合肥工业大学大学物理考试试题

合集下载

合肥工业大学大学物理C期末考试题库

合肥工业大学大学物理C期末考试题库

大学物理C 思考题5-1-2气体在平衡状态时有何特征?这时气体中有分子热运动吗?热力学中的平衡与力学中的平衡有何不同?5-4-1对一定量的气体来说,当温度不变时,气体的压强随体积的减小而增大;当体积不变时,压强随温度的升高而增大。

就微观来看,他们有何区别?5-5-5如盛有气体的容器相对于某坐标系从静止开始运动,容器内的分子速度相对于这坐标系也将增大,则气体的温度会不会因此升高呢?5-5-6速率分布函数的物理意义是什么?试说明下列各量的意义:(1)dv v f )(;(2)dv v Nf )(;(3)⎰21)(v v dv v f ;(4)⎰21)(v v dv v Nf ;(5)⎰21)(v v dv v vf ;(6)⎰21)(v v dv v Nvf 。

5-7-2平均自由程与气体的状态以及分子本身的性质有何关系?在计算平均自由程时,什么地方体现了统计平均?5-0-1理想气体的微观模型?5-0-2能量均分定理及含义?6-2-1为什么气体热容的数值可以有无穷多个?什么情况下,气体的摩尔热容是零?什么情况下,气体的摩尔热容是无穷大?什么情况下是正值?什么情况下是负值?6-3-2有两个热气分别用不同的热源作卡诺循环,在V p -图上,它们的循环曲线所包围的面积相等,但形状不同,如图所示,它们吸热和放热的差值是否相同?对所作的净功是否相同?效率是否相同?6-6-2在日常生活中,经常遇到一些单方向的过程,如:(1)桌上热餐变凉;(2)无支持的物体自由下落;(3)木头或其他燃料的燃烧。

它们是否都与热力学第二定律有关?在这些过程中熵变是否存在?如果存在,则是增大还是减小?7-2-2根据点电荷的电场强度公式r e r q E 2041πε=,当所考察的场点和点电荷的距离0→r 时,电场强度∞→E ,这是没有物理意义的,对此似是而非的问题应如何解释?7-3-1如果在高斯面上的E处处为零,能否肯定此高斯面内一定没有净电荷?反过来,如果高斯面内没有净电荷,能否肯定面上所有各点的E 都等于零?7-5-1(1)已知电场中某点的电势,能否计算出该点的场强?(2)已知电场中某点附近的电势分布,能否计算出该点的场强?7-6-5一带点导体放在封闭的金属壳内部。

合肥工业大学理论力学答案08刚体平面运动

合肥工业大学理论力学答案08刚体平面运动

八、刚体的平面运动8.1 如图所示,O 1A 的角速度为ω1,板ABC 和杆O 1A 铰接。

问图中O 1A 和AC 上各点的速度分布规律对不对?8.2如图所示,板车车轮半径为r ,以角速度ω 沿地面只滚动不滑动,另有半径同为r 的轮A 和B 在板车上只滚动不滑动,其转向如图,角速度的大小均为ω,试分别确定A 轮和B 轮的速度瞬心位置。

[解] 板车作平动,轮A 、B 与板车接触点 E 、F 的速度相同,且r v v v O F E ω=== 对A 轮由基点法求轮心A 的速度 A E AE =+v v v ,r v AE ω=∴ r v A ω2=,且A 轮的速度瞬心在E 点下方r 处。

同理可得B 轮的速度瞬心就在轮心B 处。

8.3直杆AB 的A 端以匀速度v 沿半径为R 的半圆弧轨道运动,而杆身保持与轨道右尖角接触。

问杆AB 作什么运动?你能用几种方法求出杆AB 的角速度?E FPOE v Av Fv Ov[解] AB 杆作平面运动。

(一) 瞬心法AB 杆作平面运动,速度瞬心为P 。

Rv AP v AAB2==ω (二)基点法D A DA =+v v v ,DA v v AB A DA ωθ==sin又 DA =2R cos(90o -θ)=2R sin θ ∴ Rv AB 2=ω(三)自然法: d d AB tϕω=,而R S ϕ2= ∴d d 2d d S R v t t ϕ==, d d 2vt R ϕ= ∴ Rv AB 2=ω 8.4如图所示四连杆机构OABO 1中,OA=O 1B=AB/2,曲柄OA 的角速度ω=3rad/s 。

