初中数学概念公式总结

合集下载

初中数学概念公式归纳

初中数学概念公式归纳

初中数学概念公式归纳初中数学概念公式是指在学习初中数学过程中,所学习到的各种概念和公式的总结和归纳。

这些概念和公式是数学基础知识的重要组成部分,是学习数学的基石。

下面将从初中数学的各个章节,简要地总结和归纳相关的概念和公式。

1.数与式-数的读法:读整数、分数、小数-定义整数的正负性、分数的大小比较-常见整数、分数与小数的运算-简便运算法则:乘法分配律、加法交换律、加法结合律-运算顺序:用括号确定运算顺序-求算式的值2.代数式-代数式的定义和基本概念(字母、常数、系数、幂)-代数式的运算(加减乘除)-因式、倍式、约分、分式-代数式的化简3.方程与不等式-方程的定义和基本概念(未知数、等号、解)-方程的解的基本概念(方程有唯一解、有无穷多解、无解)-一元一次方程的解的求解方法(凑、消、移项、等价方程)-不等式的定义和基本概念(大于、小于、大于等于、小于等于)-一元一次不等式的解的求解方法(加减法、乘除法)4.图形的认识-点、线、面的定义和基本概念-直线的性质(平行、垂直、交点)-各种图形的基本概念(三角形、四边形、多边形)-圆的基本概念(半径、直径、弧长、面积)-直角三角形、等腰三角形的性质-各种图形的周长和面积的计算公式5.相似与全等-相似和全等的概念和判定条件-相似三角形的性质(对应角相等、对应边成比例)-全等三角形的性质(对应边相等、对应角相等)-面积比例和周长比例6.三角形的计算-正弦定理、余弦定理、正切定理-面积公式:海伦公式、高度公式、正弦公式、面积比例公式-解三角形问题:根据已知条件求解未知量-直线与平行线的性质(内角和、同旁内角、同位角、对顶角、平行线的判定条件)7.数据的分析-数据的搜集、整理、归纳、展示方法-数据的概率与统计分析-统计图的绘制和解读(条形图、折线图、饼图)-统计指标的计算和比较(平均数、中位数、众数、范围)综上所述,初中数学概念公式的归纳可以涵盖数与式、代数式、方程与不等式、图形的认识、相似与全等、三角形的计算以及数据的分析等各个方面。

最全初中数学知识点总结及公式

最全初中数学知识点总结及公式

最全初中数学知识点总结及公式初中数学涵盖了大量的知识点和公式,以下将对其进行总结:一、整数1.整数的概念和性质2.整数的四则运算(加法、减法、乘法、除法)3.整数的绝对值和相反数4.整数的比较和大小5.整数的倍数与约数6.整数的质数与合数7.最大公约数和最小公倍数二、分数1.分数的概念和性质2.分数的四则运算(加法、减法、乘法、除法)3.分数与整数的转化4.分数的化简与约分5.分数的比较与排序6.假分数和带分数7.分数的倒数三、小数1.小数的概念和性质2.小数的四则运算(加法、减法、乘法、除法)3.小数与分数的转化4.小数的比较与排序四、代数1.代数的基本概念和性质2.代数的四则运算(加法、减法、乘法、除法)3.代数式的展开和化简4.一次方程和一元一次方程组5.二次方程和一元二次方程组6.分式方程7.不等式和不等式组五、函数1.函数的基本概念和性质2.函数的表示与表达式3.函数的图像与性质4.一次函数和二次函数5.反比例函数和非线性函数六、图形1.点、直线、线段、射线和角的基本概念和性质2.平行线和垂直线3.三角形、四边形和多边形的性质4.圆的基本概念和性质5.空间几何体的性质七、几何运算1.两点间距离和线段长度2.直角三角形的勾股定理3.三角形面积和周长4.四边形面积和周长5.圆的面积和周长八、统计与概率1.数据的收集和整理2.数据的分析和解释3.平均数、中位数和众数4.概率的概念和计算九、空间几何1.三视图和展开图2.空间图形的性质3.空间几何体的展开以上是初中数学的各个知识点和公式的总结,建议同学们在学习过程中重点强化这些知识点,加强练习和思考,提高数学素养和解题能力。

