数学三考研试题与答案

合集下载

2024考研(数学三)真题答案及解析完整版

2024考研(数学三)真题答案及解析完整版

2024考研(数学三)真题答案及解析完整版2024年全国硕士研究生入学考试数学(三)真题及参考答案考研数学三考什么内容?数学三在高等数学这一部分因为要求的内容相对较少,所以很多学校经济类、管理类专业在本科期间所用教材并非理工类专业通常会使用的《高等数学》同济大学版,更多的学校本科阶段的教材是中国人民大学版《微积分》。

而考数学三的同学中在实际复习过程中使用哪一本教材的都有)(函数、极限、连续、一元函数微分学、一元函数积分学、多元函数微积分学、无穷级数、常微分方程与差分方程);线性代数(行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型);概率论与数理统计(随机事件和概率、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验)。

考研的考试内容有哪些一、考研公共课:政治、英语一、英语二、俄语、日语、数学一、数学二、数学三,考研公共课由国家教育部统一命题。

各科的考试时间均为3小时。

考研的政治理论课(马原22分、毛中特30分、史纲14分、思修18分、形势与政策16分)。

考研的英语满分各为100分(完型10分、阅读理解60分、小作文10分、大作文20分)。

数学(其中理工科考数一、工科考数二、经管类考数三)满分为150分。

数一的考试内容分布:高数56%(84分)、线代22%(33分)、概率22%(33分);数二的内容分布:高数78%(117分)、线代22%(33分);数三的内容分布:高数56%(84分)、线代22%(33分)、概率22%(33分)。

这些科目的考试知识点和考试范围在各科考试大纲上有详细规定,一般变动不大,因此可以参照前一年的大纲,对一些变动较大的科目,必须以新大纲为准进行复习。

二、考研专业课统考专业课:由国家教育部考试中心统一命题,科目包括:西医综合、中医综合、计算机、法硕、历史学、心理学、教育学、农学。

其中报考教育学、历史学、医学门类者,考专业基础综合(满分为300分);报考农学门类者,考农学门类公共基础(满分150分)。

2020年考研数学三真题及答案解析

2020年考研数学三真题及答案解析

设 k1(α1 α2 ) k2α2 0 ,即 k1α1 (k1 k2 )α2 0 ,
由于 α1, α2 线性无关,故 k1 k2 0 可知 α1 α2 , α2 线性无关.
α3 是 A 属于特征值 1的特征向量,即 Aα3 α3 ,因此 A(α3) (α3 ) ,即 α3 也是 A 属于特征值 1的特征向量
1 0 0
属于特征值
1的特征向量,则满足
P 1 AP
=
0
1
0
的可逆矩阵
P



0 0 1
(A) α1 α3, α2 , α3 .
(B) α1 α2 , α2, α3 .
(C) α1 α3, α3, α2 .
(D) α1 α2 , α3, α2 .
(6)【答案】(D).
【解析】α1, α2 是 A 属于特征值 1 的线性无关的特征向量,即 Aα1 α1, Aα2 α2 , 故 A(α1 α2 ) α1 α2 ,即 α α2 也是 A 属于特征值 1 的特征向量.
(D) x k1α2 k2α3 k3α4 ,其中 k1, k2 , k3 为任意常数.
(5)【答案】(C).
【解析】由 A 不可逆知, r A 4 ,又元素 a12 对应的代数余子式 A12 0 ,故 r A 3 ,从而 r A 3 .
n, r A n,
由 r A* 1, r A n 1, 可知 r A* 1.
xa
xa
xa
xa
xa
b lim cos b cos a. a
故应选(B).
1
(2)若 f x e x1 ln 1 x , 则 f x 第二类间断点的个数为
ex 1 x 2

2023考研数学三真题+参考答案

2023考研数学三真题+参考答案

2023年全国硕士研究生入学统一考试数学(三)试题及答案考试时间:180分钟,满分:150分一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项符合题目要 求,请将所选项前的字母填在答题纸指定位置上.(1)已知函数/(x^) = ln(^ + |xsinj ;|)7 贝ij ((b 4i(0,1)不存在如|(。

,1)存在,而I 如|(0,1)不存在,齐|(0,1)存在(c)加)'■£ (0,1)均存在(D) £(。

,1),东(°,1)均不存在【答案】A'1(2)设/(x) = <J1 + X 2的一个原函数为( )(x + l)cosx 9x > 0(A)歹(x )= ]ln(Jl+/ -x)5x < 0I (x + l)cosx-sinx , x > 0(B)歹(x) =〈ln( J ] + *2 — x) +1, (x + l)cosx-sinx ?(c ) f (x ) = [m (Jl + x2 +x)9x<0(x + l)sinx + cos x, x > 0(D) F(x) = ]ln( J l + x? + x) +1, (x + l)sinx + cosx 9x < 0x > 0x < 0x > 0【答案】D(3)若微分方程y" + ay+by = 0的解在(-oo 5+oo)上有界,则()(A)a < 0,b > 0(c) a = Q.b > 0【答案】c(B) a > 0,b > 0(D) a = 0,b<0(4)已知q 〃〈如(〃 =12...),若级数 与Z 如 均收敛’贝绝对收敛”是“n=ln=ln=l OOZ 如绝对72=1收敛”的()(A)充分必要条件(B)充分不必要条件(C)必要不充分条件(D)既不充分也不必要条件【答案】A) (5)设刀’3为〃阶可逆矩阵’为矩阵肱的伴随矩阵,则(A)-睥、(B)'附-1史1牛*>\O附](C)-%*、(D)项史<O〔°(6)二次型/(X P X2?X3)=+x2)2+(%!+x3)2-4(x2-x3)2的规范形为()(A)评+计⑻评一W(C)评+k-4乃2(D)y T2+y22-y32【答案】B(7)已知向量OC]=2,oc2u .2],2、15&2=0//若丫既可由a p a2线性表示’也可由p p p2线性表示'则1=().3](A)k3,keR〔Jr-n (C)k1,keR【答案】D"3、(B)k5"J(D)k5,kERk(8)设随机变量X服从参数为1的泊松分布,则E(|X-EX|)=((A)1(B)1(O2(D)1e2e)【答案】C(9)设X"2,…,X〃为来自总体NW’S)的简单随机样本,上匕,…,匕为来自总体N(%2S)的1._1m简单随机样本,且两样本相互独立,记x=-Yx i7尸=_£匕,〃钉m,=i1n___1m*=—r£(x,-》)2,s;=―^(K-r)2测()〃—1钉秫—1旨(A)夺〜F(n,m) (C)气F(n,m)【答案】D(B)§(D)£(10)设X],X2为来自总体N(|1q2)的简单随机样本,其中0(0>0)是未知参数,记o=QX]-犯|,若E(o)=o,则()(A)五2【答案】A(C)声(D)伊二、填空题:11-16小题,每小题5分,共30分,请将答案写在答题纸指定位置上.(11)limx2X—82-xsinl-coslX X【答案】£3(12)已知函数/('J)满足序(3)='*.气=则/(V3,3)=【答案】-382n(13)5二总(2〃)!【答案]2(14)设某公司在,时刻的资产为f(t),从0时刻到,时刻的平均资产等于业—t,假设/(,)连续且/(0)=0,则/(0=【答案】2®_"1)(15)已知线性方程组ax x+x3=1尸吐+易=0有解,其中点为常数,若邑+2x2+QX3=0ax x+bx2=201a1=4,2aa11\a\则12q=a b0【答案】8(16)设随机变量X与Y相互独立’且X〜3(1,°),y~5(2,77),72g(0,1),则X+Y与X—Y的相关系数为________【答案】-!3三、解答题:17-22小题,共70分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)已知可导函数V=*3)满足ae x+y2+y-ln(l+x)cos y+b-Q,且贝0)=0,*'(0)=0(1)求的值;(2)判断x=0是否为火、)的极值点【答案】(1)a=l,b=-l(2)x=0是y(x)的极大值点(18)(本题满分12分)已知平面区域D={(x,y)0<y<—l_,x>l}xJl+、2(1) 求。

考研数学三真题及答案

考研数学三真题及答案

6、设二次型 f x , x , x 在正交变换 x Py 下的标准形为 2 y2 y2 y2 ,其中 P e , e , e ,
133
1
2
3
123
若 Q e1, e3, e2 ,则 f x1, x3 , x3 在正交变换 x Qy 下的标准形为( )
(n +1)! nn (n+1)
= limç
n
÷n = 1 <1 ,所以(D)是收敛的。
n (n +1) n! n ç1+ n÷ e
1 1 ç 1÷ 1
1 ç 1÷
对于(B)选项, n1
n
ln
1

n


ln
ç1+
n
÷
,所以
n
n ln ç1+ n÷
11 ,根据 p 级数的
nn

5
f 1 2
11. 若函数 z z(x, y) 由方程 ex2 y3z xyz 1确定,则 dz (0,0)
【答案】 1 dx 2dy
3
zz 【解析】这道题目主要考查的是隐函数求偏导数。对于这道题目求全微分,分别求出 ,
xy
ex2
y3z
1
3
z x
【答案】2
【解析】对于这道题目主要是考查变上限积分求导数。
(1)
1
f (t)dt 1
0
x2
x2
(x) 0 xf (t)dt x0 f (t)dt
(x) x2 f (t)dt xf x 2 2x 0
(1)

1
0f

数学三考研试题及答案

数学三考研试题及答案

数学三考研试题及答案一、单项选择题(每题4分,共20分)1. 已知函数f(x) = 2x^3 - 3x^2 + 1,求f'(x)。

A. 6x^2 - 6xB. 6x^2 + 6xC. -6x^2 + 6xD. -6x^2 - 6x答案:A2. 求极限lim(x→0) [sin(x)/x]。

A. 0B. 1C. ∞D. -1答案:B3. 计算定积分∫(0 to 1) x^2 dx。

A. 1/3B. 1/2C. 2/3D. 3/2答案:B4. 已知矩阵A = [1 2; 3 4],求A的行列式值。

A. 2B. -2C. 5D. -5答案:C5. 已知等比数列的前三项分别为2,4,8,求第四项。

A. 16B. 32C. 64D. 128答案:A二、填空题(每题4分,共20分)1. 函数f(x) = x^2 - 6x + 8的最小值是______。

答案:22. 已知等差数列的前三项分别为3,7,11,求公差d。

答案:43. 计算二阶导数f''(x),若f(x) = x^3 - 3x^2 + 2x。

答案:6x - 64. 求矩阵A = [2 1; 3 4]的逆矩阵。

答案:[2 -1; -3 2]5. 已知圆的方程为x^2 + y^2 - 6x - 8y + 25 = 0,求圆心坐标。

答案:(3, 4)三、解答题(每题10分,共60分)1. 证明:若a,b,c为实数,且a^2 + b^2 + c^2 = 0,则a = b =c = 0。

证明:由题意可知,a^2 + b^2 + c^2 = 0。

由于平方和为0,那么每一项都必须为0,即a^2 = 0,b^2 = 0,c^2 = 0。

因此,a = 0,b = 0,c = 0。

2. 解方程组:\[\begin{cases}x + y = 5 \\2x - y = 1\end{cases}\]解:将第一个方程乘以2得到2x + 2y = 10,然后将第二个方程加到第一个方程的两倍上,得到3y = 9,解得y = 3。

