实验室用水的种类和区别
实验室用水要求

实验室用水要求
二、实验室常见用水的种类:
1、蒸馏水(Distilled Water)
实验室最常用的一种纯水,虽设备便宜,但极其耗能和费水且速度慢,应用会逐渐减少。
蒸馏水能去除自来水内大部分的污染物,但挥发性的杂质无法去除,如二氧化碳、氨、二氧化硅以及一些有机物。
新鲜的蒸馏水是无菌的,但储存后细菌易繁殖;此外,储存的容器也很讲究,若是非惰性的物质,离子和容器的塑形物质会析出造成二次污染。
2、去离子水(Deionized Water)
应用离子交换树脂去除水中的阴离子和阳离子,但水中仍然存在可溶性的有机物,可以污染离子交换柱从而降低其功效,去离子水存放后也容易引起细菌的繁殖。
3、反渗水(Reverse osmosis Water)
其生成的原理是水分子在压力的作用下,通过反渗透膜成为纯水,水中的杂质被反渗透膜截留排出。
反渗水克服了蒸馏水和去离子水的许多缺点,利用反渗透技术可以有效的去除水中的溶解盐、胶体,细菌、病毒、细菌内毒素和大部分有机物等杂质,但不同厂家生产的反渗透膜对反渗水的质量影响很大。
4、超纯水(Ultra-pure grade water)
转载只为分享知识,如有侵权请联系删除。
实验室一级水二级水三级水标准

实验室一级水二级水三级水标准摘要:1.实验室水质分级标准简介2.一级水标准3.二级水标准4.三级水标准5.应用领域及注意事项正文:实验室水质分级标准简介实验室水质分级标准是根据水中杂质、有机物、微生物等污染物的种类和含量,对实验室用水的质量进行分类和要求的标准。
实验室用水质量的好坏直接影响到实验结果的准确性和实验设备的使用寿命,因此对实验室水质的分级十分重要。
根据我国《实验室用水标准》(GB/T 6682-2008),实验室水质分为一级水、二级水和三级水。
一级水标准一级水是实验室水质的最高级别,其主要适用于对水质要求极高的实验和仪器设备。
一级水的主要特点是水中几乎不含有任何杂质、有机物和微生物,其电导率、pH 值和氧化还原电位等指标均达到很高的要求。
为了达到一级水的标准,需要采用多种预处理技术,如反渗透、离子交换、紫外线灭菌等。
二级水标准二级水适用于对水质要求较高的实验和仪器设备。
相较于一级水,二级水的杂质、有机物和微生物含量有所增加,但其电导率、pH 值和氧化还原电位等指标仍然保持在较高水平。
为了达到二级水的标准,需要采用反渗透、离子交换等预处理技术,并进行适当的后续处理。
三级水标准三级水适用于对水质要求一般的实验和仪器设备。
其主要特点是水中杂质、有机物和微生物含量较高,电导率、pH 值和氧化还原电位等指标相对较低。
为了达到三级水的标准,需要采用适当的预处理技术,如砂滤、活性炭吸附等。
应用领域及注意事项实验室水质分级标准在各个领域都有广泛的应用,包括化学、生物、医学、环境等。
在选择实验室用水时,应根据实验的准确性要求、实验设备的敏感性以及实验方法的特殊性等因素,选择适当的水质级别。
在使用过程中,还需要注意定期检测水质,确保实验用水质量的稳定性。
了解一下实验室用水

