遗传算法C语言代码

合集下载

遗传算法旅行商问题c语言代码

遗传算法旅行商问题c语言代码

遗传算法是一种模拟自然选择过程的优化算法,可以用于解决各种复杂的组合优化问题。

其中,旅行商问题是一个经典的组合优化问题,也是一个典型的NP难题,即寻找最优解的时间复杂度是指数级的。

在本文中,我们将讨论如何使用遗传算法来解决旅行商问题,并给出相应的C语言代码实现。

我们将介绍旅行商问题的数学模型,然后简要介绍遗传算法的原理,最后给出C语言代码实现。

旅行商问题是指一个旅行商要拜访n个城市,恰好拜访每个城市一次,并返回出发城市,要求总路程最短。

数学上可以用一个n*n的距离矩阵d[i][j]表示城市i到城市j的距离,问题可以形式化为求解一个排列p={p1,p2,...,pn},使得目标函数f(p)=Σd[p[i]][p[i+1]]+d[p[n]][p[1]]最小。

这个问题是一个组合优化问题,其搜索空间是一个n维的离散空间。

遗传算法是一种基于生物进化过程的优化算法,主要包括选择、交叉、变异等操作。

在使用遗传算法解决旅行商问题时,可以将每个排列p看作一个个体,目标函数f(p)看作个体的适应度,通过选择、交叉和变异等操作来搜索最优解。

以下是遗传算法解决旅行商问题的C语言代码实现:1. 我们需要定义城市的距离矩阵和其他相关参数,例如城市的数量n,种裙大小pop_size,交叉概率pc,变异概率pm等。

2. 我们初始化种裙,即随机生成pop_size个排列作为初始种裙。

3. 我们进入遗传算法的迭代过程。

在每一代中,我们首先计算种裙中每个个体的适应度,然后通过选择、交叉和变异操作来更新种裙。

4. 选择操作可以采用轮盘赌选择法,即根据个体的适应度来进行选择,适应度越高的个体被选中的概率越大。

5. 交叉操作可以采用部分映射交叉方法,即随机选择两个个体,然后随机选择一个交叉点,将交叉点之后的基因片段进行交换。

6. 变异操作可以采用变异率为pm的单点变异方法,即随机选择一个个体和一个位置,将该位置的基因值进行随机变异。

7. 我们重复进行迭代操作,直到达到停止条件(例如达到最大迭代次数或者适应度达到阈值)。

GA-遗传算法-C#代码【精品毕业设计】(完整版)

GA-遗传算法-C#代码【精品毕业设计】(完整版)

using System;using System.IO;using System.Collections;using System.Collections.Generic;using System.Text;using ponentModel;using System.Data;using System.Data.OleDb;namespace ConsoleApplication1{public class Genetic_Algorithm{Random rand=new Random();int MaxTime;//最大运行时间int popsize;//种群数量int ChromosomeLength;//染色体长度double CrossRate;//交叉率double MutateRate;//变异率double[] f;//适应度值int[] selected;//定义selected数组,用于表示需要进行交叉操作的染色体序号double[] wheel;//轮盘int[,] pregeneration;//上一代int[,] nextgeneration;//下一代int[] Best;//定义当前最优解int convergence;//定义当前最优解的已持续代数int[,] timeconstrait;public Genetic_Algorithm(int populationsize, int chromolength)//GA--构造函数,变量初始化{rand = new Random(lisecond);MaxTime = 50;popsize=populationsize;ChromosomeLength = chromolength;CrossRate = 0.8;MutateRate = 0.2;f = new double[2*popsize];selected = new int[popsize];wheel = new double[popsize + 1];pregeneration = new int[popsize, ChromosomeLength];//当前的染色体种群nextgeneration = new int[popsize, ChromosomeLength];//下一代(子代)染色体种群Best = new int[ChromosomeLength];convergence = 1;timeconstrait = new int[20, 2] { { 2, 6 }, { 1, 2 }, { 3, 4 }, { 1, 4 }, { 4, 7 }, { 3, 5 }, { 2, 6 }, { 3, 5 }, { 1, 4 }, { 3, 7 }, { 5, 7 }, { 2, 7 }, { 2, 4 }, { 4, 5 }, { 2, 5 }, { 4, 6 }, { 3, 5 }, { 1, 4 }, { 1, 5 }, { 3, 6 } };}public void RunGA()//运行{int i;CreateFirstPop();//产生初始种群i = 0;bool quit = true;while (quit){for (; i < MaxTime; i++){Console.WriteLine("The {0}th Generation..........", i + 1);CalFitness(ref pregeneration, popsize);//计算适应值PrintResult();//输出每步的结果WheelSelect();//此步确定了selected[i]的值CreateNextGeneration();//产生子代,包括被选择为selected[i]的染色体的交叉,还有变异ProduceNext();}Console.WriteLine("Press 'q' to quit, press Enter to continue.....");if (Console.Read() == 'q'){quit = false;}else{MaxTime += 50;}}}void CreateFirstPop()//产生初始种群{Console.WriteLine("Creating first generation..........\n");int i,j,r;for(i=0;i<popsize;i++){for(j=0;j<ChromosomeLength;j++){r=rand.Next(1,11);pregeneration[i, j] = r;}}}void CreateNextGeneration()//产生下一代种群(经交叉、变异){int i;for (i = 0; i < popsize; i+=2){Crossover(selected[i], selected[i + 1], i, i + 1);//将序号为selected[i]和selected[i + 1]的染色体进行交叉,产生的子代放在pregeneration中i和i+1的位置}Mutation(ref nextgeneration);//变异}void CalFitness(ref int[,] curgeneration,int number)//计算适应度值的函数{for (int i = 0; i < number; i++){double fitness = 0;for (int j = 0; j < ChromosomeLength; j++){fitness += Math.Abs(curgeneration[i, j]-j-1);}f[i] = fitness;}}void FindMax(ref double[] f, out int max)//寻找数组中最大值{int i;max = 0;for (i = 1; i < popsize; i++){if (f[i] > f[max]){max = i;}}}void FindMin(ref double[] f, out int min)//寻找数组中最小值{int i;min = 0;for (i = 1; i < popsize; i++){if (f[i] < f[min]){min = i;}}}void WheelSelect() //轮盘选择popsize个染色体(可重复),并将序号放入selected[]中,作为交叉的染色体{int i,j ,r;double sum;wheel[0] = 0; sum = 0;for (i = 0; i < popsize; i++){sum += f[i];wheel[i + 1] = wheel[i] + f[i];}for (i = 0; i < popsize; i++){r = rand.Next((int)sum);for (j = 0; j < popsize; j++){if (r > wheel[j] && r < wheel[j + 1]){selected[i] = j;break;}}}}void Crossover(int p1, int p2, int c1, int c2)//交叉==>将序号为selected[i]和selected[i + 1](这里形参是p1,p2)的染色体进行交叉,产生的子代放在pregeneration中i和i+1(这里形参是c1,c2)的位置{double dr = rand.NextDouble();if (dr < CrossRate){int[] covering_code = new int[ChromosomeLength];for (int i = 0; i < ChromosomeLength; i++)covering_code[i] = rand.Next(0, 2);for (int i = 0; i < ChromosomeLength; i++){if (covering_code[i] == 0){nextgeneration[c1, i] = pregeneration[p1, i];nextgeneration[c2, i] = pregeneration[p2, i];}else{nextgeneration[c1, i] = pregeneration[p2, i];nextgeneration[c2, i] = pregeneration[p1, i];}}}else{for (int i = 0; i < ChromosomeLength; i++){nextgeneration[c1, i] = pregeneration[p1, i];nextgeneration[c2, i] = pregeneration[p2, i];}}}void Mutation(ref int[,] curgeneration)//变异{int is_not_mutation;double dr;for (int i = 0; i < popsize; i++){dr = rand.NextDouble();if (dr < MutateRate){for (int j = 0; j < ChromosomeLength; j++){is_not_mutation = rand.Next(0, 2);if (is_not_mutation == 1)curgeneration[i, j] = rand.Next(1, 11);}}}}void PrintResult()//计算每次迭代后种群中最优解及其适应度值,平均适应值 {int i,j;int min;double average;average = 0;for (i = 0; i < popsize; i++){average += f[i];}average = (double) average / popsize;Console.Write("Average profit is {0}\n", average);FindMin(ref f, out min);//计算稳定的次数for (j = 0; j < ChromosomeLength; j++){if (pregeneration[min, j] != Best[j]){convergence = 1;goto G2;}}convergence++;G2:for (j = 0; j < ChromosomeLength; j++){Best[j] = pregeneration[min, j];}//打印相关的数据Console.Write("染色体 ");for (j = 0; j < ChromosomeLength; j++){Console.Write(pregeneration[min, j] + ",");}Console.WriteLine("");Console.WriteLine("综合目标 {0} of individual ", f[min]);Console.WriteLine("已经稳定的代数 {0} of individual ",convergence);Console.WriteLine("");}void ProduceNext()//选择==>父代和子代中popsize个最优的解进入下一代{int[,] temgeneration=new int [2*popsize,ChromosomeLength];//定义临时种群,用来将父代和子代放在一起,进行选优//将父代放入临时种群for (int i = 0; i <= popsize - 1; i++){for (int j = 0; j <= ChromosomeLength - 1; j++){temgeneration[i, j] = pregeneration[i, j];}}//将子代放入临时种群for (int i = 0; i <= popsize - 1; i++){for (int j = 0; j <= ChromosomeLength - 1; j++){temgeneration[i + popsize, j] = nextgeneration[i, j];}}CalFitness(ref temgeneration, popsize * 2);//计算临时种群(父代和子代)的各染色体适应值int []tem=new int [ChromosomeLength];//定义临时染色体,用来染色体排序时的交换...//根据临时种群(父代和子代)的各染色体适应值,进行排序for (int i = 0; i < 2*popsize - 1; i++){for (int j = i + 1; j <= 2 * popsize - 1; j++){if (f[i] > f[j]){double tem_f = f[i];f[i] = f[j];f[j] = tem_f;for (int k = 0; k < ChromosomeLength; k++){tem[k] = temgeneration[i, k];temgeneration[i, k] = temgeneration[j, k];temgeneration[j, k] = tem[k];}}}}//取临时种群中前popsize个好的染色体作为下一代种群,并将子代变为父代for (int i = 0; i <= popsize - 1; i++){for (int j = 0; j <= ChromosomeLength - 1; j++){pregeneration[i, j] = temgeneration[i, j];}}}}class Program{static void Main(string[] args){int chromosomelength = 10;int populationsize = 300;int cycle = 5;Console.WriteLine("Press Enter to start running Genetic Algorithm");Console.ReadKey();Genetic_Algorithm GA = new Genetic_Algorithm(populationsize, chromosomelength); GA.RunGA();}}}。