2020考研数学(三)答案解析

2020考研数学(三)答案解析

2020 年全国硕士研究生入学统一考试数学(三)试题与参考答案一、选择题(1)设limf (x) ab ,则lim sin f ( x ) sin a( )x a x ax ax a (A )b sin a . (B )b cos a .(C )b sin f a .(D )b cos f a .(1)【答案】(B ).【解析】由拉格朗日中值定理知,存在 介于a 与 f (x) 之间,使得sin f ( x ) sin a cosf ( x ) a .由lim f (x) a b ,则有lim f (x) a . x a x a x a从而有lim sin f ( x ) sin a x ax alim cos f ( x ) a bax a xb lim cos b cos a.alim cosxa故应选(B ).e ln 1 x (2)若f x x 1 , 则 f x 第二类间断点的个数为()e x 1 x 2 (A )1.(B )2.(C )3.(D )4.1(2)【答案】(C ).【解析】由 f x 表达式知,间断点有 x 0, 1, 2.11 x1xe x 1 ln e e 1,故 x 0 为可去间断点; 因lim f xlimlimx 11 ex 0x 0 xx 0x x 221 1 x因 lim f x lim e x 1 ln ,故 x 1 为第二类间断点;e x 1 x 2 x 1x 11 1 x因 lim f x lim e x 1 ln ,故 x 1 为第二类间断点;e x 1 x 2 x 1x 11 1 x因lim f x lim e x 1 ln ,故 x 2 为第二类间断点;e x 1 x 2x 2x 2综上,共有 3 个第二类间断点. 故应选(C ).(3)设奇函数 f x 在,上具有连续导数,则()(A ) x cos f t ft dt 是奇函数.(B ) xcos f t ft dt 是偶函数.(C ) xcos f t f t dt 是奇函数.(D ) x cos f t f t dt 是偶函数.(3)【答案】(A ).【解析】因为 f x 在 , 上具有连续导数,且为奇函数,故 f x 为偶函数,又cosf x 也为偶函数,从而cos f t f t 为偶函数,进而xcos f t f t dt 是奇函数.故应选(A ).2x 2 n(4)设幂级数na n的收敛区间为2, 6 ,则a n x12n的收敛区间为()n 1n 12, 65, 317,15(A).(B)3,1 .(C).(D).(4)【答案】(B).【解析】由幂级数性质知,幂级数 na n x n与 a n x n有相同的收敛半径.n 1n 1n的收敛区间为 2, 6因 na n x 2,故有 na n x n的收敛半径R 4 ,从而n 1n 1a n x n的收敛半径R 4 ,故当x124时,级数 a n x 1 2n收敛,所以其收敛n 1n 1区间为3,1.故应选(B).(5)设 4 阶矩阵A a ij不可逆,元素a12对应的代数余子式A120 ,α1, α 2, α3, α4为矩阵 A 的列向量组, A*为 A 的伴随矩阵,则 A* x 0 的通解为()(A)x k1α1k 2α2k3α3,其中k1 , k 2 , k3为任意常数.(B)x k1α1k 2α2k3α4,其中k1 , k 2 , k3为任意常数.(C)x k1α1k 2α3k3α4,其中k1 , k 2 , k3为任意常数.(D)x k1α 2 k 2α3k3α4,其中k1 , k 2 , k3为任意常数.(5)【答案】(C).【解析】由 A 不可逆知,r A 4 ,又元素a12对应的代数余子式 A120 ,故r A 3 ,从而r A 3 .n,r A n,*r A n 1,*1 .由r A1,可知r A0,r A n 1,故A* x 0 的基础解系含有3个解向量.因α1, α 2, α3, α4为矩阵 A 的列向量组,则α1, α3, α4可看作 A12对应矩阵列向量组的延长组,故α1, α3, α4线性无关.3又A* A = A*α1, α2 , α3, α4 A E 0, 故α1, α3, α4均为 A* x 0 的解.综上,α1, α3, α4为 A* x 0 的一个基础解系,故 A* x 0 的通解为 x k1α1 k 2α3 k3α4,其中k1 , k 2 , k3为任意常数.故应选(C).(6)设A为 3 阶矩阵,α1,α2为A的属于特征值 1 的线性无关的特征向量,α3为A的100属于特征值 1的特征向量,则满足P1010的可逆矩阵 P 为()AP =001(A)α1α3,α2,α3 .(B)α1α2,α2,α3 .(C)α1α3,α3,α2 .(D)α1α2,α3,α2 .(6)【答案】(D).【解析】α1, α2是 A 属于特征值1的线性无关的特征向量,即Aα1α1 , Aα2α2,故A(α1α 2) α1α2,即α1α2也是 A 属于特征值1的特征向量.设k1(α1α 2 ) k2α2 0 ,即k1α1 ( k1 k2)α2 0 ,由于α1, α2线性无关,故k1k20 可知α1α2, α2线性无关.α3是 A 属于特征值 1的特征向量,即Aα3α3,因此A( α3 )( α3 ) ,即α3也是 A 属于特征值 1的特征向量100可取P ( α α, α , α) ,则 P 是可逆矩阵,且满足P1AP010.1232001故应选(D).(7)设A,B,C为三个随机事件,且P A P B P C 14,P AB0, P AC P BC121,则 A, B , C 恰有一个事件发生的概率为()(A)3.(B)2.(C)1.(D)5. 432124(7)【答案】(D ).【解析】事件 A, B , C 中仅有一个发生的概率可用至少一个发生的概率减去至少发生两个的概率表示,即P ( ABC A BC ABC ) P ( A B C ) P ( AB AC BC),而 P ( A B C ) P ( A) P ( B ) P (C ) P ( AB ) P ( AC ) P ( BC ) P ( ABC) ,因 P ( AB) 0 ,故P ( ABC) 0 ,从而P ( A B C)34 0 121121 0 127 ,P ( AB AC BC ) P ( AB ) P ( AC )P ( BC )P ( ABC )P ( ABC )P ( ABC ) P ( ABC)0 121 12116 ,故 P ( ABC ABC ABC) 127 16 125. 故应选(D ).1(8)设随机变量 X , Y 服从二维正态分布 N 0, 0;1, 4;,下列随机变量中服从标准2正态分布且与 X 独立的是()(A ) 5X Y . (B ) 5X Y . 5 5(C ) 3X Y .(D ) 3X Y .3 3(8)【答案】(C ).【解析】由二维正态的性质知 X Y ~ N ( ,2 ) ,因E ( X Y ) E ( X ) E (Y ) 0,2D ( X Y ) D ( X ) D (Y ) 2 cov( X , Y ) 1 4 2 XY D ( X ) D (Y )1 42 (12) 1 2 3,X Y 0 3 ( X Y ) ~ N (0,1) .353( X Y )又, X服从二维正态分布,而33( X Y )3cov( X , X ) cov( X , Y ) cov, X333 D ( X ) D ( X ) D (Y )3XY311 () 1 2320,故3( X Y )与 X 不相关,由二维正态的性质知,3( X Y )与 X 独立.33故应选(C).二、填空题(9)设z arctan xy sin x y ,则dz.0,π(9)【答案】π 1 dx dy .【解析】因为z xy cos x y, 1 xy sin x y 2z yx cos x y, 1 xy sin x y 2从而zπ cos ππ 1,0,πsin πx12z0 cos π1,sin π2y0,π1故dz0,ππ 1 d x d y .(10)曲线x y e2xy0在点0,1处的切线方程为.(10)【答案】y x 1.6【解析】方程 x y e 2xy0 两边对x求导,得1y e 2xy 2 y 2 xy0 ,代入 y(0) 1 ,得1y 0 2 00 ,解得 y 0 1 .从而切线方程为 y 1 1x0 , 即y x 1.(11)Q表示产量,成本C Q100 13Q ,单价为 p ,需求量Q p p80032.则工厂取得利润最大值时的产量.(11)【答案】Q8.【解析】设收益函数为R ,则R pQ ,又p8003,故R800Q3Q. Q 2Q 2要使得利润最大,则有MR MC ,即1600 3 13,解得Q 8. Q 2 2x12(12)设平面区域Dx , y y, 0 x1,则D 绕 y 轴旋转所成旋转体体1 x2积为.(12)【答案】π ln 2π3.【解析】1 2πx1x1x 31πVy0 d x 02π x dx π ln(1x2 )ππ ln 2.1 x22033 a01113. 行列式0a11.11a0110a(13)【答案】a2a24 .【解析】7a 0 1 1 a a 0 0 a 00 00 a 110 a 1 10 a 1 11 1 a 0 1 1 a 0 1 2a 0 11 0 a0 0 a a0 0 a aa a11a a 3 4a a 2 a2 4 .2 a 00 a a(14)设随机变量X的概率分布为P X k 1( k 1, 2, ) ,Y表示X除以3的余k2数,则EY.(14)【答案】8 . 7【解析】Y 的全部可能取值为0,1, 2.当X 3k 2( k 1, 2, ) 时,Y1;当 X 3k 1( k 1, 2, ) 时,Y2;当X 3k ( k 1, 2, ) 时,Y 0 .故P Y 114,P Y 212,P Y 011,3 k 2 3 k 1 3 k272727 k 1k 1k 1从而EY 8. 7三、解答题(15)(本题满分 10 分)已知(11) n e 与b为n时的等价无穷小,求a,b.n n a(15)【解析】由题意有11(1) n e e nln(1)en1 lim n limb bn nn a n a1n ln(11)1e(e n ln(1) 11)lim e lim n, n nn a n a8令1n t ,则1从而a 1 2,2e b1ln(1 t ) 1e lim t e limt 0b t a t 0a1,1 ,解之得b2e.ln(1 t ) t1t2e lim2,b t a1 b t a1t 0(16)(本题满分 10 分)求f ( x , y ) x 3 8 y 3 xy 的极值.(16)【解析】因为 f 3 x 2y , f 24 y 2 x,x y2y 0,11f x 3 x联立方程组f24 y2x0,解得驻点为 0, 0 ,,.612y在点 0, 0 处:A f xx0, 0 0,B f xy0, 01,C f yy0, 0 0, AC B2 1 0 ,故0, 0不是极值点.1 ,1在点处:612A f1,1 1 0,B f1,11,C f1,14,xx xy yy6 12 6 12 6 12211AC B 4 1 0 ,故,是极小值点,极小值为61211 1 3 1 3111f,.126122166612(17)(本题满分 10 分)已知 y f x 满足 y 2 y 5 f ( x) 0, 且有 f (0) 1, f (0) 1.(Ⅰ)求 f ( x) ;(Ⅱ)a n nπf ( x )dx ,求a n.n 19(17)【解析】(Ⅰ)由 y 2 y 5 f ( x) 0 ,得其特征方程为 2 25 0 ,解得2 16 i 1 2i.1,22故方程通解为 f ( x ) e x (C cos 2 x C sin 2 x).1 2因 f (0) 1, f (0) 1 C 1,C 1,,则有1 解得 12C 2 C 11, C 2 0,从而有 f ( x ) e x cos 2 x.(Ⅱ)因e x cos 2 xdx cos 2 xde xe x cos 2 x 2 e x sin 2 xdx e x cos 2 x 2 sin 2 xde xe x cos 2 x 2e x sin 2 x 4 e x cos 2 x d x ,故 5 e x cos 2 xdx e x cos 2 x 2e x sin 2x C 1 ,从而有e x cos 2 xd x15 e x (2 sin 2 x cos 2 x ) C ,故a n nπ e x cos 2 xd x1ex(2 sin 2 x cos 2 x)|nπ .5因 lim e x (2 sin 2 x cos 2 x) 0 ,故a1 e n π (cos2 nπ 0) 1 e nπ . nx5 511e π1进而有 a ne nπ.51 eπ 5(e π1)n 15 n 1(18)(本题满分 10 分)已知 f ( x , y )y 1 x 2 xf ( x , y )d xdy ,其中D x ,y x 2x 2 1, y 0 .D求 xf ( x , y )dx dy .D10(18)【解析】记 f ( x , y )dxdy A ,则f(x,y)y1x 2Ax ,故DA f ( x , y )dx dy( y1x 2Ax )d xd yD Dy 1 x 2 d xdy A xd xd y ,D D因积分区域D 关于 y 轴对称,故xd xd y0.D又Ay dx dy 11 d x 01x21 x 2y 1 x2 dyD1 13令x sin tπ1242212(1 x)dxπ2cos td tπ 3 1 π 3π02cos4tdt4 2 2 16.3πx 因此xf(x,y)d( xy3πx2 )d .可知 f ( x , y ) y 1 x 2 1 x 21616D D因积分区域D 关于 y 轴对称,xy1x2是x的奇函数,故xy 1x2 d0.D故xf ( x , y )d 3πx 2 d11dx0 1 x23πx 2 dy 16D D1613ππ3π2222116x 1 x d xπ16sin t cos t cos tdt23ππ2 sin 2 t(1 sin 2 t)dt3π (1π3 1π)3π2.8 08 2 2 4 2 2 128(19)(本题满分 10 分)设 f x 在区间 0, 2 上具有一阶连续导数,且 f 0 f 20, M max x0,2 f x.11(Ⅱ)若对任意 x0, 2 ,f x M ,则M0 .(19)【证明】(Ⅰ)因f x在0, 2上连续,故存在最大值M max x0,2 f x.若M 0,则对0,2 ,都有f0 ,命题成立.若M 0,因 f 0 f 2 0, 故存在 x0 0, 2 ,使得f x0M.当x0 0,1 ,由拉格朗日中值定理知,存在1 0, x00,1 ,使得f x0 f 0 f 1 x0 ,则有f 1f x0MM . x0x0当x0 1, 2 ,由拉格朗日中值定理知,存在2 x0 , 2 1, 2 ,使得f 2 f x0 f 2 2 x0 ,则有f 2f x0MM . 2x02x0当 x01,由拉格朗日中值定理知,存在30,1 ,使得f3 f 1 f 0 f 1M .综上,存在0, 2 ,使得f M .(Ⅱ)假设M0 ,因对任意 x0, 2 ,有f x M ,由(Ⅰ)知,当x0 0,1 或 x0 1, 2 时,存在0, 2 ,使得f M ,矛盾,从而有M 0.当x0 1时,有f1M,则 f 1M ,不妨设 f 1 M .构造函数 g x f x Mx, x0,1 .因为 g x f x M 0, 故 g x 单调不增.又 g 0 0, g 1 0 ,从而 g x 0, x 0,1 ,即 f x Mx , x 0,1 .构造函数h x f x Mx 2 M , x1, 2 .因为h x f x M0 ,故h x 单调不减.又h 1 M M2 M 0, h 2 0 ,从而h x 0, x 1, 2 ,即 fx Mx 2M .综上,当 x 0 1时, f x Mx, 0 x 1,2 M , 1 x 2.Mx因为f 1 limf x f 1 limMx MM 0,x 1x 1 x 1 x 1f 1 limf x f 1lim Mx 2M M M 0,x 1x 1x 1x 1故与 f x 在 x 1 处可导矛盾,从而当 x 0 1时,有M 0 .若 f 1 M ,则可构造 g x f x Mx, h x f x Mx 2 M , 同理可证.综上,若对任意 x 0, 2 ,f xM ,则M 0 .(20)(本题满分 11 分)设二次型 f x 1 , x 2 x 124 x 1 x 2 4x 22xy经正交变换 1Q 1化为二次型x 2y 2g y 1 , y 2 ay 124 y 1 y 2by 22, 其中ab .(Ⅰ)求a , b 的值;(Ⅱ)求正交矩阵Q .1 2 (20)【解析】(Ⅰ)设二次型 f 的矩阵为 A ,则 A24.又 f 经正交变换 X QY 化成 g y 1 , y 2 ay 12 4 y 1 y 2 by 22 , 即X QYa 2f X TAX = Y T Q T AQY Y T2 b Y .a 2 a 因此Q T AQ =2 b. 记B =22,由于Q 为正交矩阵,故 A 与B 相似且合同,btr A 故 A B又a b ,故tr B , 1 4 a b, 解得a 4, b 1或a 1, b4. 即, ab 4 0,a 4,b 1.42,且 A 与B 相似.又(Ⅱ)由(Ⅰ)知,B =21A E122 5 ,24可知, A 与B 特征值均为1 0, 25.对于1 0 ,解A0E x0,得 A 的属于特征值0的特征向量α12,1对于2 5 ,解A5E x0,得 A 的属于特征值5的特征向量α212,α12α211α1, α2已经正交化,故直接单位化,得β11β2.α12故可取 P1β1,β2,则 P1为正交矩阵,且有 P11 AP10.5对于1 0 ,解B0E x0,得B 的属于特征值0的特征向量α212,对于2 5 ,解B5E x0,得B 的属于特征值5的特征向量α12,1故可取 P2β2,β1,则 P2为正交矩阵,且有 P21BP2.5则有 P 1 AP P 1BP,因此 P P 1 AP P 1 B .1122211214 3取Q = P P15555 5 5P P T, 则1212 3 45555 5 5Q T = P1 P2T T P2 P1T ,Q 1 = P1 P2T 1P2T 1 P11P2 P1T .综上,有Q 为正交矩阵,且满足Q T AQ B .14(21)(本题满分 11 分)设 A 为 2 阶矩阵, P = α , Aα ,其中α 是非零向量,且不是 A 的特征向量. (Ⅰ)证明 P 为可逆矩阵;(Ⅱ)若 A 2 α + Aα 6α 0 ,求 P 1 AP 并判断 A 是否相似于对角阵. (21)【解析】(Ⅰ)若α 与 Aα 线性相关,则α 与 Aα 成比例,又α 是非零向量,故有 Aαkα .由特征值、特征向量的定义知,α 是 A 的属于特征值k 的特征向量,与已知矛盾,故α 与 Aα 无关,从而 P 可逆.(Ⅱ)由 A 2 α + Aα 6α 0 知, A 2 α =Aα6α, 则AP = A α , Aα Aα , A 2 α Aα , Aα 6α0 6 0 6α , Aα P ,11116记B,则有 AP = PB, 得 P 1 AP B ,故 A 与B 相似.11因为 B E6 2632 ,11可知,B 的特征值为 1 3, 2 2. 故 A 的特征值也为 1 3, 2 2.因此 A 可相似对角化.(22)(本题满分 11 分)已知因(X , Y )服从区域D : 0y 1x 2 上的均匀分布,且1, X Y 0, UX Y 0,0,1, X Y 0, VX Y 0.0,求:(Ⅰ)(U , V ) 的联合分布;(Ⅱ)UV .(22)【解析】(Ⅰ)因(X,Y)服从区域D: 0y 1x2上的均匀分布,故P{U0, V 0}P{ X Y0, X Y0}14,P{U0, V 1}P{ X Y0, X Y0}0,P{U1, V 0}P{ X Y0, X Y0}12,P{U1, V 1}P{ X Y0, X Y0}14.从而(U , V ) 的概率分布为V01U01/4011/41/2(Ⅱ)由(Ⅰ)知,01P3/41/401P1/43/401P3/41/4故E (UV ) 14 , E (U )34 , E (V )14 , D (U ) 163, D (V ) 163.131cov(U , V ) E (UV ) E (U ) E (V )1.从而444 UV3334423. (本题满分 11 分)t me,t 0,1设某种元件的使用寿命T 的分布函数为:F ( t )0, 其他.其中 , m 为参数且大于零.(Ⅰ)求概率P{T t}与P{T s t | T s},其中s 0, t 0 ;(Ⅱ)任取n 个这种元件做寿命试验,测得它们的寿命分别为t 1, t 2 ,t n ,若m 已知,求 的最大似然估计值 .(23)【解析】(Ⅰ)1 e ( t m e ( t mP{T t } 1 P{T t } 1 F (t ) 1 )).P{T s t | T s}P{T s t , T s} P{T s t } 1 F (t s) 1 F ( s )P{T s} P{T s}( t s ) m( t s )mm( t s)m1 [1 e]ese m .s s1 [1 e ( ) m( )m]et m 1 ( t )mt 0,me,m(Ⅱ)由题意得,T 的概率密度为 f (t ) F (t )其他.0,nm 1nt it i ( )mm n i 1 e i 1 , t 0,nmni似然函数L ( )f (t i ; )i 1其他.0,nm 1nti( t i)m当t 0 时,L ( ) m ni 1ei 1,nnt iln L ( ) n ln m ln t i m 1mn ln( )m,i 1 i 1 nd ln L ( )mn n t t mnt i mii 1令m () m 1im 0 ,解之得 的最大似然估 d2 m 1i 11 n计值为mn i 1 t i m .。

