概率论与数理统计模拟试题5套带复习资料
(完整版)概率论与数理统计复习题带答案讲解

;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。
2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。
3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。
4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。
5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。
6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。
7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC I I ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。
12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则A B =U ( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =U ( 0.2 ) 17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。
概率论与数理统计模拟试题集(6套,含详细答案)

《概率论与数理统计》试题(1)一 、 判断题(本题共15分,每小题3分。
正确打“√”,错误打“×”)⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( )⑸ 样本方差2n S=n121)(X Xni i-∑=是母体方差DX 的无偏估计 ( )二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生;(2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。
三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为210131111115651530XP-- 求2Y X =的分布列.五、(10分)设随机变量X 具有密度函数||1()2x f x e -=,∞< x <∞, 求X 的数学期望和方差.六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布1()(1),1,2,,01k P X k p p k p -==-=<<,的样本,试求未知参数p 的极大似然估计.《概率论与数理统计》试题(1)评分标准一 ⑴ ×;⑵ ×;⑶ √;⑷ √;⑸ ×。
《概率论与数理统计》复习题(含答案)

概率论与数理统计复习题一、选择题(1)设0)(,0)(>>B P A P ,且A 与B 为对立事件,则不成立的是 。
(a)A 与B 互不相容;(b)A 与B 相互独立; (c)A 与B 互不独立;(d)A 与B 互不相容(2)10个球中有3个红球,7个白球,随机地分给10个人,每人一球,则最后三个分到球的人中恰有一个得到红球的概率为 。
(a))103(13C ;(b)2)107)(103(;(c)213)107)(103(C ;(d)3102713C C C (3)设X ~)1,1(N ,概率密度为)(x f ,则有 。
(a)5.0)0()0(=≥=≤X P X p ;(b)),(),()(∞-∞∈-=x x f x f ; (c)5.0)1()1(=≥=≤X P X P ;(d)),(),(1)(∞-∞∈--=x x F x F (4)若随机变量X ,Y 的)(),(Y D X D 均存在,且0)(,0)(≠≠Y D X D ,)()()(Y E X E XY E =,则有 。
(a)X ,Y 一定独立;(b)X ,Y 一定不相关;(c))()()(Y D X D XY D =;(d))()()(Y D X D Y X D -=-(5)样本4321,,,X X X X 取自正态分布总体X ,已知μ=)(X E ,但)(X D 未知,则下列随机变量中不能作为统计量的是 。
(a)∑==4141i i X X ;(b)μ241-+X X ;(c)∑=-=4122)(1i i X X K σ;(d)∑=-=4122)(31i i X X S(6)假设随机变量X 的密度函数为)(x f 即X ~)(x f ,且)(X E ,)(X D 均存在。
另设n X X ,,1 取自X 的一个样本以及X 是样本均值,则有 。
(a)X ~)(x f ;(b)X ni ≤≤1min ~)(x f ;(c)X ni ≤≤1max ~)(x f ;(d)(n X X ,,1 )~∏=ni x f 1)((7)每次试验成功率为)10(<<p p ,进行重复独立试验,直到第10次试验才取得4次成功的概率为 。