遗传算法C语言源代码(一元函数和二元函数)

遗传算法C语言源代码(一元函数和二元函数)

.专业整理 .C语言遗传算法代码以下为遗传算法的源代码,计算一元代函数的代码和二元函数的代码以+++++++++++++++++++++++++++++++++++++为分割线分割开来,请自行选择适合的代码,使用时请略看完代码的注释,在需要更改的地方更改为自己需要的代码。

+++++++++++++++++++++++++++++++一元函数代码++++++++++++++++++++++++++++#include <stdio.h>#include<stdlib.h>#include<time.h>#include<math.h>#define POPSIZE 1000#define maximization 1#define minimization 2#define cmax 100#define cmin 0#define length1 20#define chromlength length1// 染色体长度//注意,你是求最大值还是求最小值.专业整理 .//变量的上下限的修改开始float min_x1=-2;//变量的下界float max_x1=-1;//变量的上界//变量的上下限的修改结束int popsize;// 种群大小int maxgeneration;// 最大世代数double pc;// 交叉率double pm;// 变异率struct individual{char chrom[chromlength+1];double value;double fitness;// 适应度};int generation;// 世代数int best_index;int worst_index;struct individual bestindividual;// 最佳个体.专业整理 . struct individual worstindividual; //最差个体struct individual currentbest;struct individual population[POPSIZE];//函数声明void generateinitialpopulation();void generatenextpopulation();void evaluatepopulation();long decodechromosome(char *,int,int);void calculateobjectvalue();void calculatefitnessvalue();void findbestandworstindividual();void performevolution();void selectoperator();void crossoveroperator();void mutationoperator();void input();void outputtextreport();void generateinitialpopulation( )// 种群初始化{int i,j;.专业整理 .for (i=0;i<popsize; i++){for( j=0;j<chromlength;j++){population[i].chrom[j]=(rand()%20<10)?'0':'1';}population[i].chrom[chromlength]='\0';}}void generatenextpopulation()// 生成下一代{selectoperator();crossoveroperator();mutationoperator();}void evaluatepopulation()// 评价个体,求最佳个体{calculateobjectvalue();calculatefitnessvalue();findbestandworstindividual();}long decodechromosome(char *string ,int point,int length) //给染色体解码{int i;long decimal=0;char*pointer;for(i=0,pointer=string+point;i<length;i++,pointer++)if(*pointer-'0'){decimal +=(long)pow(2,i);}return (decimal);}void calculateobjectvalue()// 计算函数值{int i;long temp1,temp2;double x1;for (i=0; i<popsize; i++){temp1=decodechromosome(population[i].chrom,0,length1);x1=(max_x1-min_x1)*temp1/(1024*1024-1)+min_x1;//目标函数修改开始population[i].value=(pow(x1,5)-3*x1-1)*(pow(x1,5)-3*x1-1);//目标函数修改结束}}void calculatefitnessvalue()//计算适应度{int i;double temp;for(i=0;i<popsize;i++){if(functionmode==maximization){if((population[i].value+cmin)>0.0){temp=cmin+population[i].value;}else{temp=0.0;}}else if (functionmode==minimization){if(population[i].value<cmax){temp=cmax-population[i].value;}else{ temp=0.0;}}population[i].fitness=temp;}}void findbestandworstindividual( ) //求最佳个体和最差个体{int i;double sum=0.0;bestindividual=population[0];worstindividual=population[0];.专业整理 .for (i=1;i<popsize; i++){if (population[i].fitness>bestindividual.fitness){bestindividual=population[i];best_index=i;}else if (population[i].fitness<worstindividual.fitness) {worstindividual=population[i];worst_index=i;}sum+=population[i].fitness;}if (generation==0){currentbest=bestindividual;}else{if(bestindividual.fitness>=currentbest.fitness){currentbest=bestindividual;}}}void performevolution() //演示评价结果{if (bestindividual.fitness>currentbest.fitness){ currentbest=population[best_index];}else{population[worst_index]=currentbest;}}void selectoperator() //比例选择算法{int i,index;double p,sum=0.0;double cfitness[POPSIZE];struct individual newpopulation[POPSIZE];for(i=0;i<popsize;i++){sum+=population[i].fitness;}for(i=0;i<popsize; i++){cfitness[i]=population[i].fitness/sum;}for(i=1;i<popsize; i++){cfitness[i]=cfitness[i-1]+cfitness[i];}for (i=0;i<popsize;i++){p=rand()%1000/1000.0;index=0;while (p>cfitness[index]){index++;}newpopulation[i]=population[index];}for(i=0;i<popsize; i++){population[i]=newpopulation[i];}}void crossoveroperator() //交叉算法{int i,j;int index[POPSIZE];int point,temp;double p;char ch;for (i=0;i<popsize;i++){index[i]=i;}for (i=0;i<popsize;i++){point=rand()%(popsize-i);temp=index[i];index[i]=index[point+i];index[point+i]=temp;}for (i=0;i<popsize-1;i+=2){p=rand()%1000/1000.0;if (p<pc){point=rand()%(chromlength-1)+1;for ( j=point; j<chromlength;j++){ch=population[index[i]].chrom[j];population[index[i]].chrom[j]=population[index[i+1]].chrom[j];population[index[i+1]].chrom[j]=ch;}}}}void mutationoperator() //变异操作{int i,j;double p;for (i=0;i<popsize;i++){for( j=0;j<chromlength;j++){p=rand()%1000/1000.0;if (p<pm){population[i].chrom[j]=(population[i].chrom[j]=='0')?'1':'0';}}}}void input() //数据输入{ //printf(" 初始化全局变量 :\n");//printf("种群大小 (50-500) : ");//scanf("%d", &popsize);popsize=500;if((popsize%2) != 0){//printf( "种群大小已设置为偶数\n");popsize++;};//printf("最大世代数 (100-300) : ");//scanf("%d", &maxgeneration); maxgeneration=200;//printf("交叉率 (0.2-0.99) : ");//scanf("%f", &pc);pc=0.95;//printf("变异率 (0.001-0.1) :");//scanf("%f", &pm);pm=0.03;}void outputtextreport()//数据输出{int i;double sum;double average;sum=0.0;for(i=0;i<popsize;i++){sum+=population[i].value;}average=sum/popsize;printf("当前世代=%d\n当前世代平均函数值=%f\n当前世代最优函数值=%f\n",generation,average,population[best_index].value);}void main()// 主函数{ int i;long temp1,temp2;double x1,x2;generation=0;input();generateinitialpopulation();evaluatepopulation();while(generation<maxgeneration){generation++;generatenextpopulation();evaluatepopulation();performevolution();outputtextreport();}printf("\n");printf("统计结果 :");printf("\n");//printf("最大函数值等于:%f\n",currentbest.fitness);printf(" 其染色体编码为:");for (i=0;i<chromlength;i++){printf("%c",currentbest.chrom[i]);}printf("\n");temp1=decodechromosome(currentbest.chrom,0,length1);x1=(max_x1-min_x1)*temp1/(1024*1024-1)+min_x1;printf("x1=%lf\n",x1);.专业整理 .