已知函数的单调性求参数的取值范围

合集下载

分式函数单调性求参数范围

分式函数单调性求参数范围

分式函数单调性求参数范围凡是分式函数单调性求参数范围,是数学知识中一个重要的课题。

那么什么是分式函数单调性?其实这个是指某一个实数集合上存在一个复合函数,它可以将输入变量转化成一组实数集。

即,它可以将被调节变量X转换成Y,并且使x值从小到大变化,将对应的Y值从小到大变化,这个过程就叫做分式函数单调性。

很容易理解,分式函数单调性是指在函数的某一参数的增加或减少,函数的运行结果也会增加或减少的情况,而且增加与减少的变化也是单调的。

借助这一特性,就可以确定函数的参数范围。

换句话说,只要确定函数增加或减少的单调性,即可确定函数的参数范围。

一般来说,确定分式函数参数范围的基本方法有三种,即极值法,反函数法和求导法。

首先,极值法指的是通过求解函数关于变量x的极值,以获取有效参数范围。

例如,假设函数f (x) = 1/x ,通过对f (x)求偏导数,就可以求得x= 0时的极值,此时可以得出x的有效取值范围在(−∞,0)(不含0)和(0,+ ∞)之间。

其次,反函数法是从反函数出发,利用函数可逆性,从x= f -1(y)出发,求解y 的有效范围,以获取x的参数范围。

例如,f (x) = sin (x),那么可以直接求解x = arcsin(y),得出y的有效范围为[- π /2,π /2],那么x的有效范围就是[- π /2,π /2]。

最后,求导法是通过求解x的一阶导数,结合函数的单调性,从而确定参数范围。

例如,f (x) = x3 + x + 1,求解得f ' (x) =3x2 + 1,那么f ' (x) > 0时f (x)为增函数,即x取负值时,f (x)下降;x取正值时,f (x)上升;可知x的有效范围为(-∞~+ ∞)。

总而言之,通过极值法、反函数法和求导法,我们可以轻松求解出分式函数参数范围。

只要采用正确的方法,便可以清楚准确地确定函数参数范围,从而获益良多。

已知函数单调性求参数取值范围

已知函数单调性求参数取值范围

技法点拨已知函数单调性求参数取值范围■欧阳丽丽摘要:利用导数根据函数单调性(区间)求参数的取值范围,是高考考查函数单调性的一个重要考点,下面将这类问题举例分析。

关键词:导数;单调性;参数取值范围一、转化为不等式的恒成立问题求参数取值范围若函数f (x )在(a ,b )上单调递增,则f′(x )≥0;若函数f (x )在(a ,b )上单调递减,则f′(x )≤0,将问题转化为函数最值问题求解。

一般地,分离变量后,若得到a ≥h (x ),则只需a ≥h (x )max ;若得到a ≤h (x ),则只需a ≤h (x )min 。

注意:f (x )在(a ,b )上为增函数(减函数)的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0(f′(x )≤0)且在(a ,b )内的任一非空子区间上f′(x )≠0。

例1,已知函数f (x )=ln x -12ax 2-2x (a ≠0)在[1,]4上单调递减,求a 的取值范围。

解:因为f (x )在[1,]4上单调递减,所以当x ∈[1,]4时,f′(x )=1x -ax -2≤0恒成立,即a ≥1x 2-2x 恒成立。

设h (x )=1x2-2x ,x ∈[1,]4所以只要a ≥h (x )max 。

而h′(x )=2(x +1)(x +1)x 4。

当x ∈[1,]4,h′(x )>0,所以h (x )在[1,]4上单调递增。

所以当h (x )max =h (4)=-716,所以a ≥-716,即a 的取值范围是éëêöø÷-716,+∞。

评析:由f (x )在[1,]4上单调递增,得到f′(x )≤0,进而分离参数a ,构造新的函数h (x ),本题转化为求h (x )max 。

例2,已知函数f (x )=ax +1x +2在(-2,+)∞内单调递减,求实数a 的取值范围。

利用函数的单调性求参数的取值范围(使用)

利用函数的单调性求参数的取值范围(使用)

