形错误,实际上也可以举反例说明.如(1)题:当2=a ,3=b 时,3
11322+≠+.(2)、(3)题同理.
例10 分析 化简就是把分式的分子、分母中的公因式约去使其成为最简公式.因此对分子、分母是单项式时候,先分别化成与公因式的乘积形式;对于多项式仍然要先分解因式.
解: (1)2222323151533453b
a b b a a b a b a b a −=⋅⋅−=−; (2)()()
()b a a b a a b b a a 2442448216222224−=+−+=+−; (3)()()
()()()()()()()()13212136233222
2−=+−−−−+=−+−+−+x x x x x x x x x x x x x x x x . 说明 1.当分式中分子或分母的系数为负时,处理负号是首先要进行的.
2.约分是实现化简分式的一种手段.通过约分将分式化成最简才是目的.而最简分式为分式间的进一步运算提供了便利条件.
3.把分式的分子、分母因式分解是约分的需要,但也要根据分式的具体情
况,而不可盲目进行分解.例如(2)题,分式b
a 242−已经是最简分式了,因此就没有必要将分子再继续分解了.。

相关文档
最新文档