当OA 转到与OO 1垂直时,O 1B 正好在OO 1的延长线上,求该瞬时AB 杆的角速度ωAB 和曲柄O 1B 的角速度ω1。

[解]取AB 为研究对象,AB 作平面运动。

以A 为基点,画B 点速度合成图 由B A BA =+v v v(rad/s)32230sin o==∴⋅=⋅==ωωωωAB OAAB OA v v AB AB ABABBBvvvDAv Dv Dv111cos3022(rad/s)B BAv v OA O Bωωω=︒=⋅=∴=8.5图示曲柄摇机构中,曲柄OA以角速度oω绕O轴转动,带动连杆AC在摇块B内滑动,摇块及与其固结的BD杆绕B铰转动,杆BD长l;求在图示位置时摇块的角速度及D点的速度。

【合肥工业大学】【半导体器件物理】试卷含答案剖析

【合肥工业大学】【半导体器件物理】试卷含答案剖析

《半导体器件物理》试卷(二)标准答案及评分细则一、填空(共24分,每空2分)1、PN结电击穿的产生机构两种;答案:雪崩击穿、隧道击穿或齐纳击穿。

2、双极型晶体管中重掺杂发射区目的;答案:发射区重掺杂会导致禁带变窄及俄歇复合,这将影响电流传输,目的为提高发射效率,以获取高的电流增益。

3、晶体管特征频率定义;β时答案:随着工作频率f的上升,晶体管共射极电流放大系数β下降为1=所对应的频率f,称作特征频率。

T4、P沟道耗尽型MOSFET阈值电压符号;答案:0V。

>T5、MOS管饱和区漏极电流不饱和原因;答案:沟道长度调制效应和漏沟静电反馈效应。

6、BV CEO含义;答案:基极开路时发射极与集电极之间的击穿电压。

7、MOSFET短沟道效应种类;答案:短窄沟道效应、迁移率调制效应、漏场感应势垒下降效应。

8、扩散电容与过渡区电容区别。

答案:扩散电容产生于过渡区外的一个扩散长度范围内,其机理为少子的充放电,而过渡区电容产生于空间电荷区,其机理为多子的注入和耗尽。

二、简述(共20分,每小题5分)1、内建电场;答案:P型材料和N型材料接触后形成PN结,由于存在浓度差,N区的电子会扩散到P区,P区的空穴会扩散到N区,而在N区的施主正离子中心固定不动,出现净的正电荷,同样P区的受主负离子中心也固定不动,出现净的负电荷,于是就会产生空间电荷区。

在空间电荷区内,电子和空穴又会发生漂移运动,它的方向正好与各自扩散运动的方向相反,在无外界干扰的情况下,最后将达到动态平衡,至此形成内建电场,方向由N区指向P区。

2、发射极电流集边效应;答案:在大电流下,基极的串联电阻上产生一个大的压降,使得发射极由边缘到中心的电场减小,从而电流密度从中心到边缘逐步增大,出现了发射极电流在靠近基区的边缘逐渐增大,此现象称为发射极电流集边效应,或基区电阻自偏压效应。

3、MOSFET 本征电容;答案:即交流小信号或大信号工作时电路的等效电容,它包括栅漏电容和栅源电容,栅漏电容是栅源电压不变、漏源电压变化引起沟道电荷的变化与漏源电压变化量之间的比值,而栅源电容是指栅压变化引起沟道电荷与栅源电压变化量之间的比值。

合肥工业大学-物理化学习题-第四章多组分系统热力学合并

合肥工业大学-物理化学习题-第四章多组分系统热力学合并

化学势大小 顺序
在水的正常沸点时 1 = 2; 在温度为373.15K及202 650 Pa下, 4>3.