初中数学全套公式

初中数学全套公式

初中数学全套公式初中数学是义务教育的基础学科,其公式和概念的学习是这门课程的核心部分。

以下是一套完整的初中数学公式,这些公式涵盖了初中数学的大部分内容,对于理解和应用数学概念具有重要意义。

一、代数公式1、乘法公式:(a+b)(a-b)=a²-b²2、完全平方公式:a²+2ab+b²=(a+b)²3、平方差公式:a²-b²=(a+b)(a-b)4、立方和公式:a³+b³=(a+b)(a²-ab+b²)5、立方差公式:a³-b³=(a-b)(a²+ab+b²)6、两数和乘两数差:2(a+b)(a-b)=2a²-2b²7、两数平方和:a²+b²=(a+b)²-2ab8、两数和的平方:(a+b)²=a²+2ab+b²9、两数差的平方:(a-b)²=a²-2ab+b²10、幂的乘方:anbn=(ab)n11、积的乘方:anbn=(ab)n12、分式的约分:同时分子分母除以公因式。

13、提公因式法:一般地,如果想要提取一个多项式的公因式,我们把这个多项式的各项都含有的相同字母因式提到括号外面,将多项式化成积的形式,这种分解因式的方法叫做提公因式法。

14、运用公式法:如果一个式子的值等于几个其他式子的值乘积,那么这个式子就叫公式的原式,这几个其他式子就叫这个公式的因式。

如果把一个公式的所有因式分解出来,那么它们就都叫这个公式的因式分解。

二、几何公式1、勾股定理:在一个直角三角形中,斜边的平方等于两条直角边的平方和。

2、平行线间的距离公式:如果两条直线平行,那么一条直线上任意一点到另一条直线的距离相等。

3、三角形的面积公式:一个三角形的面积等于底边乘以高再除以2。

初中阶段数学公式总结大全

初中阶段数学公式总结大全

初中阶段数学公式总结大全以下是一些常见的初中阶段的数学公式总结:1. 代数公式:- 二元一次方程式:ax + by = c- 二元一次方程组:{ax + by = c, dx + ey = f}- 配方法:(a+b)² = a² + 2ab + b²- 差分平方法:(a-b)² = a² - 2ab + b²- 倒数公式:(a+b)(a-b) = a² - b²- 完全平方式:a² + b² = (a+b)² - 2ab2. 几何公式:- 三角形的面积:A = 1/2 * 底 * 高- 矩形的面积:A = 长 * 宽- 平行四边形的面积:A = 底 * 高- 梯形的面积:A = 1/2 * (上底 + 下底) * 高- 圆的面积:A = π * r²- 圆的周长:C = 2 * π * r3. 分数公式:- 分数加法:a/b + c/d = (ad + bc)/bd- 分数减法:a/b - c/d = (ad - bc)/bd- 分数乘法:a/b * c/d = ac/bd- 分数除法:a/b ÷ c/d = ad/bc4. 百分数公式:- 百分数到小数:百分数/100 = 小数- 小数到百分数:小数 * 100 = 百分数- 百分数与小数的互相转化5. 集合运算公式:- 并集:A ∪ B- 交集:A ∩ B- 差集:A - B6. 统计学公式:- 平均数(算术平均数):(数值的总和) / (数量)- 中位数:将数据按照从小到大的顺序排列,取中间数- 众数:出现频率最高的数- 范围:最大值 - 最小值这只是一部分初中阶段数学公式的总结,希望对您有所帮助。

如需更详细的总结,可以参考相关数学教材或参考资料。

初中数学概念公式大全

初中数学概念公式大全

初中数学逢考必出的公式定理一、数学性质1、一元二次方程根的情况△=b2-4a c(前提必须化成一般形式a x2+b x+c=0)当△>0时,一元二次方程有2个不相等的实数根;当△=0时,一元二次方程有2个相等的实数根;当△<0时,一元二次方程没有实数根2、平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。

②平行四边形不相邻的两个顶点连成的线段叫它的对角线。

③平行四边形的对边相等并且平行,对角相等,邻角互补。

④平行四边形的对角线互相平分。

3、菱形:①一组邻边相等的平行四边形是菱形②领形的四条边相等,对边平行,两条对角线互相垂直平分,每一组对角线平分一组对角。

③判定条件:定义、对角线互相垂直的平行四边形、四条边都相等的四边形。

4、矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。

②矩形的对角线相等且平分,四个角都是直角。

④正方形具有平行四边形,矩形,菱形的所有性质。

⑤一组邻边相等的矩形是正方形,有一个角是直角的菱形是正方形。

5、多边形:①n边形的内角和等于(n-2)180°②多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的外角和多边形的外角和都等于360度。

6、平均数:7、加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。

8、方差公式:二、基本定理2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线与已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,那么这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1直角三角形的两个锐角互余19、推论2三角形的一个外角等于和它不相邻的两个内角的和20、推论3三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等全等三角形的判定方法:22、边角边公理(SA S)有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( A SA)有两角和它们的夹边对应相等的两个三角形全等24、推论(A A S)有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SS S)有三边对应相等的两个三角形全等26、斜边、直角边公理(H L)有斜边和一条直角边对应相等的两个直角三角形全等角平分线的性质:27、定理1在角的平分线上的点到这个角的两边的距离相等28、定理2到一个角的两边的距离相等的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合等腰(边)三角形的性质:30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3等边三角形的各角都相等,并且每一个角都等于60°等腰(边)三角形的判定:34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1三个角都相等的三角形是等边三角形36、推论2有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半。