2020年考研数学(三)真题(后附解析答案)

2020年全国硕士研究生招生考试数学(三)(科目代码:303)一、选择题(1〜8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将所选项前的字母写在题后的括号内.)(1)设1口心—°= b,则lim sinfQ)—sina=().x-^a x——a x-*a3C——a(A)6sin a(B)6cos a(C)6sin/(a)iIn I14-rr I(2)函数心)=二的第二类间断点的个数为((e—1)(j?—2)(A)l(B)2(03(3)设奇函数心)在(-00,-1-00)上具有连续导数,则().(A)f[cos/"(/)+/^(Olldr是奇函数J0(E)「[cos/(i)+/(O]d^是偶函数J0(C)[[cos/"'(/)+y(t)]d/是奇函数J0(D)「[cos是偶函数J0(D)bcos/(a) ).(D)4(4)设幕级数—2)"的收敛区间为(一2,6),则工a”Q+l)2n的收敛区间为().n=\n=1(A)(-2,6)(B)(-3,l)(0(-5,3)(D)(-17,15)(5)设4阶矩阵A=(a“)不可逆,a*的代数余子式A12丰O,aj,a2,a3,a,为矩阵A的列向量组,A*为A的伴随矩阵,则方程组A*X=0的通解为().(A)X=^1a1+^2a2+^3a3,其中k x,k2,k.为任意常数(B)X=^1a1+k2a2+k3a4,其中k,,k2,k3为任意常数(C)X=bS+展as+匕。

4,其中紅,k2,k3为任意常数(D)X=k i a2k2a3+怂。

4,其中ki,k2^k3为任意常数(6)设A为3阶矩阵,a】,a?为A的属于特征值1的线性无关的特征向量,as为A的属于特征I1°°\值一1的特征向量,则满足P_1AP=0-10的可逆矩阵卩为().'o01'(A)(a j a3,a2,—a3)(B)(a〕+ct2,a2,—a3)(C)(a1+a3,—a3,a2)(D)(a T+a2»—a3,a2)(7)设A,B,C为三个随机事件,且PC A)=P(£)=P(C)=±,P(AB)=O,P(AC)=P(BC)=2,412则A,B,C中恰有一个事件发生的概率为().3215(A)Z(B)T(C)7(D)12(8)设随机变量(X,Y)服从二维正态分布N(0,0;1,4;-,则下列随机变量中服从标准正态分布且与X相互独立的是().(A)啤(X+Y)(B)尝(X—丫)55(C)y(X+Y)(D)y(X-Y)二、填空题(9〜14小题,每小题4分,共24分.请将答案写在题中的横线上.)(9)设z=arctanRy+sin(z+了)],贝0dz|(0,…)=______.(10)曲线jc y+e2iy=0在点(0,—1)处的切线方程为________.(H)设某厂家生产某产品的产量为<2,成本C(Q)=100+13Q,该产品的单价为/,需求量—2,则该厂家获得最大利润时的产量为(12)设平面区域。