Gm p
Vm 0 T
所以
3>1
4>2

00-8-16
4 > 3 > 2 = 1 .
14
例 水(A)和乙酸乙酯(B)不完全混溶, 在37.55℃时两液相呈平 衡. 一相中含质量分数为w(B) = 0.0675的酯, 另一相中含w(A) = 0.0379的水, 假定拉乌尔定律对每相中的溶剂都能适用, 已知 37.55℃时, 纯乙酸乙酯的蒸气压力是22.13kPa, 纯水的蒸气压力 是6.399kPa, 试计算: (1) 气相中酯和水蒸气的分压; (2) 总的蒸气压力(忽略作为溶质时的A和B的气相压力). (乙酸乙酯和水的摩尔质量分别为88.10gmol1和18.02gmol1)
15 恒温恒压下, 在A与B组成的均相系统中, 若A的偏摩尔体积 随浓度的改变而增加, 则B的偏摩尔体积将____. B A. 增加
00-7-15
B. 减少
C. 不变
D. 不一定
本章完
5
1 在恒温和总体积不变的条件下, 向理想气体混合物中增加一 不变( pB = nBRT/V ); 各气体 种新组分, 各气体的分压的变化是 _________________ 不变 ( B = B + RTln(pB /p ) 的化学势的变化是 ___________________________. 2 请注明下列化学势各定义式的下标
00-7-15
本章完
10
例 含质量分数为w(甲醇) = 0.40的甲醇的水溶液, 已知其中甲
醇 的偏摩尔体积V(甲)为39.0cm3· mol1, 水的偏摩尔体积V(水) 为 17.5cm3· mol1,试求溶液的密度 (甲醇与水的摩尔质量分别为

大学物理学专业《大学物理(二)》期末考试试卷-附答案

大学物理学专业《大学物理(二)》期末考试试卷-附答案

大学物理学专业《大学物理(二)》期末考试试卷附答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。

2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。

一、填空题(共10小题,每题2分,共20分)1、一质点作半径为0.1m的圆周运动,其运动方程为:(SI),则其切向加速度为=_____________。

2、一平行板空气电容器的两极板都是半径为R的圆形导体片,在充电时,板间电场强度的变化率为dE/dt.若略去边缘效应,则两板间的位移电流为__________________。

3、长为、质量为的均质杆可绕通过杆一端的水平光滑固定轴转动,转动惯量为,开始时杆竖直下垂,如图所示。

现有一质量为的子弹以水平速度射入杆上点,并嵌在杆中. ,则子弹射入后瞬间杆的角速度___________。

4、两列简谐波发生干涉的条件是_______________,_______________,_______________。

5、一弹簧振子系统具有1.OJ的振动能量,0.10m的振幅和1.0m/s的最大速率,则弹簧的倔强系数为_______,振子的振动频率为_______。

6、动方程当t=常数时的物理意义是_____________________。

7、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为,角速度为;然后将两手臂合拢,使其转动惯量变为,则转动角速度变为_______。

8、在主量子数n=2,自旋磁量子数的量子态中,能够填充的最大电子数是______________。

9、一长直导线旁有一长为,宽为的矩形线圈,线圈与导线共面,如图所示. 长直导线通有稳恒电流,则距长直导线为处的点的磁感应强度为___________;线圈与导线的互感系数为___________。

10、一个中空的螺绕环上每厘米绕有20匝导线,当通以电流I=3A时,环中磁场能量密度w =_____________ .()二、名词解释(共6小题,每题2分,共12分)1、能量子:2、受激辐射:3、黑体辐射:4、布郎运动:5、熵增加原理:6、瞬时加速度:三、选择题(共10小题,每题2分,共20分)1、气体在状态变化过程中,可以保持体积不变或保持压强不变,这两种过程()。

