离散数学数理逻辑部分考试试题
数理逻辑考试题及答案

“离散数学”数理逻辑部分考核试题答案━━━━━━━━━━━━━━━━━━★━━━━━━━━━━━━━━━━━━一、命题逻辑基本知识(5分)1、将下列命题符号化(总共4题,完成的题号为学号尾数取4的余,完成1题。
共2分)(0)小刘既不怕吃苦,又爱钻研.解:⌝p∧q,其中,P:小刘怕吃苦;q:小刘爱钻研.(1)只有不怕敌人,才能战胜敌人.解:q→⌝p,其中,P:怕敌人;q:战胜敌人。
(2)只要别人有困难,老张就帮助别人,除非困难已经解决了。
解:⌝r→(p→p),其中,P:别人有困难;q:老张帮助别人;r:困难解决了.(3)小王与小张是亲戚。
解:p,其中,P:小王与小张是亲戚。
2、判断下列公式的类型(总共5题,完成的题号为学号尾数取5的余,完成1题.共1分)(0)A:(⌝(p↔q)→((p∧⌝q)∨(⌝p∧q)))∨ r(1)B:(p∧⌝(q→p)) ∧(r∧q)(2)C:(p↔⌝r)→(q↔r)(3)E:p→(p∨q∨r)(4)F:⌝(q→r) ∧r解:用真值表判断,A为重言式,B为矛盾式,C为可满足式,E为重言式,F为矛盾式。
3、判断推理是否正确(总共2题,完成的题号为学号尾数取2的余,完成1题。
共2分)(0)设y=2|x|,x为实数。
推理如下:如y在x=0处可导,则y在x=0处连续。
发现y在x=0处连续,所以,y在x=0处可导。
解:设y=2|x|,x为实数.令P:y在x=0处可导,q:y在x=0处连续。
由此,p为假,q为真。
本题推理符号化为:(p→q)∧q→p。
由p、q的真值,计算推理公式真值为假,由此,本题推理不正确。
(1)若2和3都是素数,则6是奇数。
2是素数,3也是素数.所以,5或6是奇数。
解:令p:2是素数,q:3是素数,r:5是奇数,s:6是奇数。
由此,p=1,q=1,r=1,s=0.本题推理符号化为:((p ∧ q) →s)∧p ∧q) →(r ∨ s)。
计算推理公式真值为真,由此,本题推理正确.二、命题逻辑等值演算(5分)1、用等值演算法求下列公式的主析取范式或主合取范式(总共3题,完成的题号为学号尾数取3的余,完成1题。
离散数学试题及答案

离散数学试题及答案一、单项选择题(每题2分,共20分)1. 在集合论中,空集的表示符号是()。
A. {0}B. ∅C. {}D. Ø答案:B2. 如果A和B是两个集合,那么A∩B表示()。
A. A和B的并集B. A和B的交集C. A和B的差集D. A和B的补集答案:B3. 命题逻辑中,p ∧ q的真值表中,当p和q都为假时,p ∧ q的值为()。
A. 真B. 假C. 不确定D. 无定义答案:B4. 在图论中,如果一个图中的任意两个顶点都由一条边相连,则称这个图为()。
A. 连通图B. 无向图C. 完全图D. 有向图答案:C5. 布尔代数中,逻辑或运算符表示为()。
A. ∧B. ∨C. ¬D. →答案:B6. 一个关系R是从集合A到集合B的二元关系,如果对于A中的每个元素x,B中都存在唯一的元素y与之对应,则称R为()。
A. 单射B. 满射C. 双射D. 单满射答案:C7. 在命题逻辑中,如果p是假命题,那么¬p的值为()。
A. 真B. 假C. 不确定D. 无定义答案:A8. 一个有向图是无环的,那么它一定是()。
A. 有向无环图B. 无向无环图C. 有向有环图D. 无向有环图答案:A9. 在集合论中,如果集合A是集合B的子集,那么A⊆B表示()。
A. A包含于BB. A是B的真子集C. A是B的超集D. A与B相等答案:A10. 命题逻辑中,p → q的真值表中,当p为真,q为假时,p → q 的值为()。
A. 真B. 假C. 不确定D. 无定义答案:B二、多项选择题(每题3分,共15分)1. 在集合论中,以下哪些符号表示的是集合的并集()。
A. ∪B. ∩C. ⊆D. ⊂答案:A2. 在图论中,以下哪些说法是正确的()。
A. 有向图可以是无环的B. 无向图可以是无环的C. 有向图一定是连通的D. 无向图一定是连通的答案:A B3. 在命题逻辑中,以下哪些符号表示的是逻辑与()。
《离散数学》复习题及答案

页眉内容《离散数学》试题及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P答:(2),(3),(4),(5),(6)4、公式∀x((A(x)→B(y,x))∧∃z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。
答:x,y, x,z5、判断下列语句是不是命题。
若是,给出命题的真值。
( )(1)北京是中华人民共和国的首都。
(2) 陕西师大是一座工厂。