推广环保理念
积极推广环保理念,加 强环保意识教育,提高 实验室人员的环保意识 和责任感。
THANKS
02
实验室用水处理技术
预处理技术
01
机械过滤
通过砂滤、活性炭过滤等手段去 除水中的悬浮物、胶体等杂质。
02
软化处理
采用离子交换树脂等方法降低水 的硬度,防止后续设备结垢。
03
消毒处理
利用紫外线、臭氧等手段杀灭水 中的细菌、病毒等微生物。
深度处理技术
反渗透技术
利用半透膜原理,通过施加压力 使水分子从高浓度一侧向低浓度 一侧渗透,从而去除水中的溶解
应急处理措施
01
泄漏处理
若发生实验室用水泄漏事故,应立即采取措施进行清理,防止水流扩散
和造成进一步危害。
02
受污染水处理
若实验室用水受到污染,应立即停止使用,并通知相关人员进行处理。
受污染的水应按照相关规定进行处置,以防止对环境和人员造成危害。
03
人员急救
若实验人员不慎接触有害物质或受伤,应立即进行急救处理,并寻求医
超纯水系统 在纯水机的基础上,增加超滤、电渗析等高级处 理技术,进一步去除水中的离子和痕量有机物, 提供更高品质的实验用水。
中央供水系统 为大型实验室或研究机构提供集中供水的设备, 通过管道将高纯度水输送至各个实验区域。
实验室用水系统
预处理系统
01
包括砂滤、活性炭过滤、软化等处理步骤,去除水中的悬浮物、
设备的正常运行和出水品质。
清洗和消毒
定期对设备内部进行清洗和消毒, 防止微生物滋生和污染。
实验室用水的等级和使用范围

实验室用水的等级和使用范围一、实验室用水的等级及其定义实验室用水的等级是指根据水质要求和使用范围的不同,将实验室用水分为不同等级,以确保实验室实验和研究工作的顺利进行。
下面将介绍实验室用水的等级及其定义。
1. 一级实验室用水:一级实验室用水是指用于高级实验室的水源,具备较高的纯净度要求。
一级实验室用水主要用于高精密度的实验和分析测试,对水质要求非常严格。
一级实验室用水通常需要去除水中的有机物、无机盐和微生物等杂质,其纯度要求较高。
2. 二级实验室用水:二级实验室用水是指用于一般实验室的水源,具备一定的纯净度要求。
二级实验室用水主要用于一般实验和日常分析测试,对水质要求适中。
二级实验室用水通常需要去除水中的有机物和无机盐等杂质,其纯度要求较一级实验室用水略低。
3. 三级实验室用水:三级实验室用水是指用于一般实验室的自来水或经简单处理后的水源,纯净度要求较低。
三级实验室用水主要用于一般实验和常规分析测试,对水质要求相对较低。
三级实验室用水通常需要去除水中的大颗粒杂质和可溶性固体等物质,其纯度要求较二级实验室用水略低。
二、实验室用水的使用范围及其特点实验室用水的使用范围根据实验和研究的需要,可以分为不同的用途。
下面将介绍实验室用水的使用范围及其特点。
1. 实验室用水的常规用途:实验室用水的常规用途包括实验设备清洗、试剂配置、实验容器清洗等。
这些用途对水质要求相对较低,一般使用三级实验室用水即可满足需求。
2. 实验室用水的实验分析用途:实验室用水在实验分析过程中起到重要作用,如用于样品稀释、溶解试剂、洗涤实验仪器等。
这些用途对水质要求较高,一般需要使用二级实验室用水。
3. 实验室用水的仪器设备用途:实验室中的一些仪器设备,如离心机、超净台等,需要使用纯净水源,以确保实验结果的准确性和可靠性。
这些用途对水质要求非常严格,一般需要使用一级实验室用水。
4. 实验室用水的生物实验用途:实验室中进行生物实验时,需要使用无菌水源,以防止微生物对实验结果的影响。
自来水DI水RO水

脱盐率明显下降
系统压降稍有或适度增 加
系统产水量稍有降低
5、有机物沉积
脱盐率可能降低 系统压降逐渐升高 系统产水量逐渐降低
用溶液2清洗系统
用溶液2清洗系统,污 染严重时用溶液3清洗
6、细菌污染
脱盐率可能降低 系统压降明显增加 系统产水量明显降低
依据可能的污染种类选 择三种溶液中的一种清
洗系统
整理课件
工艺流程:
整理课件
13
第四部分:RO水的制作原理与工 艺流程
砂过滤器:砂过滤器根据原水指标填入石英砂、锰 砂、煤石、陶粒等介质,用于去除前级处理中未 能去除的微细颗粒和胶体物质,提高悬浮固体、 浊度等的去除率,使后续处理装置免于经常阻塞, 并提高它们的处理效率。
活性碳过滤器:吸附法主要是用于脱除水中的微量 污染物,应用范围包括脱色、除臭味,去除有机 物和余氯等,用做深度处理进水的保障。
整理课件
14
第四部分:RO水的制作原理与工 艺流程
软化过滤器:软化过滤器是树脂中所含的 Na+与阳离子进行离子交换,使产水中的 Ca+、Mg+含量达到我们的要求。
精密过滤器:过滤大于5um的杂质。 RO系统:反渗透是一高效节能技术,它是将
进料中水(溶剂)和水离子(或分子)分 子,从而达到纯化和浓缩的目的。
整理课件
10
第三部分:DI水的制作原理与工 艺流程
DI水机的电导率控制:
控制项目
控制要求
单位
DI水机工作电导率
<25
DI水机再生操作电导率
>15
US/CM US/CM
DI水机再生后要求的电导率
0-5
US/CM
整理课件
实验室用水的种类和区别