合肥工业大学大学物理试题答案

合肥工业大学大学物理试题答案

1. S: 2kv dtdva -==2kv dxdvv dt dx dx dv -==k d x v dvxx vv -=⎰⎰)(ln00x x k v v--= )(00x x k e v v --= (answer)2. S: j t i t dt rd v )3cos 15()3sin 15(+-== jt i t dtv d a )3sin 45()3cos 45(-+-==()()j t i t j t i t v r)3cos 15()3sin 15()3sin 5()3cos 5(+-⋅+=⋅j j t t i i t t⋅⋅+⋅⋅-=)3c o s 3s i n 75()3sin 3cos 75( 0= (proved c)3. S: dtdv v m k m f a =-==dt mkv dv t t v v -=⎰⎰0)(0t mkv t v -=0)(ln t m ke v t v -=0)( (answer) D: t m k e v dtdxv -==0dt e v dx t m k tt x -⎰⎰=00)(0kmv x e kmv ekmv t x t m k t t mk 0max 00),1()(=-=-=--4. S: )()32(j y d i dx j i x r d f dw+⋅+=⋅=dy xdx dw w fi32+==⎰⎰dy xdx 323342⎰⎰--+== -6 J (answer)5. S: 23230.60.4)0.30.4(t t t t t dtddt d +-=+-==θω, t t t dtddt d 60.6)30.60.4(2+-=+-==ωα 0.40300.60.4)0(2=⨯+⨯-=ω (answer of a)0.28)0.4(30.40.60.4)0.4(2=⨯+⨯-=ω rad/s (answer of a ) 60.266)0.2(=⨯+-=α rad/s 2 (answer of b )t t 60.6)(+-=α is time varying not a constant (answer of c) 6. S: ω20031222ML L v m L mv +⋅= MLmv ML L mv 4343020==ω (answer a))c o s 1(2)31(21m a x 22θω-=LMg ML ]1631[cos 2221maxgLM v m -=-θ (answer b) 7. G: m =1.0g, M =0.50kg, L =0.60m, I rod =0.0602m kg ⋅,s rod /5.4=ωR:I sys , v 0S: I sys =I rod +(M+m)L2=0.060+(0.50+0.0010)×0.602= 0.24 2m kg ⋅(answer)the system ’s angular momentum about rotating axis is conservative in the collision.sysI L mv ω=0s m mL I v sys/108.160.00010.024.05.430⨯=⨯⨯==ω (answer )D: The bullet momentum 0v m p=(before impact), its angular momentumabout rotating axis can be expressed as L mv 0(a scalar) 8. S:γ==00.800x xt v c -∆==0811800.600 3.0010t t γ∆=∆=⨯⨯ 9. S: 202202)(mc E cp E E γγ==+=222c p m c m c m c =10. S: 0i n t =-=∆n e t n e t W Q E n e t n e t W Q = 1(3010)(4.0 1.0)2=-- J 30= (answer)11. S: from nRT PV =and K T A 300= we can get:KT K T C B 100300== (answer of a)Change of internal energy between A and B:0)(23int =-=∆A B T T k n E (answer of b)The net work of the cycle:))(100300()13(2121m N AC BC W ⋅-⋅-=⋅=J 200= (answer of c) From the first law : W E Q +∆=int we can derive:the net heat of the whole cycle is J W Q 200== (answer)12. S: 131)(320===⎰⎰∞F v Av dv Av dv v p F33FvA =(answer of a ) F F v a v g v Av dv vAv v F4341420===⎰13. G: T 1=T 2=T , m 1, p 1, v rms,1, m 2, p 2=2p 1, v avg,2 = 2v rms,1 R: m 1 / m 2 S: v avg,2 =1.602m kTv rms,1 = 1.731m kTv avg,2 = 2v rms,167.4)60.173.12(221=⨯=m m (answer) 14. S: dE int =dQ – dWd Q = dE int + dW = n C v dT+pdV VdVnR T dT nC dV T p T dT nC T dQ dS v v +=+==if i f v VV v T T V V nR T T nC V dVnR T dT nC ds S f i filnln +=+==∆⎰⎰⎰ 15. S: dA E q θεcos 0⎰=212100)0.60100(1085.8⨯-⨯⨯=- C 61054.3-⨯= 16. S: 2041)(r Qr E πε=(R < r <∞) dr rQ dr r E udV dU 2022208421πεπε=⋅== RQ r dr Q udV U R0220288πεπε===⎰⎰∞(answer) RQ r dr Q U r r Rεπεεπε02202*88==⎰∞(answer ) 18. S: in the shell of r – r + drdr r R r dV r dq 204)/1()(πρρ-==)34(31)/(4)(4303200r Rr dr R r r dq r q r-=-==⎰⎰πρπρfrom the shell theorems , within the spherical symmetry distribution )34(12)(41)(20020r Rr Rr r q r E -==ερπε (answer of b)R r r R Rdr dE 320)64(12*00=⇒=-=ερ 00200*max 9])32(3324[12)(ερερRR R R R r E E =-⨯== 19. S: j yV i x V V gradV y x E∂∂-∂∂-=-∇=-=),( )0.20.2(y x x VE x +-=∂∂-= x yV E y 0.2-=∂∂-= )/(480.2)0.20.2()0.2,0.2(m V j i j x i y x E--=-+-=20. S: Q in = - q , Q out = q (answer ) 1010241241)0(R qq V q πεπε==104)0(R qV in πε-=204)0(R q V o u t πε=)0()0()0()0(out in q V V V V ++= )11(4210R R q +=πε21. S: from the planar symmetry and superposition principle, Emust in normal direction of the plates and 1σ,2σ,3σ,4σ must be const. Fromcharge conservationA Q S =+)(21σσ ⇒ SQ A=+21σσ (1) B Q S =+)(43σσ ⇒ SQ B=+43σσ (2) Apply Gauss ’ law in the closed surface shown in Fig. 032=+σσ (3)within the metal, 0=p Ewhich leads to002222432104030201=-++⇒=-++σσσσεσεσεσεσFrom(1), (2), (3), (4) yield:⎪⎪⎩⎪⎪⎨⎧-=-=+==S Q Q SQ Q B AB A 223241σσσσ (answer of a) (6 points) 004030201122222εεσεσεσεσS Q Q E BA p -=--+= (1 point) 004030201222222εεσεσεσεσS Q Q E BA p +=+++=(1 point) (answer of b) d S Q Q d E d E V BA p AB 012ε-==⋅= (2 points) (answer of c)。

