塔式与槽式太阳能热发电技术

合集下载

蝶式、槽式、塔式太阳能发电区分详解

蝶式、槽式、塔式太阳能发电区分详解
死亡射线
耗资22亿美元的“烧鸟项目”
幻灯片64
幻灯片65
太阳能烟囱发电
在一大片圆形土地上盖满玻璃,圆中心建一高大的烟囱,烟囱底部装有风力透平机。透明玻璃盖板下被太阳加热的空气通过烟囱被抽走,驱动风力透平机发电。
1983年,西班牙建成一座太阳热气流(即太阳烟囱)发电站,发电功率50kW,用于进行探索性试验研究。
气动阻力低、发射质量小,因此近年来研发主要集中于具有更小单位功率质量比的空间电源应用领域,今后的研究方向主要是提高系统的稳定性和降低系统发电成本两个方面。
幻灯片18
碟式系统的缺点
1)造价昂贵,在三种系统中也是位居首位,目前碟式热发电系统的初投资成本高达4.7~6.4万元/kW;
(2)尽管碟式系统的聚光比非常高,可以达到2000℃的高温,但是对于目前的热发电技术而言,如此高的温度并不需要甚至是具有破坏性的。所以,碟式系统的接收器一般并不放在焦点上,而是根据性能指标要求适当地放在较低的温度区内,这样高聚光度的优点实际上并不能得到充分的发挥;
电站效率15.6%
诺贝尔奖,意大利物理学家鲁比亚主导。
幻灯片34
菲涅尔式太阳能发电系统
菲涅尔反射,线聚焦
结构简单,传动结构易于操作。
美国加州5MW示范,世界上第一个菲涅尔聚焦电站,水蒸气介质,温度450℃。
西班牙1.4MW示范,二期项目30MW
皇明,2.5MW示范,钢管镀膜。工业利用和供热。
幻灯片35
电力品质好、上网价格较低
幻灯片59
吸热器热损失:
辐射损失、对流损失、传导损失
吸热器黑色,辐射后白色
辐射温度超过1200℃,没有耐高温透光材料,吸热器敞开布置。对流损失大。
幻灯片60
世界最大塔式太阳能发电装置

光热技术路线

光热技术路线

光热技术路线指的是太阳能光热发电的技术路线,主要有以下三种:
1.塔式光热发电技术:塔式光热发电系统通过反射镜将太阳光聚焦到集热塔上,
在塔顶安装有吸热器,吸热器将聚焦后的太阳光转化为热能,然后通过换热器将热能转化为蒸汽,驱动汽轮机发电。

塔式光热发电技术的优点是聚光比高、热效率高、储能能力强等。

2.槽式光热发电技术:槽式光热发电系统通过槽式抛物面反射镜将太阳光聚焦到
集热管上,集热管内装有吸热介质,集热管接受聚焦后的太阳光能量后加热吸热介质,将热能转化为蒸汽,驱动汽轮机发电。

槽式光热发电技术的优点是聚光比相对较高、运行温度高、可靠性好等。

3.线性菲涅尔式光热发电技术:线性菲涅尔式光热发电系统通过大面积的线性反
射镜将太阳光聚焦到接收器上,接收器接受聚焦后的太阳光能量后加热内部的工质,将热能转化为蒸汽,驱动汽轮机发电。

线性菲涅尔式光热发电技术的优点是聚光比和运行温度相对较高、系统集成度高、易于维护等。

以上是三种主流的光热技术路线,每种路线都有其自身的优缺点和适用场景。

在实际应用中,可以根据具体需求选择合适的技术路线。

光热发电(槽、塔、碟)

光热发电(槽、塔、碟)