//这是需要修改的地方printf(" 最优值等于:%f\n",(pow(x1,5)-3*x1-1)*(pow(x1,5)-3*x1-1));}+++++++++++++++++++++++++二元函数代码+++++++++++++++++++++++++++++++++++++++++#include <stdio.h>#include<stdlib.h>#include<time.h>#include<math.h>#define POPSIZE 500#define maximization 1#define minimization 2#define cmax 100#define cmin 0#define length1 20#define length2 20#define chromlength length1+length2// 染色体长度//-----------求最大还是最小值int functionmode=maximization;//-----------//-----------变量上下界float min_x1=0;float max_x1=3;float min_x2=1;float max_x2=5;//-----------int popsize;// 种群大小int maxgeneration;// 最大世代数double pc;// 交叉率double pm;// 变异率struct individual{char chrom[chromlength+1];double value;double fitness;// 适应度};int generation;// 世代数int best_index;int worst_index;struct individual bestindividual;// 最佳个体struct individual worstindividual; //最差个体struct individual currentbest;struct individual population[POPSIZE];//函数声明void generateinitialpopulation();void generatenextpopulation();void evaluatepopulation();long decodechromosome(char *,int,int);void calculateobjectvalue();void calculatefitnessvalue();void findbestandworstindividual();void performevolution();void selectoperator();void crossoveroperator();void mutationoperator();void input();void outputtextreport();void generateinitialpopulation( )// 种群初始化{int i,j;for (i=0;i<popsize; i++){for( j=0;j<chromlength;j++){population[i].chrom[j]=(rand()%40<20)?'0':'1';}population[i].chrom[chromlength]='\0';}}void generatenextpopulation()// 生成下一代{selectoperator();crossoveroperator();mutationoperator();}void evaluatepopulation()// 评价个体,求最佳个体{calculateobjectvalue();calculatefitnessvalue();findbestandworstindividual();}long decodechromosome(char *string ,int point,int length) //给染色体解码{int i;long decimal=0;char*pointer;for(i=0,pointer=string+point;i<length;i++,pointer++)if(*pointer-'0'){decimal +=(long)pow(2,i);}return (decimal);}void calculateobjectvalue()// 计算函数值{int i;long temp1,temp2;double x1,x2;for (i=0; i<popsize; i++){temp1=decodechromosome(population[i].chrom,0,length1);temp2=decodechromosome(population[i].chrom,length1,length2);x1=(max_x1-min_x1)*temp1/(1024*1024-1)+min_x1;x2=(max_x2-min_x2)*temp2/(1024*1024-1)+min_x2;//-----------函数population[i].value=x1*x1+sin(x1*x2)-x2*x2;//-----------}}void calculatefitnessvalue()//计算适应度{int i;double temp;for(i=0;i<popsize;i++){if(functionmode==maximization){if((population[i].value+cmin)>0.0){temp=cmin+population[i].value;}else{temp=0.0;}}else if (functionmode==minimization){if(population[i].value<cmax){temp=cmax-population[i].value;}else{ temp=0.0;}}population[i].fitness=temp;}}void findbestandworstindividual( ) //求最佳个体和最差个体{int i;double sum=0.0;bestindividual=population[0];worstindividual=population[0];for (i=1;i<popsize; i++){if (population[i].fitness>bestindividual.fitness){bestindividual=population[i];best_index=i;}else if (population[i].fitness<worstindividual.fitness){worstindividual=population[i];worst_index=i;}sum+=population[i].fitness;}if (generation==0){currentbest=bestindividual;}else{if(bestindividual.fitness>=currentbest.fitness){currentbest=bestindividual;}}}void performevolution() //演示评价结果{if (bestindividual.fitness>currentbest.fitness){currentbest=population[best_index];}else{population[worst_index]=currentbest;}}void selectoperator() //比例选择算法{int i,index;double p,sum=0.0;double cfitness[POPSIZE];struct individual newpopulation[POPSIZE];for(i=0;i<popsize;i++){sum+=population[i].fitness;}for(i=0;i<popsize; i++){cfitness[i]=population[i].fitness/sum;}for(i=1;i<popsize; i++){cfitness[i]=cfitness[i-1]+cfitness[i];}for (i=0;i<popsize;i++){p=rand()%1000/1000.0;index=0;while (p>cfitness[index]){index++;}newpopulation[i]=population[index];}for(i=0;i<popsize; i++){population[i]=newpopulation[i];}}void crossoveroperator() //交叉算法{int i,j;int index[POPSIZE];int point,temp;double p;char ch;for (i=0;i<popsize;i++){index[i]=i;}for (i=0;i<popsize;i++){point=rand()%(popsize-i);temp=index[i];index[i]=index[point+i];index[point+i]=temp;}for (i=0;i<popsize-1;i+=2){p=rand()%1000/1000.0;if (p<pc){point=rand()%(chromlength-1)+1;for ( j=point; j<chromlength;j++){ch=population[index[i]].chrom[j];population[index[i]].chrom[j]=population[index[i+1]].chrom[j];population[index[i+1]].chrom[j]=ch;}}}}void mutationoperator() //变异操作{int i,j;double p;for (i=0;i<popsize;i++){for( j=0;j<chromlength;j++){p=rand()%1000/1000.0;if (p<pm){population[i].chrom[j]=(population[i].chrom[j]=='0')?'1':'0';}}}}void input() //数据输入{ //printf(" 初始化全局变量 :\n");//printf("种群大小 (50-500) : ");//scanf("%d", &popsize);popsize=200;if((popsize%2) != 0){//printf( "种群大小已设置为偶数\n");popsize++;};//printf("最大世代数 (100-300) : ");//scanf("%d", &maxgeneration);maxgeneration=200;//printf("交叉率 (0.2-0.99): ");//scanf("%f", &pc);pc=0.9;//printf("变异率 (0.001-0.1):");//scanf("%f", &pm);pm=0.003;}void outputtextreport()//数据输出{int i;double sum;double average;sum=0.0;for(i=0;i<popsize;i++){sum+=population[i].value;}average=sum/popsize;printf("当前世代=%d\n当前世代平均函数值=%f\n当前世代最优函数值=%f\n",generation,average,population[best_index].value);}void main()// 主函数{ int i;long temp1,temp2;double x1,x2;generation=0;input();generateinitialpopulation();evaluatepopulation();while(generation<maxgeneration){generation++;generatenextpopulation();evaluatepopulation();performevolution();outputtextreport();}printf("\n");printf("统计结果 :");printf("\n");//printf("最大函数值等于:%f\n",currentbest.fitness);printf(" 其染色体编码为:");for (i=0;i<chromlength;i++){printf("%c",currentbest.chrom[i]);}printf("\n");temp1=decodechromosome(currentbest.chrom,0,length1);temp2=decodechromosome(currentbest.chrom,length1,length2);x1=(max_x1-min_x1)*temp1/(1024*1024-1)+min_x1;x2=(max_x2-min_x2)*temp2/(1024*1024-1)+min_x2;printf("x=%lf,y=%lf\n",x1,x2);//-----------修改函数printf(" 最大值 =%f\n",x1*x1+sin(x1*x2)-x2*x2);//-----------}。