合肥工业大学大学物理考试试题

合肥工业大学大学物理考试试题

Exercise:1. A particle moving along x axis starts from x 0 with initial velocity v 0. Its acceleration can be expressed in a =-kv 2 where k is a known constant. Find its velocity function v =v (x ) with the coordinate x as variable.2. A particle moves in xy plane with the motion function asj t i t t r )3sin 5()3cos 5()(+=(all in SI). Find (a) its velocity )(t v and (b)acceleration )(t ain the unit-vector notation. (c) Show that v r ⊥. 3. A bullet of mass m is shot into a sand hill along a horizontal path, assume that the drag of the sand is kv f -=, find the velocity function v(t) if 0)0(v v = and the gravitation of the bullet can beignored.4. what work is done by a conservative force j i x f 32+= thatmoves a particle in xy plane from the initial position j i r i 32+= tothe final position j i r f 34--=. All quantities are in SI.5. The angular position of a point on the rim of a rotating wheel is given by 320.30.4t t t +-=θ, where θ is in radians and t is in seconds. Find (a) its angular velocities at t=0s and t =4.0s? (b) Calculate its angular acceleration at t =2.0s. (c) Is its angular acceleration constant?6. A uniform thin rod of mass M and length L can rotate freely about a horizontal axis passing through its top end o (231ML I =). Abullet of mass m penetrates the rod passing its center of mass when the rod is in vertical stationary. If the path of the bullet is horizontal with an initial speed v o before penetration and 20v after penetration . Show that (a) the angular velocity of the rod just after the penetration is MLmv 430=ω. (b) Find the maximum angular max θ the rod will swing upward after penetration.7. A 1.0g bullet is fired into a block (M=0.50kg) that is mounted on the end of a rod (L=0.60m). The rotational inertia of the rod alone about A is 206.0m kg ⋅. The block-rod-bullet system then rotates about a fixed axis at point A. Assume the block is small enough to treat as a particle on the end of the rod. Question: (a) What is the rotational inertia of the block-rod-bullet system about A? (b) If the angular speed of the system about A just after the bullet ’s impact is 4.5rad/s , What is the speed of the bullet just before the impact? γ between the rest frame S and the frame S* in which the clock is rest. (b) what time does the clock read as it passes x =180m ?9. What must be the momentum of a particle with mass m so that its total energy is 3 times rest energy?10. Ideal gas within a closed chamber undergoes the cycle shownthe net energy added to the gas as heat shown in the Fig. temperature at state A is 300K.(a). calculate the temperature of state B and C.(b). what is the change in internal energy of the gas between stateA and state B? (int E ∆)(c). the work done by the gas of the whole cycle .(d). the net heat added to the gas during one complete cycle.12. The motion of the electrons in metals is similar to the motion of molecules in the ideal gases. Its distribution function of speed is not Maxwell ’s curve but given by.⎩⎨⎧=0)(2Av v p the possible maximum speed v F is called Fermi speed. (a)。