2023年考研数学三真题及答案-完整版

且喜平常度,切忌神慌乱。

畅游题海后,金榜题君名。

考试在即,祝你成功。

2023年考研数学三真题及答案一、选择题:1~10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上. 1. 已知函数(,)ln(|sin |)f x y y x y =+,则( ).A.(0,1)f x ∂∂不存在,(0,1)fy∂∂存在B.(0,1)f x ∂∂存在,(0,1)fy∂∂不存在C. (0,1)f x ∂∂存在,(0,1)fy∂∂存在D. (0,1)f x ∂∂不存在,(0,1)fy∂∂不存在【答案】A.【解析】由已知(,)ln(|sin |)f x y y x y =+,则(,1)ln(1|sin1|)f x x =+,(0,)ln f y y =.当0x >时,(,1)ln(1sin1)f x x =+,(0,1)0(,)d (,1)sin1d x f x y f x x x =∂==∂;当0x <时,(,1)ln(1sin1)f x x =-,(0,1)0(,)d (,1)sin1d x f x y f x x x =∂==-∂;所以(0,1)(,)f x y x ∂∂不存在.又(0,1)1(,)d (0,)1d y f x y f y y y=∂==∂,存在.故选A.2.函数0()(1)cos ,0x f x x x x ≤=+>⎩的一个原函数为( ).A.)ln ,0()(1)cos sin ,0x x F x x x x x ⎧≤⎪=⎨⎪+->⎩B.)ln 1,0()(1)cos sin ,0x x F x x x x x ⎧+≤⎪=⎨⎪+->⎩C.)ln ,0()(1)sin cos ,0x x F x x x x x ⎧≤⎪=⎨⎪++>⎩D.)ln 1,0()(1)sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩【答案】D.【解析】由已知0lim ()lim ()(0)1x x f x f x f +-→→===,即()f x 连续. 所以()F x 在0x =处连续且可导,排除A ,C.又0x >时,[(1)cos sin ]cos (1)sin cos (1)sin x x x x x x x x x '+-=-+-=-+, 排除B.故选D.3. 若0y ay by '''++=的通解在(,)-∞+∞上有界,则( ).A.0,0a b <>B.0,0a b >>C.0,0a b =<D.0,0a b =>【答案】D.【解析】微分方程0y ay by '''++=的特征方程为20r ar b ++=.①若240a b -<,则通解为212()e(cos sin )22a x y x C x C x -=+;②若240a b ->,则通解为2212()eea a x x y x C C ⎛⎛ -- ⎝⎭⎝⎭=+;③若240a b -=,则通解为212()()e a x y x C C x -=+.由于()y x 在(,)-∞+∞上有界,若02a ->,则①②③中x →+∞时通解无界,若02a-<,则①②③中x →-∞时通解无界,故0a =.0a =时,若0b > ,则1,2r =,通解为12()()y x C C =+,在(,)-∞+∞上有界.0a =时,若0b <,则1,2r =12()e y x C C =+,在(,)-∞+∞上无界.综上可得0a =,0b >.4. 设n n a b <,且1nn a∞=∑与1nn b∞=∑收敛,1nn a∞=∑绝对收敛是1nn b∞=∑绝对收敛的( ).A.充分必要条件B.充分不必要条件C.必要不充分条件D.既非充分又非必要条件【解析】由已知条件可知1()nn n ba ∞=-∑为收敛的正项级数,进而1()n n n b a ∞=-∑绝对收敛.设1nn a∞=∑绝对收敛,则由n n n n n n n b b a a b a a =-+≤-+与比较判别法,得1nn b∞=∑绝对收玫;设nb∞∑绝对收敛,则由n n n n n n n a a b b b a b =-+≤-+与比较判别法,得1nn a∞=∑绝对收敛.故选A.5.,A B 为可逆矩阵,E 为单位阵,*M 为M 的伴随矩阵,则*⎛⎫= ⎪⎝⎭A E O BA.****||||⎛⎫- ⎪⎝⎭A B B A O B AB.****||||⎛⎫- ⎪⎝⎭B A A B O A BC.****||||⎛⎫- ⎪⎝⎭B A B A OA BD.****|||⎛⎫- ⎪⎝⎭A B A B OB |A 【答案】B. 【解析】由于*||||||||⎛⎫⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭A E A E A E E O A B O O B O B O B O E OA B ,故*1||||||||-⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A E A E AB O O B O B O A B 1111||||||||----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭A B O A A B O A B O B 1111||||||||||||----⎛⎫-= ⎪⎝⎭A A B A A B B O B A B ****||||⎛⎫-= ⎪⎝⎭A B A B OB A .故选B.. 6.222123121323(,,)()()4()f x x x x x x x x x =+++--的规范形为A.2212y y +B.2212y y -C.2221234y y y +-D.222123y y y +-【答案】B 【解析】222123121323(,,)()()4()f x x x x x x x x x =+++--222123121323233228x x x x x x x x x =--+++,二次型的矩阵为211134143⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,211210||134(7)131143141λλλλλλλ---=--=+-----A E210(7)210(7)(3)0141λλλλλλ-=+-=-+-=-, 1233,7,0λλλ==-=,故规范形为2212y y -,故选B.7.已知向量组121212212,1,5,03191⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ααββ ,若γ 既可由12,αα 线性表示,又可由12,ββ线性表示,则=γ( )A.33,4k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭ B. 35,10k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭C. 11,2k k R -⎛⎫ ⎪∈ ⎪ ⎪⎝⎭D. 15,8k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭【答案】D.【解析】设11223142k k k k =+=+γααββ,则11223142k k k k +--=0ααββ,对关于1234,,,k k k k 的方程组的系数矩阵作初等变换化为最简形,121212211003(,,,)2150010131910011--⎛⎫⎛⎫ ⎪ ⎪=--=-→- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A ααββ,解得T T T T 1234(,,,)(3,1,1,1)(3,1,1,0)(33,1,1,)k k k k C C C C C =--+-=--+-,故=γ11221211(33)(1)5(1)5,8(1)8C k k C C C k k R C -⎛⎫⎛⎫⎪ ⎪+=-+-=-=∈ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭αααα.8.设X 服从参数为1的泊松分布,则(|()|)E X E X -=( ).A.1eB.12C.2eD.1【答案】C.【解析】方法一:由已知可得,1e {}(0,1,2,)!P X k k k -===L ,()1E X =,故111100|1|(1)(|()|)(|1|)e e e e!!k k k k E X E X E X k k ∞∞----==---=-==++∑∑12=2e (1)eE X -+-=. 故选C.方法二:由于0e !k xk x k ∞==∑,于是1111e 1(1)!(1)!k k x k k x x x k x k x +∞∞==--==++∑∑于是 1121111e 1(1)e 1(1)!(1)!(1)!k k k x x k k k kx x x x x k k x k x x -+∞∞∞==='''⎛⎫⎛⎫⎛⎫---+==== ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭∑∑∑. 由已知可得,1e {}(0,1,2,)!P X k k k -===L ,()1E X =,故 111(1)(|()|)(|1|)e e !k k E X E X E X k ∞--=--=-=+∑111=e e (1)!k k k ∞--=++∑1121(1)e 1=e e x x x x --=-++112e e e --=+=. 111(|()|)(||)[e ()]e ()1e E X E X E Y E Y E X ----==+=+-=.故选C.9.设12,,,n X X X L 为来自总体21(,)N μσ的简单随机样本,12,,,m Y Y Y L 为来自总体22(,2)N μσ的简单随机样本,且两样本相互独立,记11ni i X X n ==∑,11m i i Y Y m ==∑,22111()1n i i S X X n ==--∑,22211()1m i i S Y Y m ==--∑,则( ) A. 2122(,)S F n m S : B. 2122(1,1)S F n m S --: C. 21222(,)S F n m S : D. 21222(1,1)S F n m S --: 【答案】D.【解析】由两样本相互独立可得212(1)n S σ-与222(1)2m S σ-相互独立,且 2212(1)(1)n S n χσ--:,2222(1)(1)2m S m χσ--:, 因此2122122222(1)(1)2(1,1)(1)(1)2n S n S F n m m S S m σσ--=----:,故选D.10. 已知总体X 服从正态分布2(,)N μσ,其中0σ>为未知参数,1X ,2X 为来自总体X的简单随机样本,记12ˆ||a X X σ=-,若µ()E σσ=,则a =( ).A.2B.2【答案】A.【解析】由与1X ,2X 为来自总体X 的简单随机样本,1X ,2X 相互独立,且21(,)X N μσ:,22(,)X N μσ:,因而212~(0,2)X X N σ-,令12Y X X =-,所以Y 的概率密度为2222()ey Y f y σ-⋅=,所以22222240(||)|ed 2ed y y E Y y y y σσ--+∞+∞⋅-∞===⎰⎰,由12ˆ()(||)E aE X X σσ=-=,即(||)aE Y a σ==,解得a =A.二、填空题:11~16小题,每小题5分,共30分.请将答案写在答题纸指定位置上.11.求极限211lim 2sincos x x x x x →∞⎛⎫--= ⎪⎝⎭____________. 【答案】23. 【解析】1220sin 2cos 11lim 2sincos limx tx t tt t x x x x t=→∞→--⎛⎫-- ⎪⎝⎭222230000sin 111cos sin 2limlimlim lim t t t t t ttt t t t t t t →→→→---=+=+1126=+ 23=. 12.已知函数(,)f x y 满足22d d d (,)x y y xf x y x y -=+,且(1,1)4f π=,则f =____________.【答案】3π. 【解析】由已知22(,)f x y y x x y ∂-=∂+,22(,)f x y xy x y ∂=∂+,则 22(,)d arctan ()y x f x y x y x y yϕ-==-++⎰, 所以22(,)()f x y xy y x yϕ∂'=+∂+,即()0y ϕ'=,()y C ϕ=, 从而(,)arctanxf x y C y=-+,又(1,1)4f π=,解得2C π=,故(,)arctan2x f x y yπ=-,arctan 233f ππ=-=.13.20(2)!nn x n ∞==∑____________.【答案】e e 2x x-+.【解析】令20()(2)!nn x S x n ∞==∑,则(0)1S =,且211()(21)!n n x S x n -∞='=-∑,(0)0S '=, 22210()()(22)!(2)!n nn n x x S x S x n n -∞∞==''===-∑∑,从而可得微分方程()()0S x S x ''-=,解得12()e e x xS x C C -=+,又(0)1S =,(0)0S '=,解得1212C C ==,故 20e e ()(2)!2n x xn x S x n -∞=+==∑. 14.某公司在t 时刻的资产为()f t ,则从0时刻到t 时刻的平均资产等于()f t t t-,假设()f t 连续且(0)0f =,则()f t =____________.【答案】2(e 1)t t --.【解析】由已知可得()d ()tf t t f t t tt=-⎰,整理变形20()d ()t f t t f t t =-⎰,等式两边求导()()2f t f t t '=-,即()()2f t f t t '-=,解得一阶线性微分方程通解为()2(1)e t f t t C =-++,又(0)0f =,解得2C =,故()2(e 1)tf t t =--.15. 13123123121,0,20,2ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩ 有解,其中,a b 为常数,若0111412a a a= ,则11120a a ab =________. 【答案】8【解析】方程组有解,则0111101110||12211012001202a a a a a a a ab aa b ==-+=A ,故111280a a ab =.16. 设随机变量X 与Y 相互独立,且()1,X B p :,()2,Y B p :,(0,1)p ∈则X Y+与XY -的相关系数为____________.【答案】13-【解析】由题意可得,()(1)D X p p =-,()2(1)D Y p p =-,又由X 与Y 相互独立可知,()()()D X Y D X D Y ±=+,故(,)X Y X Y ρ+-==()()(1)2(1)1()()(1)2(1)3D X D Y p p p p D X D Y p p p p ----===-+-+-三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本题满分10分)已知函数()y y x =满足2e ln(1)cos 0xa y y x yb ++-++=,且(0)0,(0)0y y '==.(1)求,a b 的值;(2)判断0x =是否为函数()y y x =的极值点.【解】(1)将(0)0y =代入2e ln(1)cos 0x a y y x y b ++-++=得0a b +=. 方程2e ln(1)cos 0x a y y x y b ++-++=两边对x 求导得1e 2cos ln(1)sin 01x a yy y y x y y x'''++-++⋅=+, 将(0)0y '=代入上式得10a -=,解得1,1a b ==-.(2)由(1)知1e 2cos ln(1)sin 01xyy y y x y y x'''++-++⋅=+,上式两边再对x 求导得 22111e 2()2cos sin sin ln(1)cos ln(1)sin (1)11x y yy y y y y y x y y y x y y x x x ⎡⎤''''''''+++++⋅+++⋅++⋅⎢⎥+++⎣⎦将(0)0,(0)0y y '==代入上式得(0)2y ''=-,所以0x =是函数()y y x =的极大值点.18.(本题满分12分)已知平面区域(,)|01D x y y x ⎧⎫=≤≤≥⎨⎬⎩⎭, (1)求平面区域D 的面积S .(2)求平面区域D 绕x 一周所形成得旋转体的体积 【解】(1)222144sec 1d d tan sec sin t S x t t t t tππππ+∞===⎰⎰⎰222244sin 1d d cos sin 1cos t t t tt ππππ==--⎰⎰241cos 11ln2cos 12t t ππ-==+. (2) 222211111d d 1(1)14V x x x x x x ππππ+∞+∞⎛⎫⎛⎫==-=- ⎪ ⎪++⎝⎭⎝⎭⎰⎰. 19.(本题满分12分)已知22{(,)|(1)1}D x y x y =-+≤,求1|d d Dx y -⎰⎰.【解】令22221{(,)|(1)1,1}D x y x y x y =-+≤+≤,则|1|d d Dx y ⎰⎰)(111d d 1d d D D D x y x y -=+⎰⎰⎰⎰)(11d d 21d d DD x y x y =+⎰⎰⎰⎰2cos 122232cos 234327d d 2d d 39ππθππθππρρθπρρθ---=-+=⎰⎰⎰⎰20.(本题满分12分)设函数()f x 在[,]a a -上有二阶连续导数.(1)证明:若(0)0f =,存在(,)a a ξ∈-,使得21()[()()]f f a f a aξ''=+-; (2)若()f x 在(,)a a -上存在极值,证明:存在(,)a a η∈-,使得21|()||()()|2f f a f a a η''≥--. 【证明】(1)将()f x 在00x =处展开为22()()()(0)(0)(0)2!2!f x f x f x f f x f x δδ''''''=++=+,其中δ介于0与x 之间.分别令x a =-和x a =,则21()()(0)()2!f a f a f a ξ'''-=-+,10a ξ-<<,22()()(0)()2!f a f a f a ξ'''=+,20a ξ<<,两式相加可得212()()()()2f f f a f a a ξξ''''+-+=,又函数()f x 在[,]a a -上有二阶连续导数,由介值定理知存在ξ∈12[,](,)a a ξξ⊂-,使得12()()()2f f f ξξξ''''+=,即21()[()()]f f a f a a ξ=-+. (2)设()f x 在0x 处取得极值,则0()0f x '=.将()f x 在0x 处展开为22000000()()()()()()()()()2!2!f x x f x x f x f x f x x x f x δδ''''--'=+-+=+, 其中δ介于0x 与x 之间.分别令x a =-和x a =,则2100()()()()2!f a x f a f x η''+-=+,10a x η-<<, 2200()()()()2!f a x f a f x η''-=+,02x a η<<, 两式相减可得222010()()()()()()22f a x f a x f a f a ηη''''-+--=-, 所以222010()()()()|()()|22f a x f a x f a f a ηη''''-+--=-221020|()|()|()|()22f a x f a x ηη''''+-≤+220012|()|[()()](|()|max(|()|,|()|))2f a x a x f f f ηηηη''''''''≤++-= 2200|()|[()()]2|()|2f a x a x a f ηη''''≤++-=,即21|()||()()|2f f a f a aη''≥--.21.(本题满分12分)设矩阵A 满足对任意的123,,x x x 均有112321233232x x x x x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A . (1)求A(2)求可逆矩阵P 与对角阵Λ,使得1-=P AP Λ.【解】(1)由112321233232x x x x x x x x x x x ++⎛⎫⎛⎫⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A ,得112233*********x x x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭A , 即方程组123111211011x x x ⎡⎤⎛⎫⎛⎫⎢⎥ ⎪ ⎪--=⎢⎥ ⎪ ⎪⎪ ⎪⎢⎥-⎝⎭⎝⎭⎣⎦0A 对任意的123,,x x x 均成立,故111211011⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A . (2)111101||211(2)20011011λλλλλλλλ---=--=+-----A E ,(2)(2)(1)0λλλ=-+-+=,特征值为1232,2,1λλλ=-==-.3111002211011011000⎛⎫⎛⎫ ⎪ ⎪+=→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E ,1011⎛⎫ ⎪=- ⎪ ⎪⎝⎭α;1111042231013013000--⎛⎫⎛⎫ ⎪ ⎪-=-→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A E ,2431⎛⎫ ⎪= ⎪ ⎪⎝⎭α;211201************⎛⎫⎛⎫ ⎪ ⎪+=→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E ,3102-⎛⎫ ⎪= ⎪ ⎪⎝⎭α,令123041(,,)130112-⎛⎫ ⎪==- ⎪ ⎪⎝⎭P ααα ,则1200020001--⎛⎫⎪== ⎪ ⎪-⎝⎭P AP Λ.22.(本题满分12分)设随机变量X 的概率密度函数为2e (),(1e )xx f x x =-∞<<+∞+,令e X Y =. (1)求X 的分布函数; (2)求Y 的概率密度函数; (3)判断Y 的数学期望是否存在.【解】(1)设X 的分布函数为()X F x ,由分布函数的定义可得2e 1(){}()d d 1,(1e )1et xxX t t F x P X x f x x t x -∞-∞=≤===--∞<<+∞++⎰⎰. (2)设Y 的分布函数为()Y F y ,概率密度为()Y f y ,由分布函数的定义可得(){}{e }X Y F y P Y y P y =≤=≤,当0y ≤时,()0Y F y =; 当0y >时,1(){}{ln }(ln )11Y X F y P Y y P X y F y y=≤=≤==-+. 综上,00,()110.1Y y F y y y ≤⎧⎪=⎨->⎪+⎩,, 故Y 的概率密度函数200,()10.(1)Y y f y y y ≤⎧⎪=⎨>⎪+⎩,,(3)由(2)知,220011()()d d d (1)(1)Y yy E Y yf y y y y y y +∞+∞+∞-∞+-===++⎰⎰⎰20011d d 1(1)y y y y +∞+∞=-++⎰⎰ 01ln(1)=1y y +∞⎡⎤=+++∞⎢⎥+⎣⎦, 故Y 的数学期望不存在.。