光热发电太阳能光热发电是指利用大规模阵列抛物或碟形镜面收集太阳热能,通过换热装置提供蒸汽,结合传统汽轮发电机的工艺,从而达到发电的目的。

采用太阳能光热发电技术,避免了昂贵的硅晶光电转换工艺,可以大大降低太阳能发电的成本。

而且,这种形式的太阳能利用还有一个其他形式的太阳能转换所无法比拟的优势,即太阳能所烧热的水可以储存在巨大的容器中,在太阳落山后几个小时仍然能够带动汽轮发电。

目录简介太阳能光热发电是新能源利用的一个重要方向。

太阳能光热发电是太阳能利用中的重要项目,只要将太阳能聚集起来,加热工质,驱动汽轮发电机即能发电。

1950年,原苏联设计了世界上第一座太阳能塔式电站,建造了一个小型试验装置。

太阳能光热发电70年代,太阳电池价格昂贵,效率较低,相对而言,太阳热发电效率较高,技术比较成熟,因此当时许多工业发达国家都将太阳热发电作为重点,投资兴建了一批试验性太阳能热发电站。

据不完全统计,从1981~1991年,全世界建造的太阳能热发电站(500kw以上)约有20余座,发电功率最大达80mw0按太阳能采集方式划分,太阳能热发电站主要有塔式、槽式和盘式三类。

这些电站基本上都是试验性的。

例如,日本按照阳光计划建造的一座1mw塔式电站,一座1mw槽式电站,完成了试验工作后即停止运行。

美国10mw太阳1号塔式电站,进行一段时间试验运行后及时进行技术总结,很快将它改建为太阳:号电站,并于1996年1月投入运行。

80年代中期,人们对建成的太阳能热发电站进行技术总结后认为,虽然太阳能热发电在技术上可行,但投资过大(美国太阳:号电站投资为1.42亿美元),且降低造价十分困难,所以各国都改变了原来的计划,使太阳能热发电站的建设逐渐冷落下来。

例如,美国原计划在1983~1995年建成5~10万kw和10~30万kw太阳能热电站,结果没有实现。

4 t7 正当人们怀疑太阳能热发电的时候,美国和以色列联合组成的路兹太阳能热发电国际有限公司,自1980年开始进行太阳热发电技术研究,主要开发槽式太阳能热发电系统,5年后奇迹般地进入商品化阶段。

三种太阳能热发电原理

三种太阳能热发电原理

三种太阳能热发电原理随着环保意识的不断提升,太阳能热发电技术得到了越来越广泛的应用和关注。

太阳能热发电是一种利用太阳辐射热能转换为电能的技术,相比于传统的化石能源,具有环保、可再生、无污染等优点。

本文将介绍三种主要的太阳能热发电原理。

一、塔式太阳能热发电原理塔式太阳能热发电是一种利用太阳能热量发电的技术,主要包括太阳能集热器、储热系统、蒸汽发生器、汽轮机和发电机等组成部分。

其原理是将太阳辐射能通过反射镜或聚光镜集中到一个点上,使集热器内的工质受热,产生高温高压的蒸汽,驱动汽轮机发电。

该技术具有集热效率高、发电效率高、功率密度大等优点,但制造成本高、维护难度大等缺点。

二、槽式太阳能热发电原理槽式太阳能热发电是一种将太阳能转化为电能的技术,主要包括太阳能集热器、储热系统、蒸汽发生器、汽轮机和发电机等组成部分。

其原理是将太阳辐射能通过槽式集热器集中到一条管道内,使工质受热,产生高温高压的蒸汽,驱动汽轮机发电。

该技术具有产能稳定、制造成本低、维护难度小等优点,但集热效率低、占地面积大等缺点。

三、抛物面膜式太阳能热发电原理抛物面膜式太阳能热发电是一种利用太阳能热量发电的技术,主要包括太阳能集热器、储热系统、蒸汽发生器、汽轮机和发电机等组成部分。

其原理是将太阳辐射能通过抛物面膜反射到集热管内,使工质受热,产生高温高压的蒸汽,驱动汽轮机发电。

该技术具有集热效率高、制造成本低、占地面积小等优点,但抛物面膜制造难度大、维护成本高等缺点。

总之,太阳能热发电技术是一种非常有前途的发电方式,具有环保、可再生、无污染等优点。

随着技术的不断进步和应用的不断推广,相信太阳能热发电技术将会在未来的能源结构中扮演越来越重要的角色。

太阳能热发电系统组成

太阳能热发电系统组成

太阳能热发电系统组成
太阳能热发电是利用集热器将太阳辐射能转换成热能并通过热力循环过程进行发电,是太阳能热利用的重要方面.80年代以来美、欧、澳等国相继建立起不同型式的示范装置,促进了热发电技术的发展。