(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。
(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。
答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。
(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1)PP⌝P→⌝↔(4)QQ→⌝(2)QP⌝→(3)Q8、设个体域为整数集,则下列公式的意义是( )。
(1) ∀x∃y(x+y=0) (2) ∃y∀x(x+y=0)答:(1)对任一整数x存在整数 y满足x+y=0(2)存在整数y对任一整数x满足x+y=0 9、设全体域D是正整数集合,确定下列命题的真值:(1) ∀x∃y (xy=y) ( ) (2) ∃x∀y(x+y=y) ( )(3) ∃x∀y(x+y=x) ( ) (4) ∀x∃y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式∃x(P(x)∨Q(x))在哪个个体域中为真?( )(1) 自然数(2) 实数 (3) 复数(4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。
离散数学 练习-第1部分 数理逻辑(解答)

5、下列命题公式为重言式的是( D ),为矛盾式的是( C )
A、(P→Q)⋀Q⋀R
B、(P→P)→Q
C、(Q⋁R)⋀R
D、((P→Q)⋀(Q→R))→(P→R)
6、命题公式 (P→Q) 的主合取范式中含有( D )个极大项, 主析取范式中含有( B )个极小项 A、0 B、1 C、2 D、3
7、下列式子不正确的是( D ) A、∃xA(x) ⇔ ∀xA(x) B、∃x(A→B(x)) ⇔ A→∃xB(x) C、∀xA(x) ⇔ ∃xA(x) D、∀x(A(x)→B) ⇔ ∀xA(x)→B
以下方案任选一:①A不去,B不去,C去;②A不去,B去,C不去; ③A去,B不去,C去
9、证明下列谓词公式为永真式
(xF( x) yG( y)) (yG( y) xF( x))
证明:题中的谓词公式为 (P Q) (Q P) 的代换实例
(P Q) (Q P) (P Q) (Q P) (P Q) (P Q) 1 (A A 1)
(P Q R) (P Q R) (P Q R) (P Q R) (P Q R) (P Q R) (P Q R) (P Q R) m001 m000 m011 m111 m0 m1 m3 m(7 主析取范式) M2 M4 M5 M(6 主合取范式) (P Q R) (P Q R) (P Q R) (P Q R)
命题“并不是所有汽车都比火车跑得慢”可符号化为( C )
命题“说汽车都比火车快是不对的”可符号化为( C ) A、∃x(F(x)∧∀y(G(y)→H(x,y))) B、∃x∃y(F(x)∧G(y)→H(x,y)) C、∀x∀y(F(x)∧G(y)→H(x,y)) D、∀x(F(x)∧∃y(G(y)→H(x,y)))
《离散数学》题库及答案

《离散数学》题库及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?()(1)Q=>Q→P(2)Q=>P→Q(3)P=>P→Q(4)P(PQ)=>P答:(1),(4)2、下列公式中哪些是永真式?()(1)(┐PQ)→(Q→R)(2)P→(Q→Q)(3)(PQ)→P(4)P→(PQ)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式()(1)P=>PQ(2)PQ=>P(3)PQ=>PQ(4)P(P→Q)=>Q(5)(P→Q)=>P(6)P(PQ)=>P答:(2),(3),(4),(5),(6)4、公式某((A(某)B(y,某))zC(y,z))D(某)中,自由变元是(变元是()。
答:某,y,某,z5、判断下列语句是不是命题。
若是,给出命题的真值。
((1)北京是中华人民共和国的首都。
(2)陕西师大是一座工厂。
),约束)(3)你喜欢唱歌吗?(4)若7+8>18,则三角形有4条边。
(5)前进!(6)给我一杯水吧!答:(1)是,T(2)是,F(3)不是(4)是,T(5)不是(6)不是6、命题“存在一些人是大学生”的否定是(),而命题“所有的人都是要死的”的否定是()。
答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为()。
(1)只有在生病时,我才不去学校(2)若我生病,则我不去学校(3)当且仅当我生病时,我才不去学校(4)若我不生病,则我一定去学校答:(1)QP(2)PQ(3)PQ(4)PQ8、设个体域为整数集,则下列公式的意义是()。