水是实验室内一个常常被忽视但至关重要的试剂。
实验室用水有那些种类?能达到什么级别?不同实验对水的要求有那些?实验室常见的水的种类:1、蒸馏水(Distilled Water ):实验室最常用的一种纯水,虽设备便宜,但极其耗能和费水且速度慢,应用会逐渐减少.蒸馏水能去除自来水内大部分的污染物,但挥发性的杂质无法去除,如二氧化碳、氨、二氧化硅以及一些有机物。
新鲜的蒸馏水是无菌的,但储存后细菌易繁殖;此外,储存的容器也很讲究,若是非惰性的物质,离子和容器的塑形物质会析出造成二次污染。
2、去离子水(Deionized Water ):应用离子交换树脂去除水中的阴离子和阳离子,但水中仍然存在可溶性的有机物,可以污染离子交换柱从而降低其功效,去离子水存放后也容易引起细菌的繁殖.3、反渗水(Reverse osmosis Water):其生成的原理是水分子在压力的作用下,通过反渗透膜成为纯水,水中的杂质被反渗透膜截留排出。
反渗水克服了蒸馏水和去离子水的许多缺点,利用反渗透技术可以有效的去除水中的溶解盐、胶体,细菌、病毒、细菌内毒素和大部分有机物等杂质,但不同厂家生产的反渗透膜对反渗水的质量影响很大。
4、超纯水(Ultra—pure grade water):其标准是水电阻率为18。
2MΩ-cm。
但超纯水在TOC、细菌、内毒素等指标方面并不相同,要根据实验的要求来确定,如细胞培养则对细菌和内毒素有要求,而HPLC则要求TOC低。
评价水质的常用指标:1、电阻率(electrical resistivity):衡量实验室用水导电性能的指标,单位为MΩ—cm,随着水内无机离子的减少电阻加大则数值逐渐变大,实验室超纯水的标准:电阻率为18.2MΩ-cm。
2、总有机碳(Total Organic Carbon ,TOC):水中碳的的浓度,反映水中氧化的有机化合物的含量,单位为ppm 或 ppb.3、内毒素(Endotoxin):革兰氏阴性细菌的脂多糖细胞壁碎片,又称之为“热原",单位cuf/ml。
[蒸馏水和纯净水的区别]39软水、脱盐水、去离子水、蒸馏水、纯净水、纯化水的区别
![[蒸馏水和纯净水的区别]39软水、脱盐水、去离子水、蒸馏水、纯净水、纯化水的区别](https://img.taocdn.com/s3/m/82e76c38443610661ed9ad51f01dc281e53a568a.png)
[蒸馏水和纯净水的区别]39软水、脱盐水、去离子水、蒸馏水、纯净水、纯化水的区别篇一: 39软水、脱盐水、去离子水、蒸馏水、纯净水、纯化水的区别软水:不含或含较少可溶性钙、镁化合物的水叫做软水。
软水不易与肥皂产生浮渣,而硬水相反。
天然软水一般指江水、河水、湖水。
经软化处理的硬水指钙盐和镁盐含量降为 1.0~50 毫克/升后得到的软化水。
虽然煮沸即可将暂时硬水变为软水,但在工业上若采用此法来处理大量用水,则是极不经济的。
在日常生活中,我们经常见到水壶用久后内壁会有水垢生成,这是因为在我们取用的水中含有不少无机盐类物质,如钙、镁盐等。
这些盐在常温下的水中肉眼无法发现,一旦它们加温煮沸,便有不少钙、镁盐以碳酸盐形式沉淀出来,它们紧贴壶壁就形成水垢。
我们通常把水中钙、镁离子的含量用“硬度”这个指标来表示。
硬度1度相当于每升水中含有10毫克氧化钙。
低于8度的水称为软水,高于17度的称为硬水,介于8~17度之间的称为中度硬水。
雨、雪水、江、河、湖水都是软水,泉水、深井水、海水都是硬水。
有些钙、镁离子含量很高的水却不见有水垢生成,这是因为这些钙、镁离子以氯化盐形式存在,它们是可溶的,所以在加热时并不能沉淀出来。
水的硬度对日常生活影响是很大的。
如水的硬度大时洗衣服不起泡;旅居异地因饮水的硬度不适应可出现水土不服的症状;壶内结水垢会使壶的导热性下降;工业锅炉的水垢可引起爆炸事故。
所以,生活和工业用水均应适当控制水的硬度。
常喝软水容易得心脑血管疾病,常喝硬水容易得肾结石。
脱盐水:将所含易于除去的强电解质除去或减少到一定程度的水。
脱盐水中的剩余含盐量应在1~5 毫克/升之间。
制取脱盐水的方法主要有以下三种:①蒸馏法,使含盐的水加热蒸发,将蒸气冷凝即得脱盐水;②离子交换法,使含盐的水通过装有泡沸石或离子交换剂的交换柱,钙、镁等离子留在交换柱上,滤过的水为脱盐水;③电渗析法,借离子交换膜对离子的选择透过性,在外加电场作用下,使两种离子交换膜之间的水中的阳、阴离子,分别通过交换膜向阴、阳两极集中。
去离子水和蒸馏水区别