《概率论与数理统计》综合复习资料

《概率论与数理统计》综合复习资料《概率论与数理统计》综合复习资料一、填空题1.由长期统计资料得知,某一地区在4月份下雨(记作事件A )的概率为4/15,刮风(记作事件B )的概率为7/15,刮风又下雨(记作事件C )的概率为1/10。
则:=)|(B A P ;=)(B A P 。
2.一批产品共有8个正品2个次品,从中任取两次,每次取一个(不放回)。
则:(1)第一次取到正品,第二次取到次品的概率为;(2)恰有一次取到次品的概率为。
3.设随机变量)2,1(~2N X 、)3(~P Y (泊松分布),且相互独立,则:)2(Y X E += ; )2(Y X D + 。
4.设随机变量X 的概率分布为X -1 0 1 2 p k 0.1 0.2 0.3 p 则: =EX ;DX = ;Y X =-21的概率分布为。
5.设一批产品中一、二、三等品各占60%、30%、10%,从中任取一件,结果不是三等品,则取到的是二等品的概率为。
6.设Y X 、相互独立,且概率分布分别为 2)1(1)(--=x ex f π(-∞<<+∞x ) ; ?≤≤=其它,,0312/1)(y y ?则:)(Y X E += ; )32(2Y X E -= 。
7.已知随机变量X 的分布列为 X 0 1 2 P k 0.3 0.5 0.2 则:随机变量X 的期望EX = ;方差DX = 。
8.已知工厂A B 、生产产品的次品率分别为2%和1%,现从由A B 、工厂分别占30%和70%的一批产品中随机抽取一件,发现是次品,则该产品是B 工厂的概率为。
9.设Y X 、的概率分布分别为≤≤=其它,,0514/1)(x x ?;?()y e y y y =>≤-40004,,则:)2(Y X E += ;)4(2Y XE -= 。
10.设随机变量X 的概率密度为≤=其它,,02cos )(πx x A x f ,则:系数A = 。
《概率论与数理统计》复习题及答案

《概率论与数理统计》复习题及答案《概率论与数理统计》复习题一、填空题1.未知p(ab)?p(a),则a与b的关系就是单一制。
2.未知a,b互相矛盾,则a与b的关系就是互相矛盾。
3.a,b为随机事件,则p(ab)?0.3。
p(a)?0.4,p(b)?0.3,p(a?b)?0.6,4.已知p(a)?0.4,p(b)?0.4,p(a?b)?0.5,则p(a?b)?0.7。
25.a,b为随机事件,p(a)?0.3,p(b)?0.4,p(ab)?0.5,则p(ba)?____。
36.已知p(ba)?0.3,p(a?b)?0.2,则p(a)?2/7。
7.将一枚硬币重复投掷3次,则正、反面都至少发生一次的概率为0.75。
8.设立某教研室共计教师11人,其中男教师7人,贝内旺拉拜教研室中要自由选择3名叫优秀教师,则3名优秀教师中至少存有1名女教师的概率为___26____。
339.设一批产品中有10件正品和2件次品,任意抽取2次,每次抽1件,抽出1___。
611110.3人单一制截获一密码,他们能够单独所译的概率为,,,则此密码被所译的5343概率为______。
5后不送回,则第2次取出的就是次品的概率为___11.每次试验成功的概率为p,进行重复独立试验,则第8次试验才取得第3235cp(1?p)7次顺利的概率为______。
12.已知3次独立重复试验中事件a至少成功一次的概率为1事件a顺利的概率p?______。
319,则一次试验中27c35813.随机变量x能取?1,0,1,取这些值的概率为,c,c,则常数c?__。
24815k14.随机变量x原产律为p(x?k)?,k?1,2,3,4,5,则p(x?3x?5)?_0.4_。
15x??2,?0?x?15.f(x)??0.4?2?x?0,是x的分布函数,则x分布律为__??pi?1x?0?0??__。
0.40.6??2?0,x?0??16.随机变量x的分布函数为f(x)??sinx,0?x??,则2?1,x2?p(x??3)?__3__。
(完整版)概率论与数理统计复习题带答案讲解

;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。
2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。
3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。
4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。
5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。
6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。