(1)某y(某+y=0)(2)y某(某+y=0)答:(1)对任一整数某存在整数y满足某+y=0(2)存在整数y对任一整数某满足某+y=09、设全体域D是正整数集合,确定下列命题的真值:(1)某y(某y=y)()(2)某y(某+y=y)()(3)某y(某+y=某)()(4)某y(y=2某)()答:(1)F(2)F(3)F(4)T10、设谓词P(某):某是奇数,Q(某):某是偶数,谓词公式某(P(某)Q(某))在哪个个体域中为真()2(1)自然数(2)实数(3)复数(4)(1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。
数理逻辑习题离散数学

第1章 命题逻辑一、单项选择题1. 下列命题公式等值的是( ) BB A A Q P Q Q P Q B A A B A A QP Q P ),()D (),()C ()(),()B (,)A (∧∨⌝∨∨⌝∨→→→⌝→→∨⌝∧⌝2. 设命题公式G :)(R Q P ∧→⌝,则使公式G 取真值为1的P ,Q ,R 赋值分别是 ( ) 0,0,1)D (0,1,0)C (1,0,0)B (0,0,0)A (3. 命题公式Q Q P →∨)(为 ( ) (A) 矛盾式(B) 仅可满足式 (C) 重言式 (D) 合取范式4 命题公式)(Q P →⌝的主析取范式是( ). (A) Q P ⌝∧ (B) Q P ∧⌝ (C) Q P ∨⌝ (D) Q P ⌝∨ 5. 前提条件P Q P ,⌝→的有效结论是( ). (A) P(B)P(C) Q(D)Q6. 设P :我将去市里,Q :我有时间.命题“我将去市里,仅当我有时间时”符号化为( )Q P Q P Q P PQ ⌝∨⌝↔→→)D ()C ()B ()A (二、填空题1. 设命题公式G :P⌝(Q P ),则使公式G 为假的真值指派是2. 设P :我们划船,G :我们跑步,那么命题“我们不能既划船,又跑步”可符号化为3. 含有三个命题变项P ,Q ,R 的命题公式P Q 的主析取范式是4. 若命题变元P ,Q ,R 赋值为(1,0,1),则命题公式G =)())((Q P R Q P ∨⌝↔→∧的真值是5. 命题公式P⌝P Q 的类型是 .6. 设A ,B 为任意命题公式,C 为重言式,若C B C A ∧⇔∧,那么B A ↔是式(重言式、矛盾式或可满足式)三、解答化简计算题1. 判别下列语句是否命题如果是命题,指出其真值.(1) 中国是一个人口众多的国家. (2) 存在最大的质数.(3) 这座楼可真高啊! (4) 请你跟我走! (5) 火星上也有人.2.作命题公式))(()(P Q P Q P ∨∧→→的真值表,并判断该公式的类型.3. 试作以下二题:(1) 求命题公式(PQ )(P Q )的成真赋值.(2) 设命题变元P ,Q ,R 的真值指派为(0,1,1),求命题公式))()(()(Q R Q P R P →⌝∨→⌝∧↔的真值.4. 化简下式命题公式))()((P Q P Q P ∧⌝∧⌝∨∧5. 求命题公式))()((Q P P Q P ∧⌝∧→→的主合取范式.6. 求命题公式)()(Q P Q P ⌝→∧→⌝的主析取范式,并求该命题公式的成假赋值.7. 求命题公式)()(Q P Q P ⌝∨⌝∧∧的真值表. 四、证明题1. 证明S S P R R Q Q P ⌝⇒⌝∨∧⌝∧∨⌝∧→)()()(2. 构造推理证明:S R Q P R S Q P →⇒∧→∧→→)())((3. 证明命题公式)()(Q R Q P →∨→与Q R P →∧)(有相同的主析取范式.参考答案一、1. C 2. D 3. B 4. A 5. D 6. B二、1. 1,0;1,1 2. )(Q P ∧⌝或Q P ⌝∨⌝ 3. (P Q R )(P QR )4. 05. 非永真式的可满足式6. 重言 三、1. (1) 是命题,真值为1.(2) 是命题,真值为0. (3), (4)不是命题. (5) 是命题.1. 判别下列语句是否命题如果是命题,指出其真值.(1) 中国是一个人口众多的国家. (2) 存在最大的质数.(3) 这座楼可真高啊! (4) 请你跟我走! (5) 火星上也有人.2. 命题公式))(()(P Q P Q P ∨∧→→的真值表 P Q P Q Q P ∧P Q P ∨∧)())(()(P Q P Q P ∨∧→→0 0 1 0 0 0 0 1 1 0 0 0 1111 1 1 1 1 1 原式为可满足式.3. (1) (P Q )(P Q )(P Q )(P Q )(P P )Q Q可见(PQ )(P Q )的成真赋值为(0,1),(1,1).