例1:已知函数f (x) x3 ax2 3x 1在[2,4]上是单调递增函数, 求参数a的取值范围.
解 f '(x) 3x2 2ax 3, x [2,4]
: 则f '(x) 0在[2,4]上恒成立
即3x2 2ax 3 0,恒成立x [2,4]
方法:(分离参数)2ax 3x2 3恒成立
f '(x) ax (2a 1) 2 (ax 1)(x 2)
x
x
(1)当a 0时,f '(x) 2 x x
所以f (x)在(0,2)上递增,在(2, )上递减。
(2)当a
0时,令f
'(x)
0,
得x1
1 a
0.x2
2
结合二次函数图象知 f (x)在(0,2)上递增;
在(2, )递减。
(3)当a
即3x2 a 3 0,恒成立x [0,)
方法:(分离参数)
a 3x2 3恒成立
a (3x2 3)min a 3
练习 若函数f (x) x3 ax2 1在(0,2)内单调递减, 2: 求实数a的取值范围.
解析: f '(x) 3x2 2ax, x (0,2)
则f '(x) 0在(0,2)上恒成立
利用函数单调性求参数的 取值范围
复习
1 用导数判断函数单调性法则:

如果在(a,b)内,f
(x)>0,则f
(x)在此区间是增函数;
如果在(a,b)内,f (x)<0,则f (x)在此区间是减函数。
2、求函数单调区间的一般步骤 是
1、求定义 域2、求导
f'(x) 3、令f'(x)>0,求出增区间,令f'(x)<0, 求出减区间。

专题15 已知函数的单调区间求参数的范围(解析版)

专题15 已知函数的单调区间求参数的范围(解析版)

专题15已知函数的单调区间求参数的范一、单选题■1.若函数/(])=空山在区间(0,工)上单调递增,则实数。

的取值范围是()cosx 2A.a<-\B.a<2C.a>-\D.a<\【答案】C【分析】利用导函数研究原函数的单调性,利用单调性求解实数。

的取值范围.【详解】解:函数/(1)="*COSXnJ”、cosx>cos x+sinx(sin x+a)则/M=;-----cos^xTT•••X£(0,一)上,2/.cos2x>0.要使函数/(幻=吧*在区间(0,工)上单调递增,cosx 271、、二cos2x+sin2x+asinxN0在x G(0,—)上恒成立,2T[即:asinx+120在x£(0,一)上恒成立,2TT•/xe(0,—)±,2sin XG(0,1)故选:C.【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.2.已知函数/a)=Lf+s—a)x+(a-l)lnx,(a>l),函数y=2用的图象过定点(0,1),对于任意玉,七£(0,+8),西>々,有/(%)一/(工2)>工2一不,则实数。

的范围为()B.2<a<5C.2<a<5D.3<a<5【答案】A【分析】 由图象过定点可得人=0,设/(x)=〃x)+x,结合已知条件可得F(x)在(0,+8)递增,求尸(X )的导数,令g(x)=%2一(〃-1)工+。

一1,由二次函数的性质可得g 【详解】解:因为>=2'+〃的图象过定点(0,1),所以2人=1,解得6=0,所以一方+(。

-1)1仪(。

>1),因为对于任意X],W^(0,-KO ),X]>x 2,有/(%)一/(无2)>W 一%,则/(%)+%>%+/(七),设/(%)=f(x)+x ,即F (x)=/(%)+%=—x 2-ar+(^-l)lri¥+x=—x 2-(6f-l)x+(^-l)lri¥,所以F(x)=x-(〃-1)+0「2—令且(1)=工2—(。