解TSP问题的遗传算法C语言程序

解TSP问题的遗传算法C语言程序

解TSP问题的遗传算法C语言程序#include<stdio.h>#include<stdlib.h>#include<math.h>#include<alloc.h>#include<conio.h>#include<float.h>#include<time.h>#include<graphics.h>#include<bios.h>#define maxpop 100#define maxstring 100struct pp{unsigned char chrom[maxstring];float x,fitness;unsigned int parent1,parent2,xsite;};struct pp *oldpop,*newpop,*p1;unsigned int popsize,lchrom,gem,maxgen,co_min,jrand;unsigned int nmutation,ncross,jcross,maxpp,minpp,maxxy;floatpcross,pmutation,sumfitness,avg,max,min,seed,maxold,oldrand[maxstring];unsigned char x[maxstring],y[maxstring]; float*dd,ff,maxdd,refpd,fm[201]; FILE *fp,*fp1;float objfunc(float);void statistics();int select();int flip(float);int crossover();void generation();void initialize();void report();float decode();void crtinit();void inversion();float random1();void randomize1();main(){unsigned int gen,k,j,tt;char fname[10];float ttt;clrscr();co_min=0;if((oldpop=(struct pp *)farmalloc(maxpop*sizeof(struct pp)))==NULL) {printf("memory requst fail!\n");exit(0);} if((dd=(float*)farmalloc(maxstring*maxstring*sizeof(float)))==NULL){printf("memory requst fail!\n");exit(0);} if((newpop=(struct pp *)farmalloc(maxpop*sizeof(struct pp)))==NULL){printf("memory requst fail!\n");exit(0);} if((p1=(struct pp*)farmalloc(sizeof(struct pp)))==NULL){printf("memory requst fail!\n");exit(0);} for(k=0;k<maxpop;k++) oldpop[k].chrom[0]='\0'; for(k=0;k<maxpop;k++) newpop[k].chrom[0]='\0'; printf("Enter Result Data Filename:"); gets(fname);if((fp=fopen(fname,"w+"))==NULL){printf("cannot open file\n");exit(0);}gen=0;randomize();initialize();fputs("this is result of the TSP problem:",fp);fprintf(fp,"city: %2d psize: %3d Ref.TSP_path:%f\n",lchrom,popsize,refpd);fprintf(fp,"Pc: %f Pm: %f Seed: %f\n",pcross,pmutation,seed);fprintf(fp,"X site:\n");for(k=0;k<lchrom;k++){if((k%16)==0) fprintf(fp,"\n"); fprintf(fp,"%5d",x[k]);}fprintf(fp,"\n Y site:\n"); for(k=0;k<lchrom;k++){if((k%16)==0) fprintf(fp,"\n"); fprintf(fp,"%5d",y[k]);}fprintf(fp,"\n");crtinit();statistics(oldpop);report(gen,oldpop);getch();maxold=min;fm[0]=100.0*oldpop[maxpp].x/ff; do {gen=gen+1;generation();statistics(oldpop);if(max>maxold){maxold=max;co_min=0;}fm[gen%200]=100.0*oldpop[maxpp].x/ff; report(gen,oldpop);gotoxy(30,25);ttt=clock()/18.2;tt=ttt/60;printf("Run Clock: %2d: %2d: %4.2f",tt/60,tt%60,ttt-tt*60.0);printf("Min=%6.4fNm:%d\n",min,co_min); }while((gen<100)&&!bioskey(1)); printf("\n gen= %d",gen);do{gen=gen+1;generation();statistics(oldpop);if(max>maxold){maxold=max;co_min=0;}fm[gen%200]=100.0*oldpop[maxpp].x/ff; report(gen,oldpop);if((gen%100)==0)report(gen,oldpop); gotoxy(30,25);ttt=clock()/18.2;tt=ttt/60;printf("Run Clock: %2d: %2d: %4.2f",tt/60,tt%60,ttt-tt*60.0);printf("Min=%6.4fNm:%d\n",min,co_min); }while((gen<maxgen)&&!bioskey(1));getch();for(k=0;k<lchrom;k++) {if((k%16)==0)fprintf(fp,"\n");fprintf(fp,"%5d",oldpop[maxpp].chrom[k]);}fprintf(fp,"\n");fclose(fp);farfree(dd);farfree(p1);farfree(oldpop);farfree(newpop);restorecrtmode();exit(0);}/*%%%%%%%%%%%%%%%%*/float objfunc(float x1) {float y;y=100.0*ff/x1;return y;}/*&&&&&&&&&&&&&&&&&&&*/void statistics(pop) struct pp *pop;{int j;sumfitness=pop[0].fitness; min=pop[0].fitness; max=pop[0].fitness; maxpp=0;minpp=0;for(j=1;j<popsize;j++) {sumfitness=sumfitness+pop[j].fitness;if(pop[j].fitness>max){max=pop[j].fitness;maxpp=j;}if(pop[j].fitness<min){min=pop[j].fitness;minpp=j;}}avg=sumfitness/(float)popsize;}/*%%%%%%%%%%%%%%%%%%%%*/void generation(){unsigned int k,j,j1,j2,i1,i2,mate1,mate2;float f1,f2;j=0;do{mate1=select();pp:mate2=select();if(mate1==mate2)goto pp;crossover(oldpop[mate1].chrom,oldpop[mate2].chrom,j);newpop[j].x=(float)decode(newpop[j].chrom);newpop[j].fitness=objfunc(newpop[j].x); newpop[j].parent1=mate1;newpop[j].parent2=mate2;newpop[j].xsite=jcross;newpop[j+1].x=(float)decode(newpop[j+1].chrom);newpop[j+1].fitness=objfunc(newpop[j+1].x); newpop[j+1].parent1=mate1;newpop[j+1].parent2=mate2;newpop[j+1].xsite=jcross;if(newpop[j].fitness>min){for(k=0;k<lchrom;k++)oldpop[minpp].chrom[k]=newpop[j].chrom[k];oldpop[minpp].x=newpop[j].x;oldpop[minpp].fitness=newpop[j].fitness;co_min++;return;}if(newpop[j+1].fitness>min){for(k=0;k<lchrom;k++)oldpop[minpp].chrom[k]=newpop[j+1].chrom[k];oldpop[minpp].x=newpop[j+1].x;oldpop[minpp].fitness=newpop[j+1].fitness;co_min++;return;}j=j+2;}while(j<popsize);}/*%%%%%%%%%%%%%%%%%*/void initdata(){unsigned int ch,j;clrscr();printf("-----------------------\n");printf("A SGA\n");printf("------------------------\n");/*pause();*/clrscr();printf("*******SGA DATA ENTRY AND INITILIZATION *******\n");printf("\n");printf("input pop size");scanf("%d",&popsize); printf("input chrom length");scanf("%d",&lchrom); printf("input maxgenerations");scanf("%d",&maxgen); printf("input crossoverprobability");scanf("%f",&pcross); printf("input mutationprob");scanf("%f",&pmutation); randomize1();clrscr();nmutation=0;ncross=0;}/*%%%%%%%%%%%%%%%%%%%%*/void initreport(){int j,k;printf("pop size=%d\n",popsize);printf("chromosome length=%d\n",lchrom);printf("maxgen=%d\n",maxgen);printf("pmutation=%f\n",pmutation); printf("pcross=%f\n",pcross);printf("initial generation statistics\n"); printf("ini pop maxfitness=%f\n",max); printf("ini pop avr fitness=%f\n",avg); printf("ini pop min fitness=%f\n",min); printf("ini pop sum fit=%f\n",sumfitness); } void initpop(){unsigned char j1;unsigned int k5,i1,i2,j,i,k,j2,j3,j4,p5[maxstring];float f1,f2;j=0;for(k=0;k<lchrom;k++)oldpop[j].chrom[k]=k;for(k=0;k<lchrom;k++)p5[k]=oldpop[j].chrom[k];randomize();for(;j<popsize;j++){j2=random(lchrom);for(k=0;k<j2+20;k++){j3=random(lchrom);j4=random(lchrom);j1=p5[j3];p5[j3]=p5[j4];p5[j4]=j1;}for(k=0;k<lchrom;k++)oldpop[j].chrom[k]=p5[k]; }for(k=0;k<lchrom;k++)for(j=0;j<lchrom;j++)dd[k*lchrom+j]=hypot(x[k]-x[j],y[k]-y[j]);for(j=0;j<popsize;j++) {oldpop[j].x=(float)decode(oldpop[j].chrom); oldpop[j].fitness=objfunc(oldpop[j].x);oldpop[j].parent1=0;oldpop[j].parent2=0;oldpop[j].xsite=0;}}/*&&&&&&&&&&&&&&&&&*/void initialize(){int k,j,minx,miny,maxx,maxy; initdata();minx=0;miny=0;maxx=0;maxy=0;for(k=0;k<lchrom;k++){x[k]=rand();if(x[k]>maxx)maxx=x[k]; if(x[k]<minx)minx=x[k]; y[k]=rand();if(y[k]>maxy)maxy=y[k]; if(y[k]<miny)miny=y[k]; }if((maxx-minx)>(maxy-miny)){maxxy=maxx-minx;}else {maxxy=maxy-miny;}maxdd=0.0;for(k=0;k<lchrom;k++)for(j=0;j<lchrom;j++){dd[k*lchrom+j]=hypot(x[k]-x[j],y[k]-y[j]);if(maxdd<dd[k*lchrom+j])maxdd=dd[k*lchrom+j];}refpd=dd[lchrom-1];for(k=0;k<lchrom;k++)refpd=refpd+dd[k*lchrom+k+2]; for(j=0;j<lchrom;j++)dd[j*lchrom+j]=4.0*maxdd; ff=(0.765*maxxy*pow(lchrom,0.5)); minpp=0; min=dd[lchrom-1];for(j=0;j<lchrom-1;j++){if(dd[lchrom*j+lchrom-1]<min){min=dd[lchrom*j+lchrom-1];minpp=j;}}initpop();statistics(oldpop);initreport();}/*&&&&&&&&&&&&&&&&&&*/void report(int l,struct pp *pop){int k,ix,iy,jx,jy;unsigned int tt;float ttt;cleardevice();gotoxy(1,1);printf("city:%4d para_size:%4d maxgen:%4d ref_tour:%f\n",lchrom,popsize,maxgen,refpd);printf("ncross:%4d Nmutation:%4d Rungen:%4d AVG=%8.4f MIN=%8.4f\n\n",ncross,nmutation,l,avg,min);printf("inpath:%6.4f Minpath length:%10.4f Ref_co_tour:%f\n",pop[maxpp].x/maxxy,pop[maxpp].x,ff); printf("Co_minpath:%6.4f Maxfit:%10.8f",100.0*pop[maxpp].x/ff,pop[maxpp].fitness); ttt=clock()/18.2;tt=ttt/60;printf("Run clock:%2d:%2d:%4d.2f\n",tt/60,tt%60,ttt-tt*60.0); setcolor(1%15+1);for(k=0;k<lchrom-1;k++){ix=x[pop[maxpp].chrom[k]];iy=y[pop[maxpp].chrom[k]]+110;jx=x[pop[maxpp].chrom[k+1]];jy=y[pop[maxpp].chrom[k+1]]+110;line(ix,iy,jx,jy);putpixel(ix,iy,RED);}ix=x[pop[maxpp].chrom[0]];iy=y[pop[maxpp].chrom[0]]+110;jx=x[pop[maxpp].chrom[lchrom-1]];jy=y[pop[maxpp].chrom[lchrom-1]]+110; line(ix,iy,jx,jy); putpixel(jx,jy,RED);setcolor(11);outtextxy(ix,iy,"*");setcolor(12);for(k=0;k<1%200;k++){ix=k+280;iy=366-fm[k]/3;jx=ix+1;jy=366-fm[k+1]/3;line(ix,iy,jx,jy);putpixel(ix,iy,RED);}printf("GEN:%3d",l);printf("Minpath:%f Maxfit:%f",pop[maxpp].x,pop[maxpp].fitness); printf("Clock:%2d:%2d:%4.2f\n",tt/60,tt%60,ttt-tt*60.0);}/*###############*/float decode(unsigned char *pp) {int j,k,l;float tt;tt=dd[pp[0]*lchrom+pp[lchrom-1]]; for(j=0;j<lchrom-1;j++){tt=tt+dd[pp[j]*lchrom+pp[j+1]];} l=0;for(k=0;k<lchrom-1;k++)for(j=k+1;j<lchrom;j++){if(pp[j]==pp[k])l++;}return tt+4*l*maxdd;}/*%%%%%%%%%%%%%%%%%%*/ void crtinit(){int driver,mode;struct palettetype p;driver=DETECT;mode=0;initgraph(&driver,&mode,""); cleardevice();}/*$$$$$$$$$$$$$$$$$$$$*/ int select(){double rand1,partsum; float r1;int j;partsum=0.0;j=0;rand1=random1()*sumfitness; do{partsum=partsum+oldpop[j].fitness;j=j+1;}while((partsum<rand1)&&(j<popsize));return j-1;}/*$$$$$$$$$$$$$$$*/int crossover(unsigned char *parent1,unsigned char *parent2,int k5) {int k,j,mutate,i1,i2,j5;int j1,j2,j3,s0,s1,s2; unsigned charjj,ts1[maxstring],ts2[maxstring];float f1,f2;s0=0;s1=0;s2=0;if(flip(pcross)){jcross=random(lchrom-1); j5=random(lchrom-1); ncross=ncross+1;if(jcross>j5){k=jcross;jcross=j5;j5=k;}}else jcross=lchrom; if(jcross!=lchrom) {s0=1;k=0;for(j=jcross;j<j5;j++) {ts1[k]=parent1[j]; ts2[k]=parent2[j]; k++; }j3=k;for(j=0;j<lchrom;j++) {j2=0;while((parent2[j]!=ts1[j2])&&(j2<k)){j2++;}if(j2==k){ts1[j3]=parent2[j];j3++;}}j3=k;for(j=0;j<lchrom;j++){j2=0;while((parent1[j]!=ts2[j2])&&(j2<k)){j2++;}if(j2==k){ts2[j3]=parent1[j];j3++;}}for(j=0;j<lchrom;j++){newpop[k5].chrom[j]=ts1[j];newpop[k5+1].chrom[j]=ts2[j]; }}else{for(j=0;j<lchrom;j++){newpop[k5].chrom[j]=parent1[j]; newpop[k5+1].chrom[j]=parent2[j]; } mutate=flip(pmutation);if(mutate){s1=1;nmutation=nmutation+1;for(j3=0;j3<200;j3++){j1=random(lchrom);j=random(lchrom);jj=newpop[k5].chrom[j];newpop[k5].chrom[j]=newpop[k5].chrom[j1];newpop[k5].chrom[j1]=jj;}}mutate=flip(pmutation);if(mutate){s2=1;nmutation=nmutation+1;for(j3=0;j3<100;j3++){j1=random(lchrom);j=random(lchrom);jj=newpop[k5+1].chrom[j];newpop[k5+1].chrom[j]=newpop[k5+1].chrom[j1];newpop[k5+1].chrom[j1]=jj;}}}j2=random(2*lchrom/3);for(j=j2;j<j2+lchrom/3-1;j++)for(k=0;k<lchrom;k++){if(k==j)continue;if(k>j){i2=k;i1=j;}else{i1=k;i2=j;}f1=dd[lchrom*newpop[k5].chrom[i1]+newpop[k5].chrom[i2]]; f1=f1+dd[lchrom*newpop[k5].chrom[(i1+1)%lchrom]+newpop[k5].chrom[(i2+1)%lchrom]];f2=dd[lchrom*newpop[k5].chrom[i1]+newpop[k5].chrom[(i1+1)%lchrom]];f2=f2+dd[lchrom*newpop[k5].chrom[i2]+newpop[k5].chrom[(i2+1)%lchrom]];if(f1<f2){inversion(i1,i2,newpop[k5].chrom);}}j2=random(2*lchrom/3);for(j=j2;j<j2+lchrom/3-1;j++)for(k=0;k<lchrom;k++){if(k==j)continue;if(k>j){i2=k;i1=j;}else{i1=k;i2=j;}f1=dd[lchrom*newpop[k5+1].chrom[i1]+newpop[k5+1].chrom[i2]];f1=f1+dd[lchrom*newpop[k5+1].chrom[(i1+1)%lchrom]+newpop[k5+1].chrom[(i2+1)%lchrom]];f2=dd[lchrom*newpop[k5+1].chrom[i1]+newpop[k5+1].chrom[(i1+1)%lchrom]];f2=f2+dd[lchrom*newpop[k5+1].chrom[i2]+newpop[k5+1].chrom[(i2+1)%lchrom]];if(f1<f2){inversion(i1,i2,newpop[k5+1].chrom);} }return 1;}/*$$$$$$$$$$$$$$$*/void inversion(unsigned int k,unsigned int j,unsigned char *ss) {unsigned int l1,i;unsigned char tt;l1=(j-k)/2;for(i=0;i<l1;i++){tt=ss[k+i+1];ss[k+i+1]=ss[j-i];ss[j-i]=tt;}}/*%%%%%%%%%%%%%%%*/void randomize1(){int i;randomize();for(i=0;i<lchrom;i++) oldrand[i]=random(30001)/30000.0;jrand=0;}/*%%%%%%%%%%%*/float random1(){jrand=jrand+1;if(jrand>=lchrom){jrand=0;randomize1();}return oldrand[jrand]; }/*%%%%%%%%%%*/int flip(float probability) {float ppp;ppp=random(20001)/20000.0; if(ppp<=probability)return 1; return 0;}%TSP问题(又名:旅行商问题,货郎担问题)遗传算法通用matlab程序 %D是距离矩阵,n为种群个数,建议取为城市个数的1~2倍, %C为停止代数,遗传到第 C 代时程序停止,C的具体取值视问题的规模和耗费的时间而定%m为适应值归一化淘汰加速指数 ,最好取为1,2,3,4 ,不宜太大 %alpha为淘汰保护指数,可取为0~1之间任意小数,取1时关闭保护功能,最好取为0.8~1.0 %R为最短路径,Rlength为路径长度function [R,Rlength]=geneticTSP(D,n,C,m,alpha)[N,NN]=size(D);farm=zeros(n,N);%用于存储种群for i=1:nfarm(i,:)=randperm(N);%随机生成初始种群endR=farm(1,:);%存储最优种群len=zeros(n,1);%存储路径长度fitness=zeros(n,1);%存储归一化适应值counter=0;while counter<Cfor i=1:nlen(i,1)=myLength(D,farm(i,:));%计算路径长度endmaxlen=max(len);minlen=min(len);fitness=fit(len,m,maxlen,minlen);%计算归一化适应值rr=find(len==minlen);R=farm(rr(1,1),:);%更新最短路径FARM=farm;%优胜劣汰,nn记录了复制的个数nn=0;for i=1:nif fitness(i,1)>=alpha*rand nn=nn+1;FARM(nn,:)=farm(i,:);endendFARM=FARM(1:nn,:);[aa,bb]=size(FARM);%交叉和变异while aa<nif nn<=2nnper=randperm(2);elsennper=randperm(nn);endA=FARM(nnper(1),:);B=FARM(nnper(2),:);[A,B]=intercross(A,B); FARM=[FARM;A;B]; [aa,bb]=size(FARM);endif aa>nFARM=FARM(1:n,:);%保持种群规模为nendfarm=FARM;clear FARMcounter=counter+1endRlength=myLength(D,R);function [a,b]=intercross(a,b) L=length(a); if L<=10%确定交叉宽度W=1;elseif ((L/10)-floor(L/10))>=rand&&L>10W=ceil(L/10);elseW=floor(L/10);endp=unidrnd(L-W+1);%随机选择交叉范围,从p到p+W for i=1:W%交叉x=find(a==b(1,p+i-1)); y=find(b==a(1,p+i-1)); [a(1,p+i-1),b(1,p+i-1)]=exchange(a(1,p+i-1),b(1,p+i-1));[a(1,x),b(1,y)]=exchange(a(1,x),b(1,y));endfunction [x,y]=exchange(x,y) temp=x;x=y;y=temp;% 计算路径的子程序function len=myLength(D,p) [N,NN]=size(D);len=D(p(1,N),p(1,1)); for i=1:(N-1)len=len+D(p(1,i),p(1,i+1));end%计算归一化适应值子程序function fitness=fit(len,m,maxlen,minlen) fitness=len;for i=1:length(len)fitness(i,1)=(1-((len(i,1)-minlen)/(maxlen-minlen+0.000001))).^m;end。