2023年全国硕士研究生招生考试考研《数学三》真题及详解

2023年全国硕士研究生招生考试考研《数学三》真题及详解一、选择题:1~10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上。

1.已知函数f (x ,y )=ln (y +|xsiny|),则( )。

A .()0,1fx ∂∂不存在,()0,1f y ∂∂存在B .()0,1fx ∂∂存在,()0,1f y ∂∂不存在C .()0,1fx ∂∂,()0,1f y ∂∂均存在 D .()0,1fx ∂∂,()0,1f y ∂∂均不存在 【答案】A【解析】f (0,1)=ln (1+0)=0,由偏导数的定义,可得:()()()()0000,1ln 1sin1,10,1lim lim sin1lim 0x x x x x f x f fx x xx →→→+-∂===∂-因为00lim 1lim 1x x x x x x +-→→=≠=-,所以()0,1f x ∂∂不存在。

因为()()()1110,10,0,1ln 1lim lim lim 111y y y f y f f y y y y y →→→-∂====∂--,所以()0,1fy ∂∂存在。

2.函数()()01cos ,0x f x x x x ≤=+>⎩的原函数为()。

A .())()ln ,01cos sin ,0x x F x x x x x ⎧≤⎪=⎨⎪+->⎩B .())()ln 1,01cos sin ,0x x F x x x x x ⎧-+≤⎪=⎨⎪+->⎩C .())()ln ,01sin cos ,0x x F x x x x x ⎧≤⎪=⎨⎪++>⎩D .())()ln 1,01sin cos ,0x x F x x x x x ⎧++≤⎪=⎨⎪++>⎩【答案】D【解析】当x ≤0时,可得:()(1d ln f x x x C ==++⎰⎰当x >0时,可得:()()()()()2d 1cos d 1dsin 1sin sin d 1sin cos f x x x x xx xx x x xx x x C =+=+=+-=+++⎰⎰⎰⎰在x =0处,有:(110lim ln x x C C -→++=,()220lim 1sin cos 1x x x x C C +→+++=+ 由于原函数在(-∞,+∞)内连续,所以C 1=1+C 2,令C 2=C ,则C 1=1+C ,故())()ln 1,0d 1sin cos ,0x C x f x x x x x C x ⎧+++≤⎪=⎨⎪+++>⎩⎰令C =0,则f (x )的一个原函数为())()ln 1,01sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩。

2023年考研数学三试题及答案(Word版)