7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC I I ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。
12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则A B =U ( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =U ( 0.2 ) 17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。
概率论与数理统计复习题和(答案)

概率论现数理统计模拟试题一一、填空(5153=⨯分) 1、某人射中靶的概率为43,如果射击直到中靶为止,则射击次数为k 的概率为。
2、假设总体),(~2σμN X ,且∑==ni i X n X 11,(n X X X ,,,21 为总体样本),则X 是的无偏估计。
3、设随机变量)(~),1,0(~2n Y N X χ,则n YX 服从的分布为。
4、如果X 的分布列为 : X 0 1 2P A 2A 3A则参数A 等于。
5、在作区间估计的时候,方差未知的),(2σμN 的μ的区间估计为。
二、选择(5153=⨯分)1、已知)|()(),|()(B A P A P B A P A P ==,则下列说法正确的有( ) (A )A 与B 相互独立 (B )A 与B 互逆 (C )A 与B 互斥 (D ))()(B P A P =2、对一个随机变量X 来说,其分布函数)(x F ,下列说法正确的有( ) (A ))(x F 取值为),(+∞-∞ (B ))(x F 为连续函数 (C )1F(x) 1≤≤- (D) 1F(x) 0≤≤3、设]5,1[~U X ,当5121<<<x x 时,=<<)(21x X x p ( ) (A)552x - (B )412-x (C ) 512-x (D) 412x x -4、设总体X 的数学期望为μ,方差为2σ,),(21X X 是X 的一个样本, 则在下述的4个估计量中,( )是最优的。
(A) 2115451ˆX X +=μ(B) 2124181ˆX X +=μ(C) 2132121ˆX X +=μ(D) 2143121ˆX X +=μ 5、假设X 和Y 的联合密度函数为: ⎩⎨⎧≥≥λλ=λ-λ-其它,;,000),(2121y x e y x f y x ,则下列说法正确的有( ) (A) 0)(=XY E (B) 相互独立和Y X (C) X 和Y 不相互独立 (D )X 和Y 相关三、计算(70分)1、设总体Y 服从几何分布,分布律: ,2,1,)1(}{1=-==-y p p y Y p y其中p 为未知参数,且10≤≤p 。
概率论与数理统计模拟试题集(6套,含详细答案)

《概率论与数理统计》试题(1)一 、 判断题(本题共15分,每小题3分。
正确打“√”,错误打“×”)⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( )⑸ 样本方差2n S=n121)(X Xni i-∑=是母体方差DX 的无偏估计 ( )二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生;(2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。
三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为210131111115651530XP-- 求2Y X =的分布列.五、(10分)设随机变量X 具有密度函数||1()2x f x e -=,∞< x <∞, 求X 的数学期望和方差.六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布1()(1),1,2,,01k P X k p p k p -==-=<<,的样本,试求未知参数p 的极大似然估计.《概率论与数理统计》试题(1)评分标准一 ⑴ ×;⑵ ×;⑶ √;⑷ √;⑸ ×。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