遗传算法C语言代码

遗传算法C语言代码

// GA.cpp : Defines the entry point for the console application.///*这是一个非常简单的遗传算法源代码,是由Denis Cormier (North Carolina State University)开发的,Sita S.Raghavan (University of North Carolina at Charlotte)修正。

代码保证尽可能少,实际上也不必查错。

对一特定的应用修正此代码,用户只需改变常数的定义并且定义“评价函数”即可。

注意代码的设计是求最大值,其中的目标函数只能取正值;且函数值和个体的适应值之间没有区别。

该系统使用比率选择、精华模型、单点杂交和均匀变异。

如果用Gaussian变异替换均匀变异,可能得到更好的效果。

代码没有任何图形,甚至也没有屏幕输出,主要是保证在平台之间的高可移植性。

读者可以从, 目录coe/evol中的文件prog.c中获得。

要求输入的文件应该命名为‘gadata.txt’;系统产生的输出文件为‘galog.txt’。

输入的文件由几行组成:数目对应于变量数。

且每一行提供次序——对应于变量的上下界。

如第一行为第一个变量提供上下界,第二行为第二个变量提供上下界,等等。

*/#include <stdio.h>#include <stdlib.h>#include <math.h>/* Change any of these parameters to match your needs *///请根据你的需要来修改以下参数#define POPSIZE 50 /* population size 种群大小*/#define MAXGENS 1000 /* max. number of generations 最大基因个数*/const int NVARS = 3; /* no. of problem variables 问题变量的个数*/#define PXOVER 0.8 /* probability of crossover 杂交概率*/#define PMUTATION 0.15 /* probability of mutation 变异概率*/#define TRUE 1#define FALSE 0int generation; /* current generation no. 当前基因个数*/int cur_best; /* best individual 最优个体*/FILE *galog; /* an output file 输出文件指针*/struct genotype /* genotype (GT), a member of the population 种群的一个基因的结构体类型*/{double gene[NVARS]; /* a string of variables 变量*/double fitness; /* GT's fitness 基因的适应度*/double upper[NVARS]; /* GT's variables upper bound 基因变量的上界*/ double lower[NVARS]; /* GT's variables lower bound 基因变量的下界*/ double rfitness; /* relative fitness 比较适应度*/double cfitness; /* cumulative fitness 积累适应度*/};struct genotype population[POPSIZE+1]; /* population 种群*/struct genotype newpopulation[POPSIZE+1]; /* new population; 新种群*//* replaces the old generation *///取代旧的基因/* Declaration of procedures used by this genetic algorithm *///以下是一些函数声明void initialize(void);double randval(double, double);void evaluate(void);void keep_the_best(void);void elitist(void);void select(void);void crossover(void);void Xover(int,int);void swap(double *, double *);void mutate(void);void report(void);/***************************************************************/ /* Initialization function: Initializes the values of genes *//* within the variables bounds. It also initializes (to zero) *//* all fitness values for each member of the population. It *//* reads upper and lower bounds of each variable from the *//* input file `gadata.txt'. It randomly generates values *//* between these bounds for each gene of each genotype in the *//* population. The format of the input file `gadata.txt' is *//* var1_lower_bound var1_upper bound *//* var2_lower_bound var2_upper bound ... *//***************************************************************/void initialize(void){FILE *infile;int i, j;double lbound, ubound;if ((infile = fopen("gadata.txt","r"))==NULL){fprintf(galog,"\nCannot open input file!\n");exit(1);}/* initialize variables within the bounds *///把输入文件的变量界限输入到基因结构体中for (i = 0; i < NVARS; i++){fscanf(infile, "%lf",&lbound);fscanf(infile, "%lf",&ubound);for (j = 0; j < POPSIZE; j++){population[j].fitness = 0;population[j].rfitness = 0;population[j].cfitness = 0;population[j].lower[i] = lbound;population[j].upper[i]= ubound;population[j].gene[i] = randval(population[j].lower[i],population[j].upper[i]);}}fclose(infile);}/***********************************************************/ /* Random value generator: Generates a value within bounds *//***********************************************************/ //随机数产生函数double randval(double low, double high){double val;val = ((double)(rand()%1000)/1000.0)*(high - low) + low;return(val);}/*************************************************************/ /* Evaluation function: This takes a user defined function. *//* Each time this is changed, the code has to be recompiled. *//* The current function is: x[1]^2-x[1]*x[2]+x[3] *//*************************************************************/ //评价函数,可以由用户自定义,该函数取得每个基因的适应度void evaluate(void){int mem;int i;double x[NVARS+1];for (mem = 0; mem < POPSIZE; mem++){for (i = 0; i < NVARS; i++)x[i+1] = population[mem].gene[i];population[mem].fitness = (x[1]*x[1]) - (x[1]*x[2]) + x[3];}}/***************************************************************/ /* Keep_the_best function: This function keeps track of the *//* best member of the population. Note that the last entry in *//* the array Population holds a copy of the best individual *//***************************************************************/ //保存每次遗传后的最佳基因void keep_the_best(){int mem;int i;cur_best = 0;/* stores the index of the best individual *///保存最佳个体的索引for (mem = 0; mem < POPSIZE; mem++){if (population[mem].fitness > population[POPSIZE].fitness){cur_best = mem;population[POPSIZE].fitness = population[mem].fitness;}}/* once the best member in the population is found, copy the genes *///一旦找到种群的最佳个体,就拷贝他的基因for (i = 0; i < NVARS; i++)population[POPSIZE].gene[i] = population[cur_best].gene[i];}/****************************************************************/ /* Elitist function: The best member of the previous generation *//* is stored as the last in the array. If the best member of *//* the current generation is worse then the best member of the *//* previous generation, the latter one would replace the worst *//* member of the current population *//****************************************************************///搜寻杰出个体函数:找出最好和最坏的个体。

一个简单实用的遗传算法c程序

一个简单实用的遗传算法c程序

一个简单实用的遗传算法c程序(转载)c++ 2009-07-28 23:09:03 阅读418 评论0 字号:大中小这是一个非常简单的遗传算法源代码,是由Denis Cormier (North Carolina State University)开发的,Sita S.Raghavan (University of North Carolina at Charlotte)修正。