世界现有的太阳能热发电系统大致有三类:槽式线聚焦系统、塔式系统和碟式系统。

太阳能热发电系统的分类1)槽式线聚焦系统
该系统是利用抛物柱面槽式反射镜将阳光聚焦到管状的接收器上,并将管内传热工质加热,在换热器内产生蒸汽,推动常规汽轮机发电
2)塔式系统
塔式太阳能热发电系统的基本型式是利用一组独立跟踪太阳的定日镜,将阳光聚焦到一个固定在塔顶部的接收器上,用以产生高温。

3)碟式系统
抛物面反射镜/斯特林系统是由许多镜子组成的抛物面反射镜组成,接收器在抛物面的焦点上,接收器内的传热工质被加热到750℃左右,驱动发动机进行
4)三种系统性能比较
三种系统目前只有槽式线聚焦系统实现了商业化,其他两种处在示范阶段,有实现商业化的可能和前景。

三种系统均可用单独使用太阳能运行,也可安装成燃料混合系统。

所以接下来跟随小编详细的了解一下槽式线聚焦系统。

槽式太阳能热发电系统槽式太阳能热发电系统全称为槽式抛物面反射镜太阳能热发电系统,是将多个槽型抛物面聚光集热器经过串并联的排列,加热工质,产生高温蒸汽,驱动汽轮机发电机组发电。

一、槽式太阳能热发电系统的工作原理
槽式太阳能热发电系统的原理:采用只向一个方向弯曲的抛物面槽形镜面集热器将太阳光。

2023塔式及槽式光热发电技术分析及设计参考资料

2023塔式及槽式光热发电技术分析及设计参考资料
6. 塔式太阳能光热电站镜场设计
研究如何做到布局紧凑、合理,管线连接短捷、整齐。
8
7. 编写光热发电技术方案主要内容
7. 光热发电储热系统设计 光热储热系统的系统组成、储热形式、关键技术、性能参数和技术指标进行设计研究,一方面对熔融盐储 热系统进行分析,主要包括熔融盐泵、熔融盐蒸汽发生器、熔融盐系统伴热等,另一方面对熔融盐储热系 统的相关计算进行研究,确定设计方案。 8. 光热工艺系统集成设计
《太阳能熔盐(硝基型)国家标准》(GB∕T 36376-2018 )
《太阳能光热发电站调度命名规则》(GB/T 40866-2021)
《太阳能热发电厂储热系统设计规范》(DL∕T 5622-2021)
《光热发电站性能评估技术规范》(GB/T 40614-2021)
《太阳能热发电站储热系统性能评价导则》(GB/T 41308-2022)
《太阳能热发电厂蒸汽发生系统设计规范》(DL/T 5605—2021)
12
9. 世界部分大型光热电站汇总
项目名称 Noor Energy I
Ivanpah Solana Ashalim Cerro Dominador 乌拉特中旗 敦煌 Xina Solar One
项目地 阿联酋
美国 美国 以色列 智利 中国 中国 南非
➢ 为了降低安装难度,提高装配效率,大尺寸集热器必然 朝向部件标准化、轻量化、坚固化来发展。
6
6. 熔盐储热
光热发电在发电稳定性优于光伏发电,靠的就是拥有储热系 统。储热系统用的储热介质多为熔盐,常见的光热熔盐品种 有 二 元 盐 ( 40%KNO3+60%NaNO3 ) 、 三 元 盐 (53%KNO3+7%NaNO3+40%NaNO2)和低熔点熔盐产 品等。对于光热发电而言,二元熔盐的应用较为广泛及成熟。 技术优势