(2) ))()(()(Q R Q P R P →⌝∨⌝→⌝∧↔0))10()01(()10(⇔→∨→∧↔⇔4.))()((P Q P Q P ∧⌝∧⌝∨∧P Q P Q P ∧⌝∧⌝∨∧⇔)()()()(P P Q P Q P ∧⌝∧⌝∨∧∧⇔0)(∨∧⇔Q PQ P ∧⇔5. ))()((Q P P Q P ∧⌝∧→→ ))()((Q P P Q P ∧⌝∧∨⌝∨⌝⇔)())(Q P P Q P Q P ∧⌝∧∨∧⌝∧⌝∨⌝⇔ )00(∧∨⌝⇔P )(Q Q P ⌝∧∨⌝⇔)()(Q P Q P ⌝∨⌝∧∨⌝⇔6. )()()()(Q P Q P Q P Q P ⌝∨⌝∧⌝∧⇔⌝→∧→⌝ Q P ⌝∧⇔因为成真赋值是(1,0),故成假赋值为(0,0),(0,1),(1,1)7. 作真值表PQ P QPQPQ (P Q )(PQ ) 0 0 0 1 1 1 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0 111四、证明题1. 证明S S P R R Q Q P ⌝⇒⌝∨∧⌝∧∨⌝∧→)()()( ①Q R P②R P③Q T ①,②析取三段论 ④P Q P ⑤P ⌝ T ③,④拒取式 ⑥PS P⑦S ⑤,⑥析取三段论 2. 构造推理证明:S R Q P R S Q P →⇒∧→∧→→)())((.前提:Q P R S Q P ,)),((→→→ 结论:S R → 证明:① R附加前提② RP前提引入 ③ P①,②假言推理④P (Q S ) 前提引入 ⑤ Q S ③,④假言推理 ⑥ Q 前提引入⑦ S⑤,⑥假言推理3. 证明命题公式)()(Q R Q P →∨→与Q R P →∧)(有相同的主析取范式. 证明.方法1.)()(Q R Q P →∨→)()(Q R Q P ∨⌝∨∨⌝⇔∨∧⌝⇔Q R P )(Q R P →∧)(因为两命题公式等值,由主合取范式的惟一性,可知两命题公式的主合取范式是相同. 3 证明命题公式)()(Q R Q P →∨→与Q R P →∧)(有相同的主析取范式.方法2.)()(Q R Q P →∨→)()(Q R Q P ∨⌝∨∨⌝R Q P Q R P ⌝∨∨⌝⇔∨⌝∨⌝⇔ R Q P Q R P Q R P ⌝∨∨⌝⇔∨⌝∨⌝⇔→∧)(因为它们的主合取范式相同,可知它们的主析取范式也相同.第2章谓词逻辑一、 单项选择题1. 谓词公式)())()((x Q y yR x P x →∃∨∀中量词x 的辖域是( ) (A) ))()((y yR x P x ∃∨∀ (B) P (x ) (C) )()(y yR x P ∃∨ (D) )(x Q2. 谓词公式∃xA (x )∧∃xA (x )的类型是( )(A) 永真式 (B) 矛盾式(C) 非永真式的可满足式 (D) 不属于(A ),(B ),(C )任何类型 3 设个体域为整数集,下列公式中其真值为1的是( )(A) )0(=+∃∀y x y x (B) )0(=+∀∃y x x y(C))0(=+∀∀y x y x (D) )0(=+∃⌝∃y x y x4 设L (x ):x 是演员,J (x ):x 是老师,A (x ,y ):x 佩服y. 那么命题“所有演员都佩服某些老师”符号化为( ) (A) ),()(y x A x xL →∀ (B) ))),()(()((y x A y J y x L x ∧∃→∀ (C) )),()()((y x A y J x L y x ∧∧∃∀ (D) )),()()((y x A y J x L y x →∧∃∀5. 设个体域是整数集合,P 代表x y ((x y )(x y 0)),下面4个命题中为真的是( )(A) P 是真命题 (B) P 是逻辑公式,但不是命题 (C) P 是假命题 (D) P 不是逻辑公式6. 表达式))(),(())(),((z zQ y x R y z Q y x P x ∀→∃∧∨∀中x ∀的辖域是( )(A) P (x ,y ) (B)R (x ,y ) (C)P (x ,y )R (x ,y ) (D) P (x ,y )Q (z )二、 填空题1. 设个体域D ={1,2},那么谓词公式)()(y yB x xA ∀∨∃消去量词后的等值式为 .2. 设个体域D ={a ,b },公式)),()((y x yH x G x ∃→∀消去量词化为3. 设N (x ):x 是自然数,Z (y );y 是整数,则命题“每个自然数都是整数,而有些整数不是自然数”符号化为参考答案一、1. C ;2.. B ;3 A ;4. B ;5. A 6. D二、1. A (1)A (2)(B (1)B (2)) 2. (G (a )(H (a ,a )H (a ,b ))) (G (b )(H (b ,a )H (b ,b )))3. ))()(())()((x N x Z x x Z x N x ⌝∧∃∧→∀。