代码保证尽可能少,实际上也不必查错。

对一特定的应用修正此代码,用户只需改变常数的定义并且定义“评价函数”即可。

注意代码的设计是求最大值,其中的目标函数只能取正值;且函数值和个体的适应值之间没有区别。

该系统使用比率选择、精华模型、单点杂交和均匀变异。

如果用Gaussian变异替换均匀变异,可能得到更好的效果。

代码没有任何图形,甚至也没有屏幕输出,主要是保证在平台之间的高可移植性。

读者可以从,目录coe/evol 中的文件prog.c中获得。

要求输入的文件应该命名为‘gadata.txt’;系统产生的输出文件为‘galog.txt’。

输入的文件由几行组成:数目对应于变量数。

且每一行提供次序——对应于变量的上下界。

如第一行为第一个变量提供上下界,第二行为第二个变量提供上下界,等等。

/**************************************************************************//* This is a simple genetic algorithm implementation where the *//* evaluation function takes positive values only and the *//* fitness of an individual is the same as the value of the *//* objective function *//**************************************************************************/#include <stdio.h>#include <stdlib.h>#include <math.h>/* Change any of these parameters to match your needs */#define POPSIZE 50 /* population size */#define MAXGENS 1000 /* max. number of generations */#define NVARS 3 /* no. of problem variables */#define PXOVER 0.8 /* probability of crossover */#define PMUTATION 0.15 /* probability of mutation */#define TRUE 1#define FALSE 0int generation; /* current generation no. */int cur_best; /* best individual */FILE *galog; /* an output file */struct genotype /* genotype (GT), a member of the population */{double gene[NVARS]; /* a string of variables一个变量字符串*/ double fitness; /* GT's fitness适应度*/double upper[NVARS]; /* GT's variables upper bound 变量的上限*/ double lower[NVARS]; /* GT's variables lower bound变量的下限*/ double rfitness; /* relative fitness 相对适应度*/double cfitness; /* cumulative fitness 累计适应度*/};struct genotype population[POPSIZE+1]; /* population */struct genotype newpopulation[POPSIZE+1]; /* new population; *//* replaces the *//* old generation */ /* Declaration of procedures used by this genetic algorithm */void initialize(void);double randval(double, double);void evaluate(void);void keep_the_best(void);void elitist(void);void select(void);void crossover(void);void Xover(int,int);void swap(double *, double *);void mutate(void);void report(void);/***************************************************************//* Initialization function: Initializes the values of genes *//* within the variables bounds. It also initializes (to zero) *//* all fitness values for each member of the population. It *//* reads upper and lower bounds of each variable from the */ /* input file `gadata.txt'. It randomly generates values *//* between these bounds for each gene of each genotype in the *//* population. The format of the input file `gadata.txt' is *//* var1_lower_bound var1_upper bound */ /* var2_lower_bound var2_upper bound ... */ /***************************************************************/void initialize(void){FILE *infile;int i, j;double lbound, ubound;if ((infile = fopen("gadata.txt","r"))==NULL){fprintf(galog,"\nCannot open input file!\n");exit(1);}/* initialize variables within the bounds */for (i = 0; i < NVARS; i++){fscanf(infile, "%lf",&lbound);fscanf(infile, "%lf",&ubound);for (j = 0; j < POPSIZE; j++){population[j].fitness = 0;population[j].rfitness = 0;population[j].cfitness = 0;population[j].lower[i] = lbound;population[j].upper[i]= ubound;population[j].gene[i] = randval(population[j].lower[i],population[j].upper[i]);}}fclose(infile);}/***********************************************************//* Random value generator: Generates a value within bounds */ /***********************************************************/double randval(double low, double high){double val;val = ((double)(rand()%1000)/1000.0)*(high - low) + low;return(val);}/*************************************************************//* Evaluation function: This takes a user defined function. *//* Each time this is changed, the code has to be recompiled. */ /* The current function is: x[1]^2-x[1]*x[2]+x[3] *//*************************************************************/void evaluate(void){int mem;int i;double x[NVARS+1];for (mem = 0; mem < POPSIZE; mem++){for (i = 0; i < NVARS; i++)x[i+1] = population[mem].gene[i];population[mem].fitness = (x[1]*x[1]) - (x[1]*x[2]) + x[3];}}/***************************************************************//* Keep_the_best function: This function keeps track of the */ /* best member of the population. Note that the last entry in */ /* the array Population holds a copy of the best individual *//***************************************************************/void keep_the_best(){int mem;int i;cur_best = 0; /* stores the index of the best individual */for (mem = 0; mem < POPSIZE; mem++){if (population[mem].fitness > population[POPSIZE].fitness){cur_best = mem;population[POPSIZE].fitness = population[mem].fitness;}}/* once the best member in the population is found, copy the genes */ for (i = 0; i < NVARS; i++)population[POPSIZE].gene[i] = population[cur_best].gene[i]; }/****************************************************************//* Elitist function: The best member of the previous generation *//* is stored as the last in the array. If the best member of *//* the current generation is worse then the best member of the *//* previous generation, the latter one would replace the worst *//* member of the current population */ /****************************************************************/void elitist(){int i;double best, worst; /* best and worst fitness values */int best_mem, worst_mem; /* indexes of the best and worst member */ best = population[0].fitness;worst = population[0].fitness;for (i = 0; i < POPSIZE - 1; ++i){if(population[i].fitness > population[i+1].fitness){if (population[i].fitness >= best){best = population[i].fitness;best_mem = i;}if (population[i+1].fitness <= worst){worst = population[i+1].fitness;worst_mem = i + 1;}}else{if (population[i].fitness <= worst){worst = population[i].fitness;worst_mem = i;}if (population[i+1].fitness >= best){best = population[i+1].fitness;best_mem = i + 1;}}}/* if best individual from the new population is better than */ /* the best individual from the previous population, then *//* copy the best from the new population; else replace the *//* worst individual from the current population with the *//* best one from the previous generation */if (best >= population[POPSIZE].fitness){for (i = 0; i < NVARS; i++)population[POPSIZE].gene[i] = population[best_mem].gene[i];population[POPSIZE].fitness = population[best_mem].fitness;}else{for (i = 0; i < NVARS; i++)population[worst_mem].gene[i] = population[POPSIZE].gene[i];population[worst_mem].fitness = population[POPSIZE].fitness;}}/**************************************************************//* Selection function: Standard proportional selection for *//* maximization problems incorporating elitist model - makes *//* sure that the best member survives *//**************************************************************/void select(void){int mem, i, j, k;double sum = 0;double p;/* find total fitness of the population */for (mem = 0; mem < POPSIZE; mem++){sum += population[mem].fitness;}/* calculate relative fitness */for (mem = 0; mem < POPSIZE; mem++){population[mem].rfitness = population[mem].fitness/sum;}population[0].cfitness = population[0].rfitness;/* calculate cumulative fitness */for (mem = 1; mem < POPSIZE; mem++){population[mem].cfitness = population[mem-1].cfitness +population[mem].rfitness;}/* finally select survivors using cumulative fitness. */for (i = 0; i < POPSIZE; i++){p = rand()%1000/1000.0;if (p < population[0].cfitness)newpopulation[i] = population[0];else{for (j = 0; j < POPSIZE;j++)if (p >= population[j].cfitness &&p<population[j+1].cfitness)newpopulation[i] = population[j+1];}}/* once a new population is created, copy it back */for (i = 0; i < POPSIZE; i++)population[i] = newpopulation[i];}/***************************************************************//* Crossover selection: selects two parents that take part in *//* the crossover. Implements a single point crossover */ /***************************************************************/void crossover(void){int i, mem, one;int first = 0; /* count of the number of members chosen */ double x;for (mem = 0; mem < POPSIZE; ++mem){x = rand()%1000/1000.0;if (x < PXOVER){++first;if (first % 2 == 0)Xover(one, mem);elseone = mem;}}}/**************************************************************//* Crossover: performs crossover of the two selected parents. *//**************************************************************/void Xover(int one, int two){int i;int point; /* crossover point *//* select crossover point */if(NVARS > 1){if(NVARS == 2)point = 1;elsepoint = (rand() % (NVARS - 1)) + 1;for (i = 0; i < point; i++)swap(&population[one].gene[i], &population[two].gene[i]);}}/*************************************************************//* Swap: A swap procedure that helps in swapping 2 variables */ /*************************************************************/void swap(double *x, double *y){double temp;temp = *x;*x = *y;*y = temp;}/**************************************************************//* Mutation: Random uniform mutation. A variable selected for *//* mutation is replaced by a random value between lower and */ /* upper bounds of this variable */ /**************************************************************/void mutate(void){int i, j;double lbound, hbound;double x;for (i = 0; i < POPSIZE; i++)for (j = 0; j < NVARS; j++){x = rand()%1000/1000.0;if (x < PMUTATION){/* find the bounds on the variable to be mutated */lbound = population[i].lower[j];hbound = population[i].upper[j];population[i].gene[j] = randval(lbound, hbound);}}}/***************************************************************//* Report function: Reports progress of the simulation. Data *//* dumped into the output file are separated by commas */ /***************************************************************/void report(void){int i;double best_val; /* best population fitness */double avg; /* avg population fitness */double stddev; /* std. deviation of population fitness */ double sum_square; /* sum of square for std. calc */ double square_sum; /* square of sum for std. calc */ double sum; /* total population fitness */sum = 0.0;sum_square = 0.0;for (i = 0; i < POPSIZE; i++){sum += population[i].fitness;sum_square += population[i].fitness * population[i].fitness;}avg = sum/(double)POPSIZE;square_sum = avg * avg * POPSIZE;stddev = sqrt((sum_square - square_sum)/(POPSIZE - 1));best_val = population[POPSIZE].fitness;fprintf(galog, "\n%5d, %6.3f, %6.3f, %6.3f \n\n", generation,best_val, avg, stddev); }/**************************************************************//* Main function: Each generation involves selecting the best *//* members, performing crossover & mutation and then */ /* evaluating the resulting population, until the terminating *//* condition is satisfied */ /**************************************************************/void main(void){int i;if ((galog = fopen("galog.txt","w"))==NULL){exit(1);}generation = 0;fprintf(galog, "\n generation best average standard \n"); fprintf(galog, " number value fitness deviation \n"); initialize();evaluate();keep_the_best();while(generation<MAXGENS){generation++;select();crossover();mutate();report();evaluate();elitist();}fprintf(galog,"\n\n Simulation completed\n");fprintf(galog,"\n Best member: \n");for (i = 0; i < NVARS; i++){fprintf (galog,"\n var(%d) = %3.3f",i,population[POPSIZE].gene[i]);}fprintf(galog,"\n\n Best fitness = %3.3f",population[POPSIZE].fitness);fclose(galog);printf("Success\n");}/***************************************************************/链接库文件?这个简单一般的第三方库文件有2种提供方式1.lib静态库,这样必须在工程设置里面添加。

遗传算法的C语言实现(二)-----以求解TSP问题为例

遗传算法的C语言实现(二)-----以求解TSP问题为例

遗传算法的C语⾔实现(⼆)-----以求解TSP问题为例上⼀次我们使⽤遗传算法求解了⼀个较为复杂的多元⾮线性函数的极值问题,也基本了解了遗传算法的实现基本步骤。

这⼀次,我再以经典的TSP问题为例,更加深⼊地说明遗传算法中选择、交叉、变异等核⼼步骤的实现。

⽽且这⼀次解决的是离散型问题,上⼀次解决的是连续型问题,刚好形成对照。

⾸先介绍⼀下TSP问题。

TSP(traveling salesman problem,旅⾏商问题)是典型的NP完全问题,即其最坏情况下的时间复杂度随着问题规模的增⼤按指数⽅式增长,到⽬前为⽌还没有找到⼀个多项式时间的有效算法。