2023年考研数学三试题及答案一、选择题:1~10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上. 1. 已知函数(,)ln(|sin |)f x y y x y =+,则( ).A.(0,1)f x ∂∂不存在,(0,1)fy ∂∂存在 B.(0,1)f x ∂∂存在,(0,1)fy ∂∂不存在 C. (0,1)f x ∂∂存在,(0,1)fy ∂∂存在 D.(0,1)f x ∂∂不存在,(0,1)fy ∂∂不存在 【答案】A.【解析】由已知(,)ln(|sin |)f x y y x y =+,则(,1)ln(1|sin1|)f x x =+,(0,)ln f y y =.当0x >时,(,1)ln(1sin1)f x x =+,(0,1)0(,)d (,1)sin1d x f x y f x x x =∂==∂;当0x <时,(,1)ln(1sin1)f x x =-,(0,1)0(,)d (,1)sin1d x f x y f x x x=∂==-∂;所以(0,1)(,)f x y x ∂∂不存在.又(0,1)1(,)d (0,)1d y f x y f y y y=∂==∂,存在.故选A.2.函数0()(1)cos ,0x f x x x x ≤=+>⎩的一个原函数为( ).A.)ln ,0()(1)cos sin ,0x x F x x x x x ⎧≤⎪=⎨⎪+->⎩B.)ln 1,0()(1)cos sin ,0x x F x x x x x ⎧+≤⎪=⎨⎪+->⎩C.)ln ,0()(1)sin cos ,0x x F x x x x x ⎧≤⎪=⎨⎪++>⎩D.)ln 1,0()(1)sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩【答案】D.【解析】由已知0lim ()lim ()(0)1x x f x f x f +-→→===,即()f x 连续. 所以()F x 在0x =处连续且可导,排除A ,C.又0x >时,[(1)cos sin ]cos (1)sin cos (1)sin x x x x x x x x x '+-=-+-=-+, 排除B.故选D.3. 若0y ay by '''++=的通解在(,)-∞+∞上有界,则( ).A.0,0a b <>B.0,0a b >>C.0,0a b =<D.0,0a b =>【答案】D.【解析】微分方程0y ay by '''++=的特征方程为20r ar b ++=.①若240a b -<,则通解为212()e(cos sin )22a x y x C x C x -=+;②若240a b ->,则通解为2212()eeaax x y x C C ⎛⎛ -- ⎝⎭⎝⎭=+;③若240a b -=,则通解为212()()e a x y x C C x -=+.由于()y x 在(,)-∞+∞上有界,若02a ->,则①②③中x →+∞时通解无界,若02a-<,则①②③中x →-∞时通解无界,故0a =.0a =时,若0b > ,则1,2r =,通解为12()()y x C C =+,在(,)-∞+∞上有界.0a =时,若0b <,则1,2r =12()e y x C C =+,在(,)-∞+∞上无界.综上可得0a =,0b >.4. 设n n a b <,且1nn a∞=∑与1nn b∞=∑收敛,1nn a∞=∑绝对收敛是1nn b∞=∑绝对收敛的( ).A.充分必要条件B.充分不必要条件C.必要不充分条件D.既非充分又非必要条件【解析】由已知条件可知1()nn n ba ∞=-∑为收敛的正项级数,进而1()n n n b a ∞=-∑绝对收敛.设1nn a∞=∑绝对收敛,则由n n n n n n n b b a a b a a =-+≤-+与比较判别法,得1nn b∞=∑绝对收玫;设nb∞∑绝对收敛,则由n n n n n n n a a b b b a b =-+≤-+与比较判别法,得1nn a∞=∑绝对收敛.故选A.5.,A B 为可逆矩阵,E 为单位阵,*M 为M 的伴随矩阵,则*⎛⎫= ⎪⎝⎭A E O BA.****||||⎛⎫- ⎪⎝⎭A B B A O B AB.****||||⎛⎫- ⎪⎝⎭B A A B O A BC.****||||⎛⎫- ⎪⎝⎭B A B A OA BD.****|||⎛⎫- ⎪⎝⎭A B A B OB |A 【答案】B. 【解析】由于*||||||||⎛⎫⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭A E A E A E E O A B O O B O B O B O E OA B ,故*1||||||||-⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A E A E A B O O B O B OA B1111||||||||----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭A B O A A B O A B O B 1111||||||||||||----⎛⎫-= ⎪⎝⎭A A B A A B B O B A B ****||||⎛⎫-= ⎪⎝⎭A B A B O B A .故选B..6. 222123121323(,,)()()4()f x x x x x x x x x =+++--的规范形为 A.2212y y + B.2212y y -C.2221234y y y +-D.222123y y y +-【答案】B【解析】222123121323(,,)()()4()f x x x x x x x x x =+++--222123121323233228x x x x x x x x x =--+++,二次型的矩阵为211134143⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,211210||134(7)131143141λλλλλλλ---=--=+-----A E210(7)210(7)(3)0141λλλλλλ-=+-=-+-=-, 1233,7,0λλλ==-=,故规范形为2212y y -,故选B.7.已知向量组121212212,1,5,03191⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ααββ ,若γ 既可由12,αα 线性表示,又可由12,ββ线性表示,则=γ( )A.33,4k k R ⎛⎫ ⎪∈ ⎪⎪⎝⎭ B. 35,10k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭C. 11,2k k R -⎛⎫ ⎪∈ ⎪ ⎪⎝⎭D. 15,8k k R ⎛⎫⎪∈ ⎪⎪⎝⎭【答案】D.【解析】设11223142k k k k =+=+γααββ,则11223142k k k k +--=0ααββ,对关于1234,,,k k k k 的方程组的系数矩阵作初等变换化为最简形,121212211003(,,,)2150010131910011--⎛⎫⎛⎫ ⎪ ⎪=--=-→- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A ααββ,解得T T T T1234(,,,)(3,1,1,1)(3,1,1,0)(33,1,1,)k k k k C C C C C =--+-=--+-,故=γ11221211(33)(1)5(1)5,8(1)8C k k C C C k k R C -⎛⎫⎛⎫⎪ ⎪+=-+-=-=∈ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭αααα. 8.设X 服从参数为1的泊松分布,则(|()|)E X E X -=( ).A.1eB.12C.2eD.1【答案】C.【解析】方法一:由已知可得,1e {}(0,1,2,)!P X k k k -===,()1E X =,故 111100|1|(1)(|()|)(|1|)e e e e!!k k k k E X E X E X k k ∞∞----==---=-==++∑∑12=2e (1)eE X -+-=.故选C.方法二:由于0e !k xk x k ∞==∑,于是1111e 1(1)!(1)!k k x k k x x x k x k x +∞∞==--==++∑∑于是1121111e 1(1)e 1(1)!(1)!(1)!k k k x x k k k kx x x x x k k x k x x -+∞∞∞==='''⎛⎫⎛⎫⎛⎫---+==== ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭∑∑∑. 由已知可得,1e {}(0,1,2,)!P X k k k -===,()1E X =,故 111(1)(|()|)(|1|)e e !k k E X E X E X k ∞--=--=-=+∑111=e e (1)!k k k ∞--=++∑1121(1)e 1=e ex x x x --=-++112e e e --=+=. 111(|()|)(||)[e ()]e ()1e E X E X E Y E Y E X ----==+=+-=.故选C. 9.设12,,,n X X X 为来自总体21(,)N μσ的简单随机样本,12,,,m Y Y Y 为来自总体22(,2)N μσ的简单随机样本,且两样本相互独立,记11n i i X X n ==∑,11mi i Y Y m ==∑,22111()1n i i S X X n ==--∑,22211()1m i i S Y Y m ==--∑,则( ) A.2122(,)S F n m S B. 2122(1,1)S F n m S --C. 21222(,)S F n m S D. 21222(1,1)S F n m S --【答案】D.【解析】由两样本相互独立可得212(1)n S σ-与222(1)2m S σ-相互独立,且2212(1)(1)n S n χσ--,2222(1)(1)2m S m χσ--,因此2122122222(1)(1)2(1,1)(1)(1)2n S n S F n m m S S m σσ--=----,故选D.10. 已知总体X 服从正态分布2(,)N μσ,其中0σ>为未知参数,1X ,2X 为来自总体X的简单随机样本,记12ˆ||a X X σ=-,若()E σσ=,则a =( ).A.22【答案】A.【解析】由与1X ,2X 为来自总体X 的简单随机样本,1X ,2X 相互独立,且21(,)X N μσ,22(,)X N μσ,因而212~(0,2)X X N σ-,令12Y X X =-,所以Y 的概率密度为2222()ey Y f y σ-⋅=,所以22222240(||)|ed 2ed y y E Y y y y σσ--+∞+∞⋅-∞===⎰⎰,由12ˆ()(||)E aE X X σσ=-=,即(||)aE Y a σ==,解得2a =,故选A.二、填空题:11~16小题,每小题5分,共30分.请将答案写在答题纸指定位置上.11.求极限211lim 2sincos x x x x x →∞⎛⎫--= ⎪⎝⎭____________. 【答案】23. 【解析】122sin 2cos 11lim 2sincos limx tx t tt t x x x x t =→∞→--⎛⎫-- ⎪⎝⎭222230000sin 111cos sin 2limlimlim lim t t t t t ttt t t t t t t →→→→---=+=+1126=+ 23=. 12.已知函数(,)f x y 满足22d d d (,)x y y x f x y x y -=+,且(1,1)4f π=,则f = ____________.【答案】3π. 【解析】由已知22(,)f x y y x x y ∂-=∂+,22(,)f x y xy x y ∂=∂+,则 22(,)d arctan ()y xf x y x y x y yϕ-==-++⎰,所以22(,)()f x y xy y x yϕ∂'=+∂+,即()0y ϕ'=,()y C ϕ=, 从而(,)arctanx f x y C y =-+,又(1,1)4f π=,解得2C π=,故(,)arctan2x f x y yπ=-,23f ππ=-=.13.20(2)!nn x n ∞==∑____________. 【答案】e e 2x x-+.【解析】令20()(2)!nn x S x n ∞==∑,则(0)1S =,且211()(21)!n n x S x n -∞='=-∑,(0)0S '=,22210()()(22)!(2)!n nn n x x S x S x n n -∞∞==''===-∑∑,从而可得微分方程()()0S x S x ''-=,解得12()e e x xS x C C -=+,又(0)1S =,(0)0S '=,解得1212C C ==,故 20e e ()(2)!2n x xn x S x n -∞=+==∑.14.某公司在t 时刻的资产为()f t ,则从0时刻到t 时刻的平均资产等于()f t t t-,假设()f t 连续且(0)0f =,则()f t =____________.【答案】2(e 1)tt --.【解析】由已知可得()d ()tf t tf t t t t=-⎰,整理变形20()d ()t f t t f t t =-⎰,等式两边求导()()2f t f t t '=-,即()()2f t f t t '-=,解得一阶线性微分方程通解为()2(1)e t f t t C =-++,又(0)0f =,解得2C =,故()2(e 1)tf t t =--.15. 13123123121,0,20,2ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩ 有解,其中,a b 为常数,若0111412a a a= ,则11120a a a b=________.【答案】8【解析】方程组有解,则0111101110||12211012001202a a a a a a a ab aa b ==-+=A ,故111280a a ab =.16. 设随机变量X 与Y 相互独立,且()1,X B p ,()2,Y B p ,(0,1)p ∈则X Y+与XY -的相关系数为____________.【答案】13-【解析】由题意可得,()(1)D X p p =-,()2(1)D Y p p =-,又由X 与Y 相互独立可知,()()()D X Y D X D Y ±=+,故(,)X Y X Y ρ+-==()()(1)2(1)1()()(1)2(1)3D X D Y p p p p D X D Y p p p p ----===-+-+-三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本题满分10分)已知函数()y y x =满足2e ln(1)cos 0xa y y x yb ++-++=,且(0)0,(0)0y y '==.(1)求,a b 的值;(2)判断0x =是否为函数()y y x =的极值点.【解】(1)将(0)0y =代入2e ln(1)cos 0xa y y x yb ++-++=得0a b +=. 方程2e ln(1)cos 0xa y y x yb ++-++=两边对x 求导得1e 2cos ln(1)sin 01x a yy y y x y y x'''++-++⋅=+, 将(0)0y '=代入上式得10a -=,解得1,1a b ==-.(2)由(1)知1e 2cos ln(1)sin 01xyy y y x y y x'''++-++⋅=+,上式两边再对x 求导得 22111e 2()2cos sin sin ln(1)cos ln(1)sin (1)11x y yy y y y y y x y y y x y y x x x ⎡⎤''''''''+++++⋅+++⋅++⋅⎢⎥+++⎣⎦将(0)0,(0)0y y '==代入上式得(0)2y ''=-,所以0x =是函数()y y x =的极大值点.18.(本题满分12分)已知平面区域(,)|01D x y y x ⎧⎫=≤≤≥⎨⎬⎩⎭, (1)求平面区域D 的面积S .(2)求平面区域D 绕x 一周所形成得旋转体的体积 【解】(1)222144sec 1d d tan sec sin t S x t t t t tππππ+∞===⎰⎰⎰ 222244sin 1d dcos sin 1cos t t t tt ππππ==--⎰⎰241cos 11lnln2cos 12t t ππ-==+. (2) 222211111d d 1(1)14V x x x x x x ππππ+∞+∞⎛⎫⎛⎫==-=- ⎪ ⎪++⎝⎭⎝⎭⎰⎰. 