合肥工业大学大学物理C期末考试题库

合肥工业大学大学物理C期末考试题库

大学物理C 思考题5-1-2气体在平衡状态时有何特征?这时气体中有分子热运动吗?热力学中的平衡与力学中的平衡有何不同?5-4-1对一定量的气体来说,当温度不变时,气体的压强随体积的减小而增大;当体积不变时,压强随温度的升高而增大。

就微观来看,他们有何区别?5-5-5如盛有气体的容器相对于某坐标系从静止开始运动,容器内的分子速度相对于这坐标系也将增大,则气体的温度会不会因此升高呢?5-5-6速率分布函数的物理意义是什么?试说明下列各量的意义:(1)dv v f )(;(2)dv v Nf )(;(3)⎰21)(v v dv v f ;(4)⎰21)(v v dv v Nf ;(5)⎰21)(v v dv v vf ;(6)⎰21)(v v dv v Nvf 。

5-7-2平均自由程与气体的状态以及分子本身的性质有何关系?在计算平均自由程时,什么地方体现了统计平均?5-0-1理想气体的微观模型?5-0-2能量均分定理及含义?6-2-1为什么气体热容的数值可以有无穷多个?什么情况下,气体的摩尔热容是零?什么情况下,气体的摩尔热容是无穷大?什么情况下是正值?什么情况下是负值?6-3-2有两个热气分别用不同的热源作卡诺循环,在V p -图上,它们的循环曲线所包围的面积相等,但形状不同,如图所示,它们吸热和放热的差值是否相同?对所作的净功是否相同?效率是否相同?6-6-2在日常生活中,经常遇到一些单方向的过程,如:(1)桌上热餐变凉;(2)无支持的物体自由下落;(3)木头或其他燃料的燃烧。