TSP问题可以描述为:已知n个城市之间的相互距离,某⼀旅⾏商从某⼀个城市出发,访问每个城市⼀次且仅⼀次,最后回到出发的城市,如何安排才能使其所⾛的路线最短。

换⾔之,就是寻找⼀条遍历n个城市的路径,或者说搜索⾃然⼦集X={1,2,...,n}(X的元素表⽰对n个城市的编号)的⼀个排列P(X)={V1,V2,....,Vn},使得Td=∑d(V i,V i+1)+d(V n,V1)取最⼩值,其中,d(V i,V i+1)表⽰城市V i到V i+1的距离。

TSP问题不仅仅是旅⾏商问题,其他许多NP完全问题也可以归结为TSP问题,如邮路问题,装配线上的螺母问题和产品的⽣产安排问题等等,也使得TSP问题的求解具有更加⼴泛的实际意义。

再来说针对TSP问题使⽤遗传算法的步骤。

(1)编码问题:由于这是⼀个离散型的问题,我们采⽤整数编码的⽅式,⽤1~n来表⽰n个城市,1~n的任意⼀个排列就构成了问题的⼀个解。

可以知道,对于n个城市的TSP问题,⼀共有n!种不同的路线。

(2)种群初始化:对于N个个体的种群,随机给出N个问题的解(相当于是染⾊体)作为初始种群。

这⾥具体采⽤的⽅法是:1,2,...,n作为第⼀个个体,然后2,3,..n分别与1交换位置得到n-1个解,从2开始,3,4,...,n分别与2交换位置得到n-2个解,依次类推。

遗传算法案例及源代码

遗传算法案例及源代码

计算智能作业三:遗传算法计算问题1.问题描述:求下述二元函数的最大值:222121),(m ax x x x x f +=S.t. }7,6,5,4,3,2,1{1∈x }7,6,5,4,3,2,1{2∈x2.程序结构:(1)变量:C :是一个1*6数组,每个数组里面是一个6位二进制数,它是遗传算法中的染色体。

new_c:每一轮的新变量c 。

first_c:初始群体矩阵。

sur_value :个体适应值的概率值,为0-1之间的数,所有概率值和为1。

survived :经过选择运算后产生的个体基因型组合。

intersect_c :经过交叉运算后产生的个体基因型组合。

mutation_c :经过变异运算后产生的个体基因型组合。

f :最后计算得到的最大值 (2)程序里面的方程function out = value_function( ci ):价值函数(自适应度函数),即222121),(x x x x f +=。

function [ sur_value ] = calc_value( c ):计算群体中每一个个体的适应度的值function survived = surviver( sur_value ):利用概率选择函数 function [ intersect_c ] = intersect( new_c ):交叉运算function [ mutation_c ,mutation_value] = mutation( intersect_c ):变异运算3.源程序(1)遗传算法的主程序主程序包括初始群体产生,最终结果展示,即各函数之间的调用关系。

个体编码遗传算法的运算对象是表示个体的符号串,所以必须把变量 x1, x2 编码为无符号二进制整数。

这个二进制整数位个体的基因型。

因为x1, x2 为 0 ~ 7之间的整数,所以分别用3位无符号二进制整数来表示,将它们连接在一起所组成的6位无符号二进制数就形成了个体的基因型,表示一个可行解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

// GA.cpp : Defines the entry point for the console application.///*这是一个非常简单的遗传算法源代码,是由Denis Cormier (North Carolina State University)开发的,Sita S.Raghavan (University of North Carolina at Charlotte)修正。

代码保证尽可能少,实际上也不必查错。

对一特定的应用修正此代码,用户只需改变常数的定义并且定义“评价函数”即可。

注意代码的设计是求最大值,其中的目标函数只能取正值;且函数值和个体的适应值之间没有区别。

该系统使用比率选择、精华模型、单点杂交和均匀变异。

如果用Gaussian变异替换均匀变异,可能得到更好的效果。

代码没有任何图形,甚至也没有屏幕输出,主要是保证在平台之间的高可移植性。

读者可以从, 目录coe/evol中的文件prog.c中获得。

要求输入的文件应该命名为‘gadata.txt’;系统产生的输出文件为‘galog.txt’。

输入的文件由几行组成:数目对应于变量数。

且每一行提供次序——对应于变量的上下界。

如第一行为第一个变量提供上下界,第二行为第二个变量提供上下界,等等。

*/#include <stdio.h>#include <stdlib.h>#include <math.h>/* Change any of these parameters to match your needs *///请根据你的需要来修改以下参数#define POPSIZE 50 /* population size 种群大小*/#define MAXGENS 1000 /* max. number of generations 最大基因个数*/const int NVARS = 3; /* no. of problem variables 问题变量的个数*/#define PXOVER 0.8 /* probability of crossover 杂交概率*/#define PMUTATION 0.15 /* probability of mutation 变异概率*/#define TRUE 1#define FALSE 0int generation; /* current generation no. 当前基因个数*/int cur_best; /* best individual 最优个体*/FILE *galog; /* an output file 输出文件指针*/struct genotype /* genotype (GT), a member of the population 种群的一个基因的结构体类型*/{double gene[NVARS]; /* a string of variables 变量*/double fitness; /* GT's fitness 基因的适应度*/double upper[NVARS]; /* GT's variables upper bound 基因变量的上界*/ double lower[NVARS]; /* GT's variables lower bound 基因变量的下界*/ double rfitness; /* relative fitness 比较适应度*/double cfitness; /* cumulative fitness 积累适应度*/};struct genotype population[POPSIZE+1]; /* population 种群*/struct genotype newpopulation[POPSIZE+1]; /* new population; 新种群*//* replaces the old generation *///取代旧的基因/* Declaration of procedures used by this genetic algorithm *///以下是一些函数声明void initialize(void);double randval(double, double);void evaluate(void);void keep_the_best(void);void elitist(void);void select(void);void crossover(void);void Xover(int,int);void swap(double *, double *);void mutate(void);void report(void);/***************************************************************/ /* Initialization function: Initializes the values of genes *//* within the variables bounds. It also initializes (to zero) *//* all fitness values for each member of the population. It *//* reads upper and lower bounds of each variable from the *//* input file `gadata.txt'. It randomly generates values *//* between these bounds for each gene of each genotype in the *//* population. The format of the input file `gadata.txt' is *//* var1_lower_bound var1_upper bound *//* var2_lower_bound var2_upper bound ... *//***************************************************************/void initialize(void){FILE *infile;int i, j;double lbound, ubound;if ((infile = fopen("gadata.txt","r"))==NULL){fprintf(galog,"\nCannot open input file!\n");exit(1);}/* initialize variables within the bounds *///把输入文件的变量界限输入到基因结构体中for (i = 0; i < NVARS; i++){fscanf(infile, "%lf",&lbound);fscanf(infile, "%lf",&ubound);for (j = 0; j < POPSIZE; j++){population[j].fitness = 0;population[j].rfitness = 0;population[j].cfitness = 0;population[j].lower[i] = lbound;population[j].upper[i]= ubound;population[j].gene[i] = randval(population[j].lower[i],population[j].upper[i]);}}fclose(infile);}/***********************************************************/ /* Random value generator: Generates a value within bounds *//***********************************************************/ //随机数产生函数double randval(double low, double high){double val;val = ((double)(rand()%1000)/1000.0)*(high - low) + low;return(val);}/*************************************************************/ /* Evaluation function: This takes a user defined function. *//* Each time this is changed, the code has to be recompiled. *//* The current function is: x[1]^2-x[1]*x[2]+x[3] *//*************************************************************/ //评价函数,可以由用户自定义,该函数取得每个基因的适应度void evaluate(void){int mem;int i;double x[NVARS+1];for (mem = 0; mem < POPSIZE; mem++){for (i = 0; i < NVARS; i++)x[i+1] = population[mem].gene[i];population[mem].fitness = (x[1]*x[1]) - (x[1]*x[2]) + x[3];}}/***************************************************************/ /* Keep_the_best function: This function keeps track of the *//* best member of the population. Note that the last entry in *//* the array Population holds a copy of the best individual *//***************************************************************/ //保存每次遗传后的最佳基因void keep_the_best(){int mem;int i;cur_best = 0;/* stores the index of the best individual *///保存最佳个体的索引for (mem = 0; mem < POPSIZE; mem++){if (population[mem].fitness > population[POPSIZE].fitness){cur_best = mem;population[POPSIZE].fitness = population[mem].fitness;}}/* once the best member in the population is found, copy the genes *///一旦找到种群的最佳个体,就拷贝他的基因for (i = 0; i < NVARS; i++)population[POPSIZE].gene[i] = population[cur_best].gene[i];}/****************************************************************/ /* Elitist function: The best member of the previous generation *//* is stored as the last in the array. If the best member of *//* the current generation is worse then the best member of the *//* previous generation, the latter one would replace the worst *//* member of the current population *//****************************************************************///搜寻杰出个体函数:找出最好和最坏的个体。

相关文档
最新文档