19.(本题满分12分)已知22{(,)|(1)1}D x y x y =-+≤,求|1|d d Dx y ⎰⎰. 【解】令22221{(,)|(1)1,1}D x y x y x y =-+≤+≤,则1|d d Dx y ⎰⎰)(111d d 1d d D D D x y x y -=+⎰⎰⎰⎰)(11d d 21d d DD x y x y =+-⎰⎰⎰⎰2cos 122232cos 234327d d 2d d 39ππθππθππρρθπρρθ---=-+=⎰⎰⎰⎰20.(本题满分12分)设函数()f x 在[,]a a -上有二阶连续导数.(1)证明:若(0)0f =,存在(,)a a ξ∈-,使得21()[()()]f f a f a a ξ''=+-; (2)若()f x 在(,)a a -上存在极值,证明:存在(,)a a η∈-,使得21|()||()()|2f f a f a aη''≥--.【证明】(1)将()f x 在00x =处展开为22()()()(0)(0)(0)2!2!f x f x f x f f x f x δδ''''''=++=+,其中δ介于0与x 之间.分别令x a =-和x a =,则21()()(0)()2!f a f a f a ξ'''-=-+,10a ξ-<<,22()()(0)()2!f a f a f a ξ'''=+,20a ξ<<,两式相加可得212()()()()2f f f a f a a ξξ''''+-+=,又函数()f x 在[,]a a -上有二阶连续导数,由介值定理知存在ξ∈12[,](,)a a ξξ⊂-,使得12()()()2f f f ξξξ''''+=,即21()[()()]f f a f a a ξ=-+. (2)设()f x 在0x 处取得极值,则0()0f x '=.将()f x 在0x 处展开为22000000()()()()()()()()()2!2!f x x f x x f x f x f x x x f x δδ''''--'=+-+=+,其中δ介于0x 与x 之间.分别令x a =-和x a =,则2100()()()()2!f a x f a f x η''+-=+,10a x η-<<, 2200()()()()2!f a x f a f x η''-=+,02x a η<<, 两式相减可得222010()()()()()()22f a x f a x f a f a ηη''''-+--=-, 所以222010()()()()|()()|22f a x f a x f a f a ηη''''-+--=-221020|()|()|()|()22f a x f a x ηη''''+-≤+220012|()|[()()](|()|max(|()|,|()|))2f a x a x f f f ηηηη''''''''≤++-= 2200|()|[()()]2|()|2f a x a x a f ηη''''≤++-=, 即21|()||()()|2f f a f a aη''≥--.21.(本题满分12分)设矩阵A 满足对任意的123,,x x x 均有112321233232x x x x x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A .(1)求A(2)求可逆矩阵P 与对角阵Λ,使得1-=P AP Λ.【解】(1)由112321233232x x x x x x x x x x x ++⎛⎫⎛⎫⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A ,得112233*********x x x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭A ,即方程组123111211011x x x ⎡⎤⎛⎫⎛⎫⎢⎥ ⎪ ⎪--=⎢⎥ ⎪ ⎪⎪ ⎪⎢⎥-⎝⎭⎝⎭⎣⎦0A 对任意的123,,x x x 均成立,故111211011⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A .(2)111101||211(2)211011λλλλλλλλ---=--=+-----A E ,(2)(2)(1)0λλλ=-+-+=,特征值为1232,2,1λλλ=-==-.3111002211011011000⎛⎫⎛⎫ ⎪ ⎪+=→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E ,1011⎛⎫⎪=- ⎪ ⎪⎝⎭α;1111042231013013000--⎛⎫⎛⎫ ⎪ ⎪-=-→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A E ,2431⎛⎫ ⎪= ⎪ ⎪⎝⎭α;211201************⎛⎫⎛⎫ ⎪ ⎪+=→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E ,3102-⎛⎫ ⎪= ⎪ ⎪⎝⎭α,令123041(,,)130112-⎛⎫ ⎪==- ⎪ ⎪⎝⎭P ααα ,则1200020001--⎛⎫⎪== ⎪ ⎪-⎝⎭P AP Λ.22.(本题满分12分)设随机变量X 的概率密度函数为2e (),(1e )x x f x x =-∞<<+∞+,令e XY =. (1)求X 的分布函数; (2)求Y 的概率密度函数;(3)判断Y 的数学期望是否存在.【解】(1)设X 的分布函数为()X F x ,由分布函数的定义可得2e 1(){}()d d 1,(1e )1e t xxX t tF x P X x f x x t x -∞-∞=≤===--∞<<+∞++⎰⎰.(2)设Y 的分布函数为()Y F y ,概率密度为()Y f y ,由分布函数的定义可得(){}{e }X Y F y P Y y P y =≤=≤,当0y ≤时,()0Y F y =; 当0y >时,1(){}{ln }(ln )11Y X F y P Y y P X y F y y=≤=≤==-+. 综上,00,()110.1Y y F y y y ≤⎧⎪=⎨->⎪+⎩,, 故Y 的概率密度函数200,()10.(1)Y y f y y y ≤⎧⎪=⎨>⎪+⎩,,(3)由(2)知,220011()()d d d (1)(1)Y yy E Y yf y y y y y y +∞+∞+∞-∞+-===++⎰⎰⎰20011d d 1(1)y y y y +∞+∞=-++⎰⎰ 01ln(1)=1y y +∞⎡⎤=+++∞⎢⎥+⎣⎦, 故Y 的数学期望不存在.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2003年考研数学(三)真题评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则λ的取值范围是. (2)已知曲线b x a x y +-=233与x 轴相切,则2b 可以通过a 表示为=2b(3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(= .(4)设n 维向量0,),0,,0,(<=a a a Tα;E 为n 阶单位矩阵,矩阵 TE A αα-=, T aE B αα1+=, 其中A 的逆矩阵为B ,则a= .(5)设随机变量X 和Y 的相关系数为0.9, 若4.0-=X Z ,则Y 与Z 的相关系数为 .(6)设总体X 服从参数为2的指数分布,n X X X ,,,21 为来自总体X 的简单随机样本,则当∞→n 时,∑==n i i n X n Y 121依概率收敛于.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=(A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0.(C) 在x=0处右极限不存在. (D) 有可去间断点x=0. [ ] (2)设可微函数f(x,y)在点),(00y x 取得极小值,则下列结论正确的是(A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零. (C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在. [ ] (3)设2nn n a a p +=,2nn n a a q -=, ,2,1=n ,则下列命题正确的是(A) 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq都收敛.(B) 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq都收敛.(C) 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定.(D) 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定. [ ](4)设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若A 的伴随矩阵的秩为1,则必有 (A) a=b 或a+2b=0. (B) a=b 或a+2b ≠0.(C) a ≠b 且a+2b=0. (D) a ≠b 且a+2b ≠0. [ ] (5)设s ααα,,,21 均为n 维向量,下列结论不正确的是(A) 若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 线性无关.(B) 若s ααα,,,21 线性相关,则对于任意一组不全为零的数s k k k ,,,21 ,都有.02211=+++s s k k k ααα(C) s ααα,,,21 线性无关的充分必要条件是此向量组的秩为s.(D) s ααα,,,21 线性无关的必要条件是其中任意两个向量线性无关. [ ] (6)将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正、反面各出现一次},4A ={正面出现两次},则事件(A) 321,,A A A 相互独立. (B) 432,,A A A 相互独立.(C) 321,,A A A 两两独立. (D) 432,,A A A 两两独立. [ ] 三 、(本题满分8分) 设).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ试补充定义f(1)使得f(x)在]1,21[上连续.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂v f u f ,又)](21,[),(22y x xy f y x g -=,求.2222y gx g ∂∂+∂∂ 五 、(本题满分8分) 计算二重积分 .)sin(22)(22dxdy y x e I Dy x +=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y x y x六、(本题满分9分)求幂级数∑∞=<-+12)1(2)1(1n nnx n x 的和函数f(x)及其极值. 七、(本题满分9分)设F(x)=f(x)g(x), 其中函数f(x),g(x)在),(+∞-∞内满足以下条件: )()(x g x f =',)()(x f x g =',且f(0)=0, .2)()(xe x g xf =+(1) 求F(x)所满足的一阶微分方程;(2) 求出F(x)的表达式. 八、(本题满分8分)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在)3,0(∈ξ,使.0)(='ξf九、(本题满分13分) 已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn nn n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a 其中.01≠∑=ni ia试讨论n a a a ,,,21 和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系. 十、(本题满分13分)设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T ,中二次型的矩阵A 的特征值之和为1,特征值之积为-12. (1) 求a,b 的值;(2) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵. 十一、(本题满分13分) 设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x fF(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.十二、(本题满分13分)设随机变量X 与Y 独立,其中X 的概率分布为⎪⎪⎭⎫⎝⎛7.03.021~X ,而Y 的概率密度为f(y),求随机变量U=X+Y 的概率密度g(u).1. 【分析】 当≠x 0可直接按公式求导,当x=0时要求用定义求导. 【详解】 当1>λ时,有,0,0,0,1sin 1cos )(21=≠⎪⎩⎪⎨⎧+='--x x xx x x x f 若若λλλ 显然当2>λ时,有)0(0)(lim 0f x f x '=='→,即其导函数在x=0处连续.【评注】 原题见《考研数学大串讲》P.21【例5】(此考题是例5的特殊情形). 2. 【分析】 曲线在切点的斜率为0,即0='y ,由此可确定切点的坐标应满足的条件,再根据在切点处纵坐标为零,即可找到2b 与a 的关系.【详解】 由题设,在切点处有03322=-='a x y ,有 .220a x =又在此点y 坐标为0,于是有0300230=+-=b x a x ,故 .44)3(6422202202a a a x a x b =⋅=-=【评注】 有关切线问题应注意斜率所满足的条件,同时切点还应满足曲线方程. 完全类似例题见《文登数学全真模拟试卷》数学四P.36第一大题第(3)小题. 3. 【分析】 本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,因此实际上只需在满足此不等式的区域内积分即可.【详解】 ⎰⎰-=D dxdy x y g x f I )()(=dxdy a x y x ⎰⎰≤-≤≤≤10,102=.])1[(2121012adx x x ady dx ax x=-+=⎰⎰⎰+【评注】 若被积函数只在某区域内不为零,则二重积分的计算只需在积分区域与被积函数不为零的区域的公共部分上积分即可.完全类似例题见《数学复习指南》P.191【例8.16-17】 .4. 【分析】 这里Tαα为n 阶矩阵,而22a T=αα为数,直接通过E AB =进行计算并注意利用乘法的结合律即可.【详解】 由题设,有)1)((T Ta E E AB αααα+-= =TT T T a a E αααααααα⋅-+-11=TT T T aa E αααααααα)(11-+-=T T Ta a E αααααα21-+- =E aa E T=+--+αα)121(,于是有 0121=+--a a ,即 0122=-+a a ,解得 .1,21-==a a 由于A<0 ,故a=-1.【评注】完全类似例题见《数学复习指南》P.305第2大题第(5)小题 .5.. 【分析】 利用相关系数的计算公式即可. 【详解】 因为)4.0()()]4.0([()4.0,cov(),cov(---=-=X E Y E X Y E X Y Z Y =)(4.0)()()(4.0)(Y E X E Y E Y E XY E +-- =E(XY) – E(X)E(Y)=cov(X,Y), 且.DX DZ =于是有 cov(Y ,Z)=DZDY Z Y ),cov(=.9.0),cov(==XY DYDXY X ρ【评注】 注意以下运算公式:DX a X D =+)(,).,cov(),cov(Y X a Y X =+ 完全类似例题见《数学复习指南》P.475【例3.32】的【注】 .6.. 【分析】 本题考查大数定律:一组相互独立且具有有限期望与方差的随机变量n X X X ,,,21 ,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值:).(1111∞→→∑∑==n EX n X n ni i pn i i【详解】 这里22221,,,n X X X 满足大数定律的条件,且22)(i i i EX DX EX +==21)21(412=+,因此根据大数定律有 ∑==n i i n X n Y 121依概率收敛于.21112=∑=n i i EX n【评注】 大数定律见《数学复习指南》P.484 .