利用函数的单调性求参数的取值范围

利用函数的单调性求参数的取值范围

利用函数的单调性求参数的取值范围函数的单调性是指在一定范围内,函数的增减性质的统一性。

对于有单调性的函数,可以通过研究函数的导数来判断参数的取值范围。

首先,我们来回顾一下导数的定义和性质。

对于函数f(x),其导数可以表示为f'(x),导数表示函数在其中一点的变化率。

导数的正负号可以告诉我们函数的单调性。

1.若在[a,b]上f'(x)≥0,则函数在[a,b]上为单调递增函数。

2.若在[a,b]上f'(x)≤0,则函数在[a,b]上为单调递减函数。

3.若在[a,b]上f'(x)>0,则函数在[a,b]上为严格递增函数。

4.若在[a,b]上f'(x)<0,则函数在[a,b]上为严格递减函数。

步骤1:确定函数的定义域,即参数的取值范围。

步骤2:求出函数的导函数。

步骤3:利用导函数的性质来判断函数的单调性。

步骤4:结合定义域和单调性判断,确定参数的取值范围。

步骤5:验证参数的取值范围是否符合要求。

下面我们通过具体例子来说明求解参数取值范围的方法。

例子:求函数f(x) = ax^2 + bx + c 在定义域上的参数a、b、c的取值范围。

步骤1:确定函数的定义域。

对于二次函数,其定义域是整个实数集R。

步骤2:求出函数的导函数。

对f(x)求导得到f'(x) = 2ax + b。

步骤3:利用f'(x)的性质来判断函数的单调性。

-若2a>0,则函数在整个定义域上递增。

-若2a<0,则函数在整个定义域上递减。

步骤4:结合定义域和单调性判断,确定参数的取值范围。

-若2a>0,则函数在整个定义域上递增,所以a>0。

-若2a<0,则函数在整个定义域上递减,所以a<0。

然后,我们可以根据b和c的取值范围来进一步限定a的取值范围。

当a>0时:根据二次函数的几何性质,对于抛物线开口朝上的情况,函数的最小值出现在顶点处,顶点的x坐标为 -b/2a,对应的y坐标为 c - b^2/4a。

已知函数单调递增递减区间求参数的取值范围

已知函数单调递增递减区间求参数的取值范围

已知函数单调递增递减区间求参数的取值范围在数学中,函数是指一种映射关系,即根据给定的自变量,得到相应的因变量。

而单调性则是指函数随着自变量的增加或减少,函数值是单调递增还是单调递减的特性。

在求函数参数的取值范围时,我们需要分别考虑函数的单调递增和单调递减区间,并利用这些信息来确定参数的取值范围。

步骤一:确定函数的单调性首先,我们需要确定已知函数的单调性。

对于单调递增函数,我们可以通过求导数的方式来确定函数在哪些区间内单调递增。

对于单调递减函数,则需要求导数,并将导函数的取值范围确定在负数区间内。

步骤二:确定参数的取值范围对于已知单调递增函数,我们需要确定函数在单调递增的区间内的值,以及函数在单调递减的区间内的值。

然后,我们可以根据约束条件来确定参数的取值范围。

例如,如果我们需要求函数在一个区间内的最大值或最小值,那么我们需要将约束条件加入方程中,并用求导数的方式来确定该值在何处达到最大或最小值。

对于已知单调递减函数,我们需要确定函数在单调递减的区间内的值,以及在单调递增的区间内的值。

然后,我们同样可以根据约束条件来确定参数的取值范围。

例如,如果我们需要求使函数在一个区间内的最大值或最小值最小的参数,那么我们需要将约束条件加入方程中,并用求导数的方式来确定该值在何处达到最大或最小值。

步骤三:检验所得的结果是否正确在确定参数的取值范围后,我们需要检验所得的结果是否符合实际情况。

例如,我们可以将所得的参数代入原函数,检验该函数是否在所有定义域内都满足所要求的单调性特征。

如果不满足,我们需要重新修改参数的取值范围,直到满足所要求的单调性特征为止。

综上所述,围绕已知函数单调递增递减区间求参数的取值范围,我们需要先确定函数的单调性,然后根据约束条件确定参数的取值范围,并最终检验结果是否正确。

这种方法不仅可以帮助我们计算出函数中的重要参数,还可以用来解决各种最优化问题,从而提高工程和科学计算的效率和精度。

专题8 导数中已知单调性求参数的范围经典例题与练习(解析版)-2021年高考数学导数中必考知识专练

专题8 导数中已知单调性求参数的范围经典例题与练习(解析版)-2021年高考数学导数中必考知识专练

专题8:导数中已知单调性求参数的范围经典例题与练习(解析版)已知函数在某个区间上的单调性求参数的范围解法1:转化为0)(0)(''≤≥x f x f 或在给定区间上恒成立, 回归基础题型 解法2:利用子区间(即子集思想);首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集;做题时一定要看清楚“在(m,n )上是减函数”与“函数的单调减区间是(a,b )”,要弄清楚两句话的区别:前者是后者的子集例1:已知R a ∈,函数x a x a x x f )14(21121)(23++++=. (Ⅰ)如果函数)()(x f x g '=是偶函数,求)(x f 的极大值和极小值; (Ⅱ)如果函数)(x f 是),(∞+-∞上的单调函数,求a 的取值范围.