06-07-1《概率论与数理统计》试题A一、填空题(每题3分,共15分)1. 设A ,B 相互独立,且2.0)(,8.0)(==A P B A P Y ,则=)(B P __________. 2. 已知),2(~2σN X,且3.0}42{=<<X P ,则=<}0{X P __________.3. 设X 与Y 相互独立,且2)(=X E ,()3E Y =,()()1D X D Y ==,则=-])[(2Y X E ___4.设12,,,n X X X L 是取自总体),(2σμN 的样本,则统计量2211()ni i X μσ=-∑服从__________分布.5. 设),3(~),,2(~p B Y p B X,且95}1{=≥X P ,则=≥}1{Y P __________. 二、选择题(每题3分,共15分)1. 一盒产品中有a 只正品,b 只次品,有放回地任取两次,第二次取到正品的概率为 【 】(A) 11a a b -+-;(B) (1)()(1)a a a b a b -++-;(C) a a b +;(D) 2a ab ⎛⎫ ⎪+⎝⎭.2. 设随机变量X 的概率密度为()130, 其他c x p x <<⎧=⎨⎩则方差D(X)= 【 】(A) 2; (B)12; (C) 3; (D)13.3. 设A 、B 为两个互不相容的随机事件,且()0>B P ,则下列选项必然正确的是【 】()A ()()B P A P -=1;()B ()0=B A P ;()C ()1=B A P ;()D ()0=AB P .4. 设()x x f sin =是某个连续型随机变量X 的概率密度函数,则X 的取值范围是【 】 ()A ⎥⎦⎤⎢⎣⎡2,0π;()B []π,0; ()C ⎥⎦⎤⎢⎣⎡-2,2ππ;()D ⎥⎦⎤⎢⎣⎡23,ππ. 5. 设()2,~σμN X ,b aX Y -=,其中a 、b 为常数,且0≠a ,则~Y 【 】()A ()222,b a b a N +-σμ; ()B ()222,b a b a N -+σμ;()C ()22,σμa b a N +; ()D ()22,σμa b a N -.三、(本题满分8分) 甲乙两人独立地对同一目标射击一次,其命中率分别为0.5和0.4,现已知目标被命中,求它是乙命中的概率.四、(本题满分12分)设随机变量X 的密度函数为xx ee Ax f -+=)(,求: (1)常数A ; (2)}3ln 210{<<X P ; (3)分布函数)(x F .五、(本题满分10分)设随机变量X 的概率密度为()⎩⎨⎧<<-=其他,010),1(6x x x x f求12+=X Y的概率密度.六、(本题满分10分)将一枚硬币连掷三次,X 表示三次中出现正面的次数,Y 表示三次中出现正面次数与出现反面次数之差的绝对值,求:(1)(X ,Y )的联合概率分布;(2){}X Y P>.七、(本题满分10分)二维随机变量(X ,Y )的概率密度为⎩⎨⎧>>=+-其他,00,0,),()2(y x Ae y x f y x求:(1)系数A ;(2)X ,Y 的边缘密度函数;(3)问X ,Y 是否独立。
八、(本题满分10分)设总体X 的密度函数为⎪⎩⎪⎨⎧≤>=+1,01,),(1x x x x f βββ其中未知参数1>β,n X X X ,,,21Λ为取自总体X 的简单随机样本,求参数β的矩估计量和极大似然估计量.九、(本题满分10分)设总体()2,~σμN X ,其中且μ与2σ都未知,+∞<<∞-μ,02>σ.现从总体X中抽取容量16=n 的样本观测值()1621x x x ,,,Λ,算出75.503161161==∑=i i x x ,()2022.61511612=-=∑=i i x x s ,试在置信水平95.01=-α下,求μ的置信区间.(已知:()7531.11505.0=t ,()7459.11605.0=t ,()1315.215025.0=t ,()1199.216025.0=t ).07-08-1《概率论与数理统计》试题A一.选择题(将正确的答案填在括号内,每小题4分,共20分)1.检查产品时,从一批产品中任取3件样品进行检查,则可能的结果是:未发现次品,发现一件次品,发现两件次品,发现3件次品。
设事件i A 表示“发现i 件次品” ()3,2,1,0=i 。
用3210,,,A A A A 表示事件“发现1件或2件次品”,下面表示真正确的是( ) (A)21A A ; (B)21A A +; (C) ()210A A A +; (D) ()213A A A +.2.设事件A 与B 互不相容,且()0≠A P ,()0≠B P ,则下面结论正确的是( )(A) A 与B 互不相容; (B)()0>A B P ;(C)()()()B P A P AB P =; (D)()()A P B A P =.3.设随机变量()2,1~N X ,()4,2~N Y ,且X 与Y相互独立,则( )(A)()1,0~2N Y X-; (B)()1,0~322N Y X -;(C)()9,1~12N Y X+-; (D)()1,0~3212N Y X +-.4.设总体()2,~σμN X ,2,σμ是未知参数,()n X X X ,,,21Λ是来自总体的一个样本,则下列结论正确的是( )(A) 22211()~(1)1n i i S X X n n χ==---∑;(B) 2211()~()n i i X X n n χ=-∑; (C)222221(1)1()~(1)nii n S XX n χσσ=-=--∑;(D)22211()~()nii XX n χσ=-∑5.