离散数学考试题及答案

离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。
B. 如果今天是周一,那么明天是周三。
C. 如果今天是周一,那么明天是周四。
D. 如果今天是周一,那么明天是周五。
答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。
答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。
答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。
答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。
答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。
答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。
例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。
2. 解释什么是逻辑蕴含,并给出一个例子。
答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。
例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。
如果今天是周一,那么根据逻辑蕴含,明天必须是周二。
3. 请描述什么是二叉搜索树,并给出它的一个性质。
答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。
它的一个性质是中序遍历可以得到一个有序序列。
四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。
离散数学-数理逻辑测验试题

数理逻辑测验一.将下列命题符号化(有量词的用谓词符号,没有的用命题符号)1. 没有不犯错误的人。
2. 金子是闪光的,但闪光的不一定是金子。
3.每个人或者喜欢乘汽车,或者喜欢骑自行车。
4.我虽然生病但我仍然去学校。
5.仅当你走,我将留下。
二.令),,(z y x S 表示“x+y=z”,),(y x G 表示“x=y”,),(y x L 表示”x<y”, 其中个体域为自然数集,用以上符号表示命题:(1) 并非对一切x ,都存在y ,使得y x ≤。
(2) (2)对任意的x ,若x+y=x ,当且仅当y=0。
三.简答题1. 写出R Q P →→)(的析取范式,合取范式。
2. 设P :今天下雨。
Q :我去上街。
R :我有空。
用自然语言表达以下命题:)(P R Q ⌝∧↔,)(Q R ∨⌝。
3. 设Q P ,的真值为0,S R ,的真值为1,求以下命题的真值:(1))()(S R Q P∨⌝∧↔,(2))()))(((S R P R QP ⌝∨→⌝∧→∨⌝。
4.n 个原子命题变元12,,,n P P P L 可构成多少个互不等值的命题公式?5. 写出谓词公式 )),()()()(()),()()((z y Q z y P y y x Q x P x ∃∧∃→→∀的前束范式。
四.证明题1.)()(R P Q R Q P→→⇔→→。
2.Q P Q Q P∨⇒→→)(。
3.)()())()((y yQ x xP y Q x P y x ∀→∃⇔→∀∀。
五.计算题a) 求公式)()(Q P Q P ⌝↔→⌝∨⌝的主析取范式,主合取范式。
b) 设12:>P ;3:)(≤x x Q ;6:)(≥x x R ;5=a 。
而且论域为{-2,3,6},求)())()((a R x Q Px ∨→∀的值。
六.用形式推理证明 (1)S Q P S R Q R Q P →⇒→→∨⌝∨⌝),(),((2)(()(()())),()(()())x P x Q x R x xP x x P x R x ∀→∧∃⇒∃∧七.符号化下列命题,并用推理理论证明其结论是否有效。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学形成性考核作业(四)
数理逻辑部分
本课程形成性考核作业共4次,内容由中央电大确定、统一布置。
本次形考作业是第四次作业,大家要认真及时地完成数理逻辑部分的形考作业,字迹工整,抄写题目,解答题有解答过程。
第6章命题逻辑
1.判断下列语句是否为命题,若是命题请指出是简单命题还是复合命题.