槽式太阳能热发电技术的现状及进展

槽式太阳能热发电技术的现状及进展

槽式太阳能热发电技术的现状及进展
槽式太阳能热发电技术是一种利用镜面反射将太阳热能聚焦到管路中的流体介质上,通过流体介质中的高温高压水汽推动汽轮机发电的技术。

目前,槽式太阳能热发电技术已经取得了一定的进展。

在技术方面,槽式太阳能热发电技术相对于其他太阳能热发电技术来说具有更高的温度和更高的发电效率。

槽式太阳能热发电技术可以将太阳能的集中度提高到非常高的水平,从而使得其发电效率相对较高。

此外,槽式太阳能热发电技术在控制系统、镜面制造等方面也有所进展,使得系统的稳定性和可靠性得到了提高。

在应用方面,槽式太阳能热发电技术已经在一些国家开始大规模商业化应用,如西班牙的塞维利亚槽式太阳能热发电站。

这些发电站可以实现大规模的发电,为电网供电。

同时,一些国家也在进一步推进槽式太阳能热发电技术的研究和发展,增加其在能源产业中的占比。

然而,槽式太阳能热发电技术也面临一些挑战。

首先,槽式太阳能热发电技术需要大面积的镜面反射器来聚焦太阳光线,因此对土地资源要求较高。

其次,槽式太阳能热发电技术的建设成本较高,需要大规模的投资。

再次,槽式太阳能热发电技术对太阳光照的依赖较强,天气条件对其发电效率有一定影响。

总体来说,槽式太阳能热发电技术在技术和应用方面都取得了一定的进展,但仍面临一些挑战。

随着技术的不断进步和成本的降低,相信槽式太阳能热发电技术
在未来会有更广阔的应用前景。

塔式太阳能热发电技术

塔式太阳能热发电技术

关于塔式太阳能热发电技术北京机械工业自动化研究所穆勒电气(上海)有限公司关于塔式太阳能热发电技术1.前言自从有了人类以来,随着人们对化石能源的疯狂掠取及不合理利用,目前已造成化石能源的严重短缺甚至已濒临枯竭,同时也严重危害了人类赖以生存的环境。

去年和今年两次G8峰会,都把应对气候变化作为主要议题,这背后其实主要还是能源结构问题。

当煤、天然气等化石燃料逐渐减少, 同时要求减少对大气排放污染, 发电将形成包括水力发电、核电技术、各种类型的可再生能源发电、太阳能技术等多种形式能源结构。

由干用电形式的原因, 担任基础负荷的发电形式主力是煤电、核电、水电和能够持续稳定发电的部分可再生能源, 风电、太阳能发电等由于其自身的特殊性, 不可能成为电力市场的主角。

风力发电和太阳能发电的区别在于, 风力发电为变动负荷,发电量不稳定, 发电量在电网中的比例不宜超过一定的数值, 比如5%~10%。

太阳能发电有规律, 发电量较稳定, 在电网中的比例可大于风电, 是天然的电网调峰负荷, 负荷量的形成时间, 正是电网中电量需求大的时间区段, 因此负荷量可根据电网白天和晚上的最大负荷差确定负荷比例, 一般来讲在10%~20%范围内是有可能的。

电网的负荷曲线形状, 在白天与太阳能发电自然曲线相似,上午负荷随时间上升, 下午随时间下降, 因此对于太阳能发电, 可利用这一特点, 形成被动式自然发电特点, 即白天发电, 晚上停机, 担任调峰负荷的机组。

蓄热装置在启动时和少云到多云状态时补充能量, 保证机组的稳定运行。

太阳能发电还是最清洁和环保的可用资源,太阳能发电减少了化石燃料向大气中的污染物排放, 减少了温室气体二氧化碳的排放。

表1为我国太阳能辐射资源表,太阳能发电站宜建在表中太阳能辐射的第一、第二、第三类区域,根据计算, 在第三类区域内年每平方公里的太阳能总能量, 相当于20万吨的标煤所发出的热量。