二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)7. 【分析】 由题设,可推出f(0)=0 , 再利用在点x=0处的导数定义进行讨论即可. 【详解】 显然x=0为g(x)的间断点,且由f(x)为不恒等于零的奇函数知,f(0)=0. 于是有 )0(0)0()(lim )(lim)(lim 00f x f x f x x f xg x x x '=--==→→→存在,故x=0为可去间断点. 【评注1】 本题也可用反例排除,例如f(x)=x, 则此时g(x)=,0,0,0,1=≠⎩⎨⎧=x x x x 可排除(A),(B),(C) 三项,故应选(D).【评注2】 若f(x)在0x x =处连续,则.)(,0)()(lim000A x f x f A x x x f x x ='=⇔=-→.本题事实上相当于考查此结论,详情可参见《考研数学大串讲》P.18的重要结论与公式.8.. 【分析】 可微必有偏导数存在,再根据取极值的必要条件即可得结论.【详解】 可微函数f(x,y)在点),(00y x 取得极小值,根据取极值的必要条件知0),(00='y x f y ,即),(0y x f 在0y y =处的导数等于零, 故应选(A).【评注1】 本题考查了偏导数的定义,),(0y x f 在0y y =处的导数即),(00y x f y ';而),(0y x f 在0x x =处的导数即).,(00y x f x '【评注2】 本题也可用排除法分析,取22),(y x y x f +=,在(0,0)处可微且取得极小值,并且有2),0(y y f =,可排除(B),(C),(D), 故正确选项为(A).9. 【分析】 根据绝对收敛与条件收敛的关系以及收敛级数的运算性质即可找出答案. 【详解】 若∑∞=1n na绝对收敛,即∑∞=1n na收敛,当然也有级数∑∞=1n na收敛,再根据2nn n a a p +=,2nn n a a q -=及收敛级数的运算性质知,∑∞=1n np与∑∞=1n nq都收敛,故应选(B).【评注】 完全类似例题见《文登数学全真模拟试卷》数学三P.23第二大题第(3)小题.10.. 【分析】 A 的伴随矩阵的秩为1, 说明A 的秩为2,由此可确定a,b 应满足的条件. 【详解】 根据A 与其伴随矩阵A*秩之间的关系知,秩(A)=2,故有0))(2(2=-+=b a b a ab b b a bbb a ,即有02=+b a 或a=b.但当a=b 时,显然秩(A)2≠, 故必有 a ≠b 且a+2b=0. 应选(C).【评注】 n (n )2≥阶矩阵A 与其伴随矩阵A*的秩之间有下列关系:.1)(,1)(,)(,0,1,*)(-<-==⎪⎩⎪⎨⎧=n A r n A r n A r n A r完全类似例题见《数学复习指南》P.329【例3.31】.11.. 【分析】 本题涉及到线性相关、线性无关概念的理解,以及线性相关、线性无关的等价表现形式. 应注意是寻找不正确的命题.【详解】(A): 若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 必线性无关,因为若s ααα,,,21 线性相关,则存在一组不全为零的数s k k k ,,,21 ,使得 02211=+++s s k k k ααα ,矛盾. 可见(A )成立.(B): 若s ααα,,,21 线性相关,则存在一组,而不是对任意一组不全为零的数s k k k ,,,21 ,都有.02211=+++s s k k k ααα (B)不成立.(C) s ααα,,,21 线性无关,则此向量组的秩为s ;反过来,若向量组s ααα,,,21 的秩为s ,则s ααα,,,21 线性无关,因此(C)成立.(D) s ααα,,,21 线性无关,则其任一部分组线性无关,当然其中任意两个向量线性无关,可见(D)也成立.综上所述,应选(B).【评注】 原命题与其逆否命题是等价的. 例如,原命题:若存在一组不全为零的数s k k k ,,,21 ,使得02211=+++s s k k k ααα 成立,则s ααα,,,21 线性相关. 其逆否命题为:若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 线性无关. 在平时的学习过程中,应经常注意这种原命题与其逆否命题的等价性.与本题完全类似例题见《数学复习指南》P.313【例3.4】.12.. 【分析】按照相互独立与两两独立的定义进行验算即可,注意应先检查两两独立,若成立,再检验是否相互独立.【详解】 因为21)(1=A P ,21)(2=A P ,21)(3=A P ,41)(4=A P , 且 41)(21=A A P ,41)(31=A A P ,41)(32=A A P ,41)(42=A A P 0)(321=A A A P ,可见有)()()(2121A P A P A A P =,)()()(3131A P A P A A P =,)()()(3232A P A P A A P =, )()()()(321321A P A P A P A A A P ≠,)()()(4242A P A P A A P ≠.故321,,A A A 两两独立但不相互独立;432,,A A A 不两两独立更不相互独立,应选(C).【评注】 本题严格地说应假定硬币是均匀的,否则结论不一定成立.本题考查两两独立与相互独立的差异,其要点可参见《数学复习指南》P.401 .13.. 【分析】 只需求出极限)(lim 1x f x -→,然后定义f(1)为此极限值即可.【详解】 因为)(lim 1x f x -→=])1(1sin 11[lim 1x x x x --+-→πππ =xx xx x πππππsin )1(sin )1(lim 111---+-→=xx x xx ππππππππcos )1(sin cos lim 111-+---+-→=xx x x xx ππππππππππsin )1(cos cos sin lim 11221----+-→ =.1π由于f(x)在)1,21[上连续,因此定义π1)1(=f ,使f(x)在]1,21[上连续.【评注】 本题实质上是一求极限问题,但以这种形式表现出来,还考查了连续的概念.在计算过程中,也可先作变量代换y=1-x ,转化为求+→0y 的极限,可以适当简化. 完全类似例题在一般教科书上都可找到,或参见《文登数学全真模拟试卷》P.数学三P.24第三题.14.. 【分析】 本题是典型的复合函数求偏导问题:),(v u f g =,)(21,22y x v xy u -==,直接利用复合函数求偏导公式即可,注意利用.22u v f v u f ∂∂∂=∂∂∂ 【详解】vfx u f y x g ∂∂+∂∂=∂∂, .vf y u f x yg ∂∂-∂∂=∂∂ 故 vf v f x v u f xy u f y xg ∂∂+∂∂+∂∂∂+∂∂=∂∂2222222222,.2222222222v f vf y u v f xy u f x yg ∂∂-∂∂+∂∂∂-∂∂=∂∂ 所以 222222222222)()(vf y x u f y x yg x g ∂∂++∂∂+=∂∂+∂∂ =.22y x +【评注】 本题考查半抽象复合函数求二阶偏导.完全类似例题《数学复习指南》P.171【例7.20,7.22】.15.. 【分析】 从被积函数与积分区域可以看出,应该利用极坐标进行计算. 【详解】 作极坐标变换:θθsin ,cos r y r x ==,有 dxdy y x e e I Dy x )sin(22)(22+=⎰⎰+-π=.sin 2022dr r red e r ⎰⎰-πππθ令2r t =,则 tdt e e I t sin 0⎰-=πππ.记 tdt e A t sin 0⎰-=π,则t t de e A --⎰-=int 0π=]cos sin [0⎰----ππtdt e t e t t=⎰--πcos t tde=]sin cos [0tdt e t e t t⎰--+-ππ=.1A e -+-π因此 )1(21π-+=e A , ).1(2)1(2πππππe e e I +=+=-【评注】 本题属常规题型,明显地应该选用极坐标进行计算,在将二重积分化为定积分后,再通过换元与分步积分(均为最基础的要求),即可得出结果,综合考查了二重积分、换元积分与分步积分等多个基础知识点.16.. 【分析】 先通过逐项求导后求和,再积分即可得和函数,注意当x=0时和为1. 求出和函数后,再按通常方法求极值.【详解】.1)1()(1212∑∞=-+-=-='n n n xxx x f 上式两边从0到x 积分,得).1ln(211)0()(202x dt t t f x f x+-=+-=-⎰ 由f(0)=1, 得).1(),1ln(211)(2<+-=x x x f 令0)(='x f ,求得唯一驻点x=0. 由于,)1(1)(222x x x f +--='' 01)0(<-=''f ,可见f(x)在x=0处取得极大值,且极大值为 f(0)=1.【评注】 求和函数一般都是先通过逐项求导、逐项积分等转化为可直接求和的几何级数情形,然后再通过逐项积分、逐项求导等逆运算最终确定和函数.完全类似例题见《数学题型集粹与练习题集》P.285数学三模拟试题(五)第八题.17.. 【分析】 F(x)所满足的微分方程自然应含有其导函数,提示应先对F(x)求导,并将其余部分转化为用F(x)表示,导出相应的微分方程,然后再求解相应的微分方程.【详解】 (1) 由)()()()()(x g x f x g x f x F '+'=' =)()(22x f x g +=)()(2)]()([2x g x f x g x f -+ =(22)x e -2F(x), 可见F(x)所满足的一阶微分方程为.4)(2)(2x e x F x F =+'(2) ]4[)(222C dx e e e x F dx xdx +⎰⋅⎰=⎰-=]4[42C dx e e x x+⎰-=.22x xCe e-+将F(0)=f(0)g(0)=0代入上式,得 C=-1. 于是.)(22x xe ex F --=【评注】 本题没有直接告知微分方程,要求先通过求导以及恒等变形引出微分方程的形式,从题型来说比较新颖,但具体到微分方程的求解则并不复杂,仍然是基本要求的范围.完全类似例题在文登数学辅导班上介绍过,也可参见《文登数学全真模拟试卷》数学三P.17第三题.18.. 【分析】 根据罗尔定理,只需再证明存在一点c )3,0[∈,使得)3(1)(f c f ==,然后在[c,3]上应用罗尔定理即可. 条件f(0)+f(1)+f(2)=3等价于13)2()1()0(=++f f f ,问题转化为1介于f(x)的最值之间,最终用介值定理可以达到目的.【详解】 因为f(x)在[0,3]上连续,所以f(x)在[0,2]上连续,且在[0,2]上必有最大值M 和最小值m ,于是M f m ≤≤)0(, M f m ≤≤)1(, M f m ≤≤)2(. 故.3)2()1()0(M f f f m ≤++≤由介值定理知,至少存在一点]2,0[∈c ,使.13)2()1()0()(=++=f f f c f因为f(c)=1=f(3), 且f(x)在[c,3]上连续,在(c,3)内可导,所以由罗尔定理知,必存在)3,0()3,(⊂∈c ξ,使.0)(='ξf【评注】 介值定理、微分中值定理与积分中值定理都是常考知识点,且一般是两两结合起来考. 本题是典型的结合介值定理与微分中值定理的情形.完全类似例题见《数学复习指南》P.128【例5.2】及P.131的【解题提示】.19.. 【分析】方程的个数与未知量的个数相同,问题转化为系数矩阵行列式是否为零,而系数行列式的计算具有明显的特征:所有列对应元素相加后相等. 可先将所有列对应元素相加,然后提出公因式,再将第一行的(-1)倍加到其余各行,即可计算出行列式的值.【详解】 方程组的系数行列式ba a a a a ba a a a ab a a a a a b a A n n n n++++= 321321321321 =).(11∑=-+ni i n a b b(1) 当0≠b 时且01≠+∑=ni iab 时,秩(A)=n ,方程组仅有零解.(2) 当b=0 时,原方程组的同解方程组为 .02211=+++n n x a x a x a 由01≠∑=ni ia可知,),,2,1(n i a i =不全为零. 不妨设01≠a ,得原方程组的一个基础解系为T a a )0,,0,1,(121 -=α,T a a )0,,1,0,(132 -=α,.)1,,0,0,(,1T n n a a -=α 当∑=-=ni iab 1时,有0≠b ,原方程组的系数矩阵可化为⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑∑∑∑====n i i n nni inni inni ia a a a a a a a a a a a a a a a a a a a 1321132131213211(将第1行的-1倍加到其余各行,再从第2行到第n 行同乘以∑=-ni ia11倍)→ ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑=1001010100113211 n ni ia a a a a( 将第n 行n a -倍到第2行的2a -倍加到第1行,再将第1行移到最后一行)→.0000100101010011⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---由此得原方程组的同解方程组为12x x =,13x x =,1,x x n = . 原方程组的一个基础解系为 .)1,,1,1(T=α【评注】 本题的难点在∑=-=ni iab 1时的讨论,事实上也可这样分析:此时系数矩阵的秩为 n-1(存在n-1阶子式不为零),且显然T)1,,1,1( =α为方程组的一个非零解,即可作为基础解系.完全类似问题2002年已考过,见2002年数学三第20.. 【分析】 特征值之和为A 的主对角线上元素之和,特征值之积为A 的行列式,由此可求出a,b 的值;进一步求出A 的特征值和特征向量,并将相同特征值的特征向量正交化(若有必要),然后将特征向量单位化并以此为列所构造的矩阵即为所求的正交矩阵.【详解】 (1)二次型f 的矩阵为.200200⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=b b a A 设A 的特征值为).3,2,1(=i i λ 由题设,有1)2(2321=-++=++a λλλ,.12242002002321-=--=-=b a b ba λλλ解得 a=1,b= -2.(2) 由矩阵A 的特征多项式)3()2(22202012+-=+----=-λλλλλλA E ,得A 的特征值.3,2321-===λλλ对于,221==λλ解齐次线性方程组0)2(=-x A E ,得其基础解系 T )1,0,2(1=ξ,.)0,1,0(2T=ξ对于33-=λ,解齐次线性方程组0)3(=--x A E ,得基础解系.)2,0,1(3T-=ξ由于321,,ξξξ已是正交向量组,为了得到规范正交向量组,只需将321,,ξξξ单位化,由此得T )51,0,52(1=η,T )0,1,0(2=η,.)52,0,51(3T -=η令矩阵[]⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==5205101051052321ηηηQ ,则Q 为正交矩阵. 在正交变换X=QY 下,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020002AQ Q T ,且二次型的标准形为.322232221y y y f -+=【评注】 本题求a,b ,也可先计算特征多项式,再利用根与系数的关系确定: 二次型f 的矩阵A 对应特征多项式为)].2()2()[2(220022b a a bb aA E +----=+----=-λλλλλλλ设A 的特征值为321,,λλλ,则).2(,2,2232321b a a +-=-=+=λλλλλ由题设得1)2(2321=-+=++a λλλ, .12)2(22321-=+-=b a λλλ解得a=1,b=2.第一步求参数见《数学复习指南》P.361重要公式与结论4,完全类似例题见《文登数学全真模拟试卷》数学三P.47第九题.21.. 【分析】 先求出分布函数F(x) 的具体形式,从而可确定Y=F(X) ,然后按定义求Y 的分布函数即可。

相关文档
最新文档