(1)8能被4整除.
(2)今天温度高吗?
(3)今天天气真好呀!
(4)6是整数当且仅当四边形有4条边.
(5)地球是行星.
(6)小王是学生,但小李是工人.
(7)除非下雨,否则他不会去.
(8)如果他不来,那么会议就不能准时开始.
解:此题即是教材P.184习题6(A)1
(1)、(4)、(5)、(6)、(7)、(8)是命题,(2)、(3)不是命题。
其中(1)、(5)是简单命题,(4)、(6)、(7)、(8)是复合命题。
2.翻译成命题公式
(1)他不会做此事.
(2)他去旅游,仅当他有时间.
(3)小王或小李都会解这个题.
(4)如果你来,他就不回去.
(5)没有人去看展览.
(6)他们都是学生.
(7)他没有去看电影,而是去观看了体育比赛.
(8)如果下雨,那么他就会带伞.
解:此题即是教材P.184习题6(A)2
会带伞。
:如果下雨,那么他就:他会带伞。
:天下雨。
)(。
是去观看了体育比赛。
:他没有去看电影,而。
:他去观看了体育比赛:他去看电影。
)(:他们都是学生。
)(:没有人去看展览。
:有人去看展览。
)(去。
:如果你来,他就不回:他回去。
:你来。
)(道题。
:小王或小李都会解这:小李会解这道题。
:小王会解这道题。
)(时间。
:他去旅游,仅当他有:他有时间。
:他去游泳。
)(:他不会做此事。
:他会做此事。
)(Q P Q P Q P Q P P P P Q P Q P Q P Q P Q P Q P P P →∧⌝⌝⌝→∧→⌝87654321
3.设P ,Q 的真值为1;R ,S 的真值为0,求命题公式(P ∨Q )∧R∨S ∧Q 的真值. 解:此题即是教材P.184习题6(A )4(2)
(P ∨Q )真值为1,(P ∨Q)∧R真值为0,S ∧Q 真值为0,
从而(P ∨Q )∧R ∨S ∧Q 真值为0。
4.试证明如下逻辑公式
(1) ┐(A ∧┐B )∧(┐B ∨C )∧┐C ⇒ ┐(A ∨C )
(2) (P →Q)∧(Q →R)∧┐R ⇒⌝P
(此题即是教材P .185习题6(A )5(1)、(4)) )
7()()8()6)(5()
7()4)(2()
6()4)(3()
5()
4()
3()1()
2()()
1()(),(),(由由由由由证明:结论:
前提:
T B A T B A T A T B P C P C B T B A P B A B A C C B B A ∨⌝⌝∧⌝⌝⌝⌝∨⌝∨⌝⌝∧⌝∨⌝⌝∨⌝⌝∧⌝ )
4)(3()5()
4()2)(1()
3()
2()
1(),(),(由由证明:结论:
前提:
T P P R T R P P R Q P Q P P R R Q Q P ⌝⌝→→→⌝⌝→→。