如果以太阳能热电转换平均效率17%计算, 全年相当于发电2.5亿千瓦时, 按照目前我国的环保排放标准, 相当于减少60吨的烟尘排放量, 450吨的二氧化硫排放量, 500吨的氮氧化物排放量, 18万吨的二氧化碳排放量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
塔式电站的优点:
1.聚光倍数高,容易达到较高的工作温度,阵列中的定日镜数目越多,其聚光比越大,接收器的集热温度也就愈高;
2.能量集中过程是靠反射光线一次完成的,方法简捷有效;
3.接收器散热面积相对较小,因而可得到较高的光热转换效率。
塔式太阳能热发电的参数可与高温、高压火电站一致,这样不仅使太阳能电站有较高的热效率,而且也容易获得配套设备。虽然这种电站的建设费用十分昂贵,美国的SolarOne电站初次投资为1.42亿美元,成本比例为:定日镜52%、发电机组、电气设备18%、蓄热装置10%、接收器5%、塔3%、管道及换热器8%、其它设备4%。但随着制镜技术的提高和规模的增大,定日镜成本将大幅度降低。以美国Sunlab为代表的研究部门以及Sargent&Lundy评估机构对塔式太阳能热发电的成本作出了预测 图1 。Sunlab基于8.7GW规模预计到2020年塔式太阳能热发电的成本最终可达到约30~40$ MWh,即每度电3~4美分;Sargent&Lundy基于2.6GW规模预计到2020年塔式太阳能热发电的成本最终可达到50~60$ MWh,即每度电5~6美分。与常规化石能源发电相比,如果算上环境污染的成本,那么塔式太阳能热发电的前景将更加广阔。美国能源部主持的研究结果表明;在大规模发电方面,塔式太阳能热发电将是所有太阳能发电技术中成本最低的一种方式。
典型的槽式太阳能热发电系统工作原理如图3(略)所示。
国际槽式太阳能热发电技术现状
西方国家对太阳能利用研究起步较早,可以追溯到18世纪80年代,20世纪初已开始在工业中应用。目前,美国、以色列、澳大利亚、德国等国家是太阳能利用大国,也是槽式太阳能热发电技术强国。
其中美国鲁兹 LUZ 公司是槽式太阳能热发电技术应用的典范,在1985~1991年间,美国在南加州先后建成9座槽式太阳能热发电站,总装机容量353.8MW,是世界上规模最大、成效最高的太阳能发电工程。
我国塔式太阳能热发电技术发展状况
随着太阳能利用技术的迅速发展,从20世纪 70年代中期开始,我国一些高等院校和科研院所,对太阳能热发电技术做了不少应用性基础试验研究,并在天津建造了一套功率为lkW的塔式太阳能热发电模拟装置。
《中国新能源与可再生能源1999白皮书》指出:我国太阳能热发电技术的研究开发工作早在70年代末就开始了,但由于工艺、材料、部件及相关技术未得到根本性的解决,加上经费不足,热发电项目先后停止和下马。国家“八五”计划安排了小型部件和材料的攻关项目,带有技术储备性质,目前还没有试验样机,与国外差距很大。
塔式与槽式太阳能热发电技术
塔式太阳能热发电
塔式太阳能热发电系统也称集中型太阳能热发电系统。塔式太阳能热发电系统的基本形式是利用独立跟踪太阳的定日镜群,将阳光聚集到固定在塔顶部的接收器上,用以产生高温,加热工质产生过热蒸汽或高温气体,驱动汽轮机发电机组或燃气轮机发电机组发电,从而将太阳能转换为电能。
塔式太阳能热发电特点
近几年来,中国工程院院士张耀明教授带领南京春辉科技实业有限公司 南京玻璃纤维研究设计院三所 科技人员,在太阳能热发电研究领域中,取得了自动跟踪太阳、聚光、集热等方面的技术突破。由南京春辉科技实业有限公司、河海大学新材料新能源研究开发院联合建设的国内首座“70kW塔式太阳能热发电系统”于2005年10月底在南京市江宁太阳能试验场顺利建成,并成功投入并网发电。经过连续并网发电运行测试表明:该发电系统在运行稳定性、操控机动性、安全可靠性等方面均达到研发建设目标。