初中数学概念公式归纳汇总

初中数学概念公式归纳汇总

初中数学概念公式归纳汇总
中学数学概念及公式归纳
一、运算
(1)加法原理:a+b=b+a;
(2)乘法原理:a×b=b×a;
(3)乘方原理:(a×b)n=an×bn;
(4)分数相加减:a/b±c/d=(ad±bc)/bd;
(5)分数相乘除:a/b×c/d=ac/bd;
(6)勾股定理:a2+b2=c2
二、平面几何
(1)直线的性质:平行直线的夹角一定为180°;
(2)平行四边形的性质:角平分线垂直于对角线;
(3)三角形的性质:三角形的内角加起来为180°,相邻角是相互
补角;
(4)三角形的边长关系:如果两边之和大于第三边,则三角形存在;
(5)三角形的面积公式:面积=1/2×底边×高;
(6)等腰三角形的面积公式:面积=根号3/4×底边2;
(7)梯形的面积公式:面积=(上底+下底)/2×高;
(8)椭圆的面积公式:面积=π×长轴×短轴。

三、数列
(1)等差数列求和公式:Sn=n/2×(a1+an);
(2)等比数列求和公式:Sn=a1(1-qn)/(1-q);
(3)等比数列的极限:极限=a1/(1-q);
(4)等差数列的等差服从:公差等于最后两项之差,比如a4-a2=a3-a1;
(5)等比数列的等比服从:比值等于最后两项之比。

初中数学公式总结大全

初中数学公式总结大全

初中数学公式总结大全初中数学涵盖了很多不同的概念和公式,包括代数、几何、三角和概率等。

以下是一些初中数学常见的公式总结:一、代数公式:1. 一元二次方程的解:对于一元二次方程$ax^2+bx+c=0$,它的解可以使用以下公式求得:$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$。

2. 因式分解公式:$(a+b)^2=a^2+2ab+b^2$;$(a-b)^2=a^2-2ab+b^2$;$a^2-b^2=(a+b)(a-b)$。

3.平方差公式:$(a+b)(a-b)=a^2-b^2$。

4.根据勾股定理可以得到:直角三角形两条边的平方和等于斜边的平方,即$a^2+b^2=c^2$。

5.等差数列求和公式:对于等差数列$a_1,a_2,...,a_n$,其和可以使用以下公式求得:$S_n=\frac{n(a_1+a_n)}{2}$。

6.等比数列求和公式:对于等比数列$a,ar,ar^2,...,ar^{n-1}$,其和可以使用以下公式求得:$S_n=\frac{a(1-r^n)}{1-r}$。

7. 指数运算法则:$a^m\cdot a^n=a^{m+n}$;$\frac{a^m}{a^n}=a^{m-n}$;$(a^m)^n=a^{m\cdot n}$。