它们是否都与热力学第二定律有关?在这些过程中熵变是否存在?如果存在,则是增大还是减小?7-2-2根据点电荷的电场强度公式r e r q E 2041πε=,当所考察的场点和点电荷的距离0→r 时,电场强度∞→E ,这是没有物理意义的,对此似是而非的问题应如何解释?7-3-1如果在高斯面上的E处处为零,能否肯定此高斯面内一定没有净电荷?反过来,如果高斯面内没有净电荷,能否肯定面上所有各点的E 都等于零?7-5-1(1)已知电场中某点的电势,能否计算出该点的场强?(2)已知电场中某点附近的电势分布,能否计算出该点的场强?7-6-5一带点导体放在封闭的金属壳内部。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Exercise:1. A particle moving along x axis starts from x 0 with initialvelocity v 0. Its acceleration can be expressed in a =-kv 2where k isa known constant. Find its velocity function v =v (x ) with the coordinate x as variable.2. A particle moves in xy plane with the motion function asj t i t t r )3sin 5()3cos 5()(+=(all in SI). Find (a) its velocity )(t v and (b) acceleration )(t a in the unit-vector notation. (c) Show that v r⊥.3. A bullet of mass m is shot into a sand hill along a horizontal path, assume that the drag of the sand is kv f -=, find the velocity function v(t) if 0)0(v v = and the gravitation of the bullet can beignored.4. what work is done by a conservative force j i x f 32+= that movesa particle in xy plane from the initial position j i r i 32+= to the final position j i r f34--=. All quantities are in SI.5. The angular position of a point on the rim of a rotating wheel is given by 320.30.4t t t +-=θ, where θ is in radians and t is in seconds. Find (a) its angular velocities at t=0s and t = (b) Calculate its angular acceleration at t =. (c) Is its angular acceleration constant6. A uniform thin rod of mass M and length L can rotate freely about a horizontal axis passing through its top end o (231ML I =). A bulletof mass m penetrates the rod passing its center of mass when the rod is in vertical stationary. If the path of the bullet is horizontal with an initial speed v o before penetration and 20v after penetration . Show that (a) the angular velocity of the rod just after the penetration is MLmv 430=ω. (b) Find the maximum angular max θ the rod will swing upward after penetration.7. A 1.0g bullet is fired into a block (M=0.50kg) that is mounted on the end of a rod (L=0.60m). The rotational inertia of the rod alone about A is 206.0m kg ⋅. The block-rod-bullet system then rotates about a fixed axis at point A. Assume the block is small enough to treat as a particle on the end of the rod. Question: (a) What is the rotational inertia of the block-rod-bullet system about A (b) If the angular speed of the system about A just after the bullet ’s impact is s , What is the speed of the bullet just before the impactzero as it passes the origin. (a) Calculate the Lorentz factor γ between the rest frame S and the frame S* in which the clock is rest. (b) what time does the clock read as it passes x =180m9. What must be the momentum of a particle with mass m so that itstotal energy is 3 times rest energychamber undergoes the cycle shown in the Fig. Calculate Q net the net energy added to the gas as heat during one complete cycle.11. One mole of a monatomic ideal gas undergoes the cycle shown in the Fig. temperature at state A is 300K.(a). calculate the temperature of state B and C.(b). what is the change in internal energy of the gas between stateA and stateB (int E )(c). the work done by the gas of the whole cycle .(d). the net heat added to the gas during one complete cycle.12. The motion of the electrons in metals is similar to the motion of molecules in the ideal gases. Its distribution function of speedis not Maxwell ’s curve but given by.⎩⎨⎧=0)(2Av v pthe possible maximum speed v F is called Fermi speed. (a) plotthe distribution curve qualitatively. (b) Express the coefficientA in terms of v F . (c) Find its average speed v avg .13. Two containers are at the same temperature. The first contains gas with pressure 1p , molecular mass 1m , and rms speed 1rms v . The second contains gas with pressure 12p , molecular mass 2m , and average speed 122rms avg v v =. Find the mass ratio 21m m .14. In a quasi-static process of the ideal gas, dW =PdV and d E int =nC v dT . From the 1st law of thermodynamics show that the change of entropy i f v i fT T nC V V nR S ln ln +=∆ .Where n is the number of moles,C v is the molar specific heat of the gas at constant volume, R is the ideal gas constant, (V i , T i ) and (V f , T f ) . are the initial and final volumes and temperatures respectively.15. It is found experimentally that the electric field in a certain region of Earth ’s atmosphere is directed vertically down. At an altitude of 300m the field is N /C ; at an altitude of 200m , the field is 100N /C . Find the net charge contained in a cube 100m on edge, with horizontal faces at altitudes of 200m and 300m . Neglect the curvature of Earth.16. An isolated sphere conductor of radius R with charge Q . (a) Find the energy U stored in the electric field in the vacuum outside the conductor. (b) If the space is filled with a uniform dielectrics of known r ε what is U * stored in the field outside the conductorthen17. Charge is distributed uniformly throughout the volume of an infinitely long cylinder of radius R. (a) show that, at a distance r from the cylinder axis (r<R), r E 02ερ=, where ρis the volume charge density. (b) write the expression for E when r>R .18. A non-uniform but spherically symmetric distribution of charge has a volume density given as follow:⎩⎨⎧-=0)/1()(0R r r ρρ0ρ is a positive constant, r is the distance to the symmetric center O and R is the radius of the charge distribution. Within the charge distribution (r < R ), show that (a) the charge contained in the co-center sphere of radius r is )34(31)(430r Rr r q -=πρ, (b) Find the magnitude of electric field E (r ) within the charge (r < R ). (c) Find the maximum field E max =E (r *) and the value of r *.19. In some region of space, the electric potential is the following function of x,y and z: xy x V 22+=, where the potential is measured in volts and the distance in meter . Find the electric field at thepoint x=2m, y=2m . (express your answer in vector form)20. The Fig. shows a cross section of an isolated spherical metal shell of inner radius R 1 and outer radius R 2. A point charge q islocated at a distance 21R from the center of the shell. If the shell is electrically neutral, (a) what are the induced charges (Q in , Q out ) on both surfaces of the shell (b) Find the electric potential V(0) at the center O assume V (∞)=0.21. Two large metal plates of equal areaare parallel and closed to each other with charges Q A , Q B respectively. Ignore the fringing effects, find (a) the surface charge density on each side of both plates,(b) the electric field at p 1, p 2 . (c) the electric potentialA and B)。

相关文档
最新文档