以最为典型的80MW装机容量的SEGSⅧ电站为例,其主要技术特征为:槽式抛物面反射镜东西向放置,采用单轴跟踪技术。集热器为性能优越的LS-3型集热器它使用的是真空管环形接收器,直径70mm的不锈钢管装在同心直径为115mm圆柱形玻璃套内,玻璃管上涂覆双层减反射膜,阳光透过率为0.965,玻璃管内保持真空以减少热损失,不锈钢管表面采用磁控溅射涂覆高温选择性吸收涂层,其可见光吸收比达0.96,红外发射比为0.19, 不锈钢管和玻璃套管间采用可伐封接;集热器工作介质为导热油,工作温度为391℃;整个电站共使用了900个这样的太阳集热器。抛物面反射镜的开口面积达545m2,使用了224块扇形玻璃镜片,镜片背面镀银,每片镜片由4个圆形托盘托附在支架上,支架上装有太阳辐射传感器,经液压传动机构驱动支架跟踪太阳,如遇恶劣天气,支架自动翻转,镜面开口向下,从而使镜面和接收器得到保护。SEGSⅧ电站的循环效率为38.4%,峰值太阳能热电转换效率为24%,年平均太阳能热电转换效率为4%,电站的初始投资为2650美元 kW,其发电的成本为8美分 kWh。LS-3型集热器的工质是导热油,整个系统采用双回路设计,导热油在换热子系统中,产生高温水蒸气进入汽轮机组发电。但是双回路不仅降低了系统效率而且增加了设备投资。SEGSⅨ电站采用LS-4型集热器,集热器中直接使用水作工质,使电站的循环效率达40%,峰值太阳能热电转换效率为28%,年平均太阳能热电转换效率为17%。以色列Solel在鲁兹公司基础上进一步发展,在槽式太阳能热发电技术方面取得了更好的成绩。预计发电的成本将降为5.5美分 kWh,更具市场竞争力。
系统主要由定日镜装置、高温接收器装置、燃气轮机发电机组以及相应的水冷却系统、天然气供气系统、控制系统等组成。系统的工作原理如图2(略)所示:
“70kW塔式太阳能热发电系统”整体采用了国际先进的技术路线,其中定日镜具备完全自主知识产权,性能优越,价格经济;接收器采取的是国际上一直处于研究热点的空腔式高温接收器,效率高;发电系统采用的是燃气轮机发电机组,符合未来“联合循环”发展的趋势。
70kW塔式太阳能热发电主要技术指标如下:
塔式太阳能热发电系统:塔高33米;额定功率70kW;系统效率≥20%;
定日镜:32面20m2定日镜;双轴跟踪误差≤2mrad;镜面反射率≥85%;
接收器:以空气为介质的空腔式结构,工作温度≥900℃E,压力:3at称为槽式抛物面反射镜太阳能热发电系统,是将多个槽型抛物面聚光集热器经过串并联的排列,加热工质,产生高温蒸 汽,驱动汽轮机发电机组发电。
槽式太阳能热发电系统
槽式太阳能热发电系统包括以下五个子系统:
1.聚光集热子系统。是系统的核心,由聚光镜、接收器和跟踪装置构成。接受器主要有两种:真空管式和腔式;跟踪方式采用一维跟踪,有南北、东西和极轴三种方式。
2.换热子系统。由预热器、蒸汽发生器、过热器和再热器组成。当系统工质为油时,采用双回路,即接收器中工质油被热后,进入换热子系统中产生蒸汽,蒸汽进入发电子系统发电。直接采用水为工质时,可简化此子系统。
3.发电子系统。基本组成与常规发电设备类似,但需要配备一种专用装置,用于工作流体在接收器与辅助能源系统之间的切换。
4.蓄热子系统。太阳能热发电系统在早晚或云遮间隙必须依靠储存的能量维持系统正常运行。蓄热的方法主要有显式、潜式和化学蓄热三种方式。
5.辅助能源子系统。在夜间或阴雨天,一般采用辅助能源系统供热,否则蓄热系统过大会引起初始投资的增加。
相关文档
最新文档