设总体()2,~σμN X ,()n X X X,,,21Λ是来自总体的一个样本,则2σ的无偏估计量是( )(A)()∑=--n i iX X n 1211; (B)()∑=-n i i X X n 121; (C)∑=n i i X n 121; (D) 2X . 二.填空(将答案填在空格处,每小题4分,共20分)1.已知B A ,两个事件满足条件()()B A P AB P =,且()p A P =,则()=B P _________.2.3个人独立破译一份密码,他们能单独译出的概率分别为111,,543,则此密码被破译出的概率是 . 3.设随机变量X 的密度函数为()2,01,0,x x f x <<⎧=⎨⎩其他,用Y 表示对X 的3次独立重复观察中事件⎭⎬⎫⎩⎨⎧≤21X 出现的次数,则()2P Y == .4.设两个随机变量X和Y相互独立,且同分布:()()1112P X P Y =-==-=,()()1112P X P Y ====,则()P XY == .5.设随机变量X的分布函数为:()0,0sin ,021,2x F x A x x x ππ⎧⎪<⎪⎪=≤≤⎨⎪⎪>⎪⎩,则=A .三.计算1.(8分)盒中放有10个乒乓球,其中有8个是新的。
第一次比赛从中任取2个来用,比赛后仍放回盒中。
第二次比赛时再从盒中取2个,求第二次取出的球都是新球的概率。
2.(6分)设随机变量X 和Y独立同分布,且X 的分布律为:()()121,233P X P X ====求Y X Z+=的分布律。
3.(12分)设随机变量X 的密度函数为:()()+∞<<∞-=-x Ce x f x(1)试确定常数C ;(2)求()1<X P ;(3)求2X Y =的密度函数。
4.(20分)设二维连续型随机变量()Y X ,的联合概率密度为:()1,1,1,4xyx y f x y +⎧<<⎪=⎨⎪⎩其他(1) 求随机变量X 和Y 的边缘概率密度; (2) 求EY EX ,和DY DX ,; (3)X 和Y是否独立?求X 和Y 的相关系数()Y X R,,并说明X 和Y 是否相关?(4) 求()1<+Y X P。
5.(6分)设总体X 的分布律为()()()Λ,2,111=-==-x p p x X P x ,n X X X ,,,21Λ是来自总体X 的一个样本。
求参数p 的极大似然估计。
6.(8分)食品厂用自动装罐机装罐头食品,每罐的标准重量为500g 。
每隔一定的时间,需要检验机器的工作情况。
现抽得10罐,测得其重量(单位:g )的平均值为498=x ,样本方差225.6=s 。
假定罐头的重量()2,~σμN X ,试问机器的工作是否正常(显著性水平02.0=α)?(33.201.0=u ,()82.2901.0=t ,()76.21001.0=t )/ 8-09-1《概率论与数理统计》试题A一、填空题(每题3分,共15分) 1、已知随机变量X 服从参数为2的泊松(Poisson )分布,且随机变量22-=X Z,则()=Z E____________. 2、设A 、B 是随机事件,()7.0=A P ,()3.0=-B A P ,则()=AB P3、设二维随机变量()Y X ,的分布列为若X 与Y 相互独立,则βα、的值分别为 。
4、设()()()4, 1, ,0.6D X D Y R X Y ===,则 ()D X Y -=___ _5、设12,,,n X X X L 是取自总体),(2σμN 的样本,则统计量2211()ni i X μσ=-∑服从__________分布.二、选择题(每题3分,共15分)1. 一盒产品中有a 只正品,b 只次品,有放回地任取两次,第二次取到正品的概率为 【 】(A) 11a a b -+-; (B) (1)()(1)a a a b a b -++-; (C) a a b +; (D) 2a ab ⎛⎫ ⎪+⎝⎭.2、设事件A 与B 互不相容,且()0≠A P ,()0≠B P ,则下面结论正确的是【 】(A) A 与B 互不相容; (B)()0>A B P ;(C)()()()B P A P AB P =; (D)()()A P B A P =.3、设两个相互独立的随机变量X 与Y分别服从正态分布()1,0N和()1,1N ,则【 】(A)()210=≤+Y X P; (B) ()211=≤+Y X P ;(C)()210=≤-Y X P ; (D)()211=≤-Y X P 。
4、 如果Y X ,满足()Y X D Y X D -=+)(,则必有【 】(A )X 与Y 独立;(B )X 与Y 不相关;(C )0=DY ;(D )0=DX 5、设相互独立的两个随机变量X 与Y 具有同一分布律,且X 的分布律为则随机变量()Y X Z ,max =的分布律为【 】(A)()()211,210====z P z P; (B) ()()01,10====z P z P ;(C)()()431,410====z P z P ;(D) ()()411,430====z P z P 。