解:)14()1(41)(2++++='a x a x x f . (Ⅰ)∵()f x '是偶函数,∴ 1-=a . 此时x x x f 3121)(3-=,341)(2-='x x f , 令0)(='x f ,解得:32±=x .列表如下:可知:()f x 的极大值为34)32(=-f , ()f x 的极小值为34)32(-=f .(Ⅱ)∵函数)(x f 是),(∞+-∞上的单调函数,∴21()(1)(41)04f x x a x a '=++++≥,在给定区间R 上恒成立判别式法 则221(1)4(41)204a a a a ∆=+-⋅⋅+=-≤, 解得:02a ≤≤.综上,a 的取值范围是}20{≤≤a a .例2、已知函数3211()(2)(1)(0).32f x x a x a x a =+-+-≥ (I )求()f x 的单调区间;(II )若()f x 在[0,1]上单调递增,求a 的取值范围。

子集思想(I )2()(2)1(1)(1).f x x a x a x x a '=+-+-=++-1、20,()(1)0,a f x x '==+≥当时恒成立当且仅当1x =-时取“=”号,()(,)f x -∞+∞在单调递增。

已知函数的单调性求参数的范围

已知函数的单调性求参数的范围

已知函数的单调性求参数的范围若函数y =f x 在D 上单调递增,则f x ≥0在D 上恒成立若函数y =f x 在D 上单调递减,则f x ≤0在D 上恒成立 若a ≥g x 恒成立,则a ≥g x max 若a ≤g x 恒成立,则a ≤g x min 1.若函数f x =3a -1 x +1在R 上单调递增,求实数a 的取值范围解:3a -1>0⇒a >132.若函数f x =-x 2+21-m x +3在-3,+∞ 上单调递减,求实数a 的取值范围解:对称轴x =1-m ≤-3⇒m ≥43.若函数f x =2x +a 在3,+∞ 上单调递增,求实数a 的取值范围解:f x =2x +a x ≥-a 2 -2x -a x <-a 2⇒f x 在-∞,-a 2 上单调递减,在-a 2,+∞ 上单调递增所以-a 2≤3⇒a ≥-64.若函数f x =ax +1x +2在-2,+∞ 上单调递增,求实数a 的取值范围解:由f x =a x +2 +1-2a x +2=a +1-2a x +2在-2,+∞ 上递增所以反比例函数y =1-2a t在t ∈0,+∞ 上单调递增所以1-2a<0⇒a>1 25.若函数f x =x2-mx在1,+∞上单调递增,求实数m的取值范围解:函数y=x2-mx的零点为0和m所以m要和0比较大小0和m的中点为m2所以m2要和 1比较大小也即m要和0,2比较大小下面讨论①当m≤0时x≥1⇒f x =x2-mx=x2-mx 又f x 在1,+∞上单调递增所以对称轴x=m2≥1⇒m≥2,这不可能,舍去.②当0<m<2时f x =x2-mx=x2-mx x≥m-x2+mx0<x<m所以f x 在m2,m上递减因为m2<1⇒1,m⊊m2,m所以f x 在1,m上递减,矛盾,舍去③当m≥2时f x =x2-mx=x2-mx x≥m-x2+mx0<x<m所以f x 在m,+∞上递增因为m2≥1⇒1,+∞⊆m,+∞所以f x 在1,+∞ 上单调递增,合题意。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故f '(x) ( 0 或f '(x) 0)是f (x)单调 递增(或递减)的 __充_分__不__必__要_条__件____
由这个结论,本题也可以这样解答:
Q f '(x) 3x2 6x 9且要使f (x)在区间(a, a 1)上单调递减。
f '(x) 3x2 6x 9 0在区间(a, a 1)内恒成立,
所以,要使f(x)在(2a,a+1)上单调递增
则(2a,a+1) (0,e)
2a 0 即 a 1 e 0 a 1
2a a 1
故实数a的取值范围为 0,1
总结 :1:若函数f(x)(不含参数)在(a,b)(含参数) 上单调递增(递减),则可解出函数f(x)的单调(递减) 区间是(c,d),则(a,b)(c,d)(注意a b)
课堂练习: 1.已知函数f (x) x2(x a),若f (x)在(2,3)上单调,则实数a的取值范围为 _________。
2.设函数f (x) x2 ax ln x(a R),若函数f (x)在区间0,1上是减函数,
求实数a的取值范围。
答案:(1)a 3或a 9 (2)a 1
例1:已知函数f (x)=x3-3x2 -9x在区间(a,a+1)上单调递减, 求实数a的取值范围。 例2:若函数f (x) x3 ax2 1在(0, 2)内单调递减, 求实数a的取值范围。
例题1与例题2有什么相同点?
已知函数单调性 求参数的取值范围
武胜中学校 李开勇
题1:已知函数f (x)=x3-3x2 -9x在区间(a,a+1)上单调递减, 求实数a的取值范围。 题2:若函数f (x) x3 ax2 1在(0, 2)内单调递减, 求实数a的取值范围。
即aa
1 1
3