8. 对数运算法则:$\log_ab=\frac{\log_cb}{\log_ca}$;$\log_a1=0$;$\log_aa=1$。

二、几何公式:1. 长方形的面积:$S=a\cdot b$,其中$a$为长,$b$为宽。

2.正方形的面积:$S=a^2$,其中$a$为边长。

3. 圆的面积:$S=\pi r^2$,其中$r$为半径。

4. 圆的周长:$C=2\pi r$,其中$r$为半径。

5.直角三角形的周长:$a+b+c$,其中$a,b,c$为三角形的三边长度。

6. 三角形的面积:$S=\frac{1}{2}bh$,其中$b$为底,$h$为高。

初中数学常用的概念公式定理

初中数学常用的概念公式定理

初中数学常用的概念公式定理1.概念:-整数:整数是由正整数、负整数和零组成的数集。

-分数:分数是由一个整数除以另一个非零整数所得的数。

-小数:小数是有限或无限十進制数字。

-百分数:百分数是以百分之一为单位的分数形式表示的数。

-正负数:正数是大于零的数,负数是小于零的数。

-平方根:平方根是一个数与自身相乘等于给定数的非负数。

-面积:面积是二维图形所占的平方单位面积。

-体积:体积是三维图形所占的立方单位体积。

2.公式:- 一次方程:ax + b = 0,其中a和b是已知常数,x是未知数。

- 二次方程:ax^2 + bx + c = 0,其中a,b和c是已知常数,x是未知数。

-直角三角形斜边长度:c=√(a^2+b^2),其中a和b是直角边的长度,c是斜边的长度。

-圆的周长:C=2πr,其中π是约等于3.14的数,r是圆的半径。

-圆的面积:A=πr^2,其中π是约等于3.14的数,r是圆的半径。

-矩形的周长:P=2(a+b),其中a和b是矩形的边长。

- 矩形的面积:A = ab,其中a和b是矩形的边长。

-三角形的周长:P=a+b+c,其中a,b和c是三角形的边长。

-三角形的面积:A=1/2×底×高,其中底是三角形的底边长度,高是与底垂直的线段长度。

3.定理:- 整除定理:如果整数a能被整数b整除,则存在一个整数k,使得a = kb。

- 同余定理:如果两个整数a和b除以正整数m得到的余数相等,则称a与b同余,记作a ≡ b (mod m)。

-直角三角形定理:在一个直角三角形中,两条边的平方和等于斜边的平方,即a^2+b^2=c^2-对角定理:对于平行四边形,相邻两个角互补,即相邻的两个角的和为180度。

-中线定理:在一个三角形中,连接每个顶点至对边中点的线段(即中线),三条中线相交于一个点,且该点距离顶点相等于与该顶点相对的边长的一半。

- 余弦定理:在一个三角形中,边长a,b,c所对应的角分别为A,B,C,则有c^2 = a^2 + b^2 - 2abcosC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学概念公式总结1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理:经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理:三角形两边的和大于第三边16、推论:三角形两边的差小于第三边17、三角形内角和定理:三角形三个内角的和等于180°18、推论1:直角三角形的两个锐角互余19、推论2:三角形的一个外角等于和它不相邻的两个内角的和20、推论3:三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等23、角边角公理(ASA):有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS):有三边对应相等的两个三角形全等26、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等27、定理1:在角的平分线上的点到这个角的两边的距离相等28、定理2:到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)31、推论1:等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3:等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1:三个角都相等的三角形是等边三角形36、推论2:有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理:线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1:关于某条直线对称的两个图形是全等形43、定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2 +b2 =c247、勾股定理的逆定理:如果三角形的三边长a、b、c有关系a2 +b2=c2,那么这个三角形是直角三角形48、定理:四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理:n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1:平行四边形的对角相等53、平行四边形性质定理2:平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3:平行四边形的对角线互相平分56、平行四边形判定定理1:两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2:两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3:对角线互相平分的四边形是平行四边形59、平行四边形判定定理4:一组对边平行相等的四边形是平行四边形60、矩形性质定理1:矩形的四个角都是直角61、矩形性质定理2:矩形的对角线相等62、矩形判定定理1:有三个角是直角的四边形是矩形63、矩形判定定理2:对角线相等的平行四边形是矩形64、菱形性质定理1:菱形的四条边都相等65、菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1:四边都相等的四边形是菱形68、菱形判定定理2:对角线互相垂直的平行四边形是菱形69、正方形性质定理1:正方形的四个角都是直角,四条边都相等70、正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1:关于中心对称的两个图形是全等的72、定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理:等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理:在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例87、推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1:两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2:两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3:三边对应成比例,两三角形相似(SSS)95、定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2相似三角形周长的比等于相似比98、性质定理3相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理:不在同一直线上的三点确定一个圆。

110、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧111、推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112、推论2:圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形114、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115、推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116、定理:一条弧所对的圆周角等于它所对的圆心角的一半117、推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119、推论:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121、①直线L和⊙O相交d<r②直线L和⊙O相切d=r③直线L和⊙O相离d>r122、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线123、切线的性质定理|圆的切线垂直于经过切点的半径124、推论1:经过圆心且垂直于切线的直线必经过切点125、推论2:经过切点且垂直于切线的直线必经过圆心126、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127、圆的外切四边形的两组对边的和相等128、弦切角定理:弦切角等于它所夹的弧对的圆周角129、推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等131、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133、推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134、如果两个圆相切,那么切点一定在连心线上135、①两圆外离d>R+r②两圆外切d=R+r③两圆相交R-r<d<R+r(R>r)④两圆内切d=R-r(R>r)⑤两圆内含d<R-r(R>r)136、定理:相交两圆的连心线垂直平分两圆的公共弦137、定理:把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139、正n边形的每个内角都等于(n-2)×180°/n140、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141、正n边形的面积Sn=pnrn/2p表示正n边形的周长142、正三角形面积√3a/4a表示边长143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4 144、弧长计算公式:L=n兀R/180145、扇形面积公式:S扇形=n兀R^2/360=LR/2146、内公切线长=d-(R-r)外公切线长=d-(R+r)。

相关文档
最新文档