1

a

2
故实数a的取值范围为-1, 2
函数y f (x)为可导函数:
1.如果在(a,b)内,f (x)>0 f(x)在此区间是增函数; 如果在(a,b)内,f (x) 0 f(x)在此区间是减函数。
2.若函数f (x)在(a,b)上单调递增, 则f (x) 0在区间(a,b)上恒成立 若函数f (x)在(a,b)上单调递减, 则f (x) 0在区间(a,b)上恒成立
2
课后作业:课时作业
3
2
2
g(2) 3 g(x)
a 3
故实数a的取值范围为3,+故实数a的取值范围为3,+
“若函数f (x)在(a,b)上单调递减, 则f (x) 0在区间(a,b)上恒成立” “若函数f (x)在(a,b)上单调递增, 则f (x) 0在区间(a,b)上恒成立”
令g(x) 3x2 2ax,
由3x2 2ax 0在(0, 2)上恒成立
要使g(x) 0在(0, 2)恒成立
转化为a 3x 在(0, 2)上恒成立 2
由根的分布,可得
令g(x) 3x , 且g(x) 3x 在(0,2)上单增

g(0) g(2)

0 0

a



f f
'(a) 0 '(a 1)
0

1 2

a a

3 2

1

a

2
故实数a的取值范围为-1, 2
变式:已知函数f (x) ln x 在区间(2a,a+1)上单调递增, x
求实数a的取值范围。
解:由已知得f
'( x)

1 ln x2
x
令f '( x) 0 f ( x)的单调递增区间为(0,e)
(二)、参数放在函数表达式上:
例2:若函数f (x) x3 ax2 1在(0, 2)内单调递减, 求实数a的取值范围。
(2)解:Q f (x) x3 ax2 1在(0, 2)内单调递减,
f '(x) 3x2 2ax 0在(0, 2)上恒成立。
解法一:根的分布
解法二:分离参数法,构造新函数
那有什么不同点呢?
典例分析 (一)、参数放在区间上:
例1.已知函数f (x)=x3-3x2-9x在区间(a,a+1)上单调递减,
求实数a的取值范ቤተ መጻሕፍቲ ባይዱ。
解:其实函数f (x) x3 3x2 9x的单调减区间可以直接求出,
Q f '(x) 3x2 6x 9 0 1 x 3 f (x)的单调递减区间为(-1,3) 要使函数f (x)在(a,a+1)内单调递减 (a,a+1)(-1,3)
a
三、课时总结:(本节课主要介绍了已知函数单调性来利用导数求参数范围.) 1、函数在某个区间单调递增(或递减),可转化为函数的导数在这个区间上 f (x) 0(或f (x) 0)恒成立的问题 2、解题方法: 1)、利用方程根的分布求参数取值范围 2)、利用集合性质求参数的取值范围 3)、分离参数法求参数范围 4)、构造新函数求参数范围 5)、分类讨论求参数范围 3、数学思想:分类讨论、数形结合、化归
它们不是充要条件
变式:若函数f (x)=lnx-ax(a 0)的单调增区间为(0,1), 则实数a的取值范围为 _________。
解:Q f '(x) 1 ax x 0
x 令f '(x) 0 0 x 1
a 而f (x)的单调增区间是(0,1), 故而需要 1 1,得a 1
相关文档
最新文档