去离子水和蒸馏水区别蒸馏水是指用蒸馏方法制备的纯水,可分一次和多次蒸馏水。
去离子水是指除去了呈离子形式杂质后的纯水。
蒸馏水用途:1、在生活中,一般和机器,电器相关的时候,蒸馏水的作用主要是它不导电,保证机器运行稳定,延长电器使用寿命。
2、在医药行业,蒸馏水的作用是因为低渗作用。
3、学校里的化学实验,有些需要用蒸馏水,利用的就是蒸馏水无电解质,内没有游离离子,或是没有杂质。
去离子水用途:1、实验室、化验室用水,一般实验室的常规试验、配置常备溶液、清洗玻璃器皿等。
2、电子工业生产,如显像管玻壳、显像管、液晶显示器、线路板、计算机硬盘、集成电路芯片、单晶硅半导体等。
3、汽车、家用电器、建材表容面涂装、电镀、镀膜玻璃清洗,石油化工行业,化工反应冷却水、化学药剂、生产配液用水。
去离子水:顾名思义就是去掉了水中的除氢离子、氢氧根离子外的其他由电解质溶于水中电离所产生的全部离子。
即去掉溶于水中的电解质物质。
由于电解质溶于水中电离所产生的离子能增大水的导电能力,去离子水纯度自然用电导率来衡量。
去离子水基本用离子交换法制得。
但去离子水中可以含有不能电离的非电解质,如乙醇等。
纯水:纯水就是去掉了水中的全部电解质与非电解质,也可以说是去掉了水中的全部非水物质。
基本都用反渗透法制得。
由于在反渗透预处理中绝大多数都先用活性碳去除了部分非电解质,并且电导率非常容易测量,所以纯水纯度往往也用电导率衡量。
但如果要获得极高纯度的高纯水,还是需通过去除电解质的混床、EDI方法。
蒸馏水:以去除电解质及与水沸点相差较大的非电解质为主,无法去除与水沸点相当的非电解质,纯度也用电导率衡量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验室用水的种类和区别Prepared on 21 November 2021水是实验室内一个常常被忽视但至关重要的试剂。
实验室用水有那些种类能达到什么级别不同实验对水的要求有那些实验室常见的水的种类:1、蒸馏水(Distilled Water ):实验室最常用的一种纯水,虽设备便宜,但极其耗能和费水且速度慢,应用会逐渐减少。
蒸馏水能去除自来水内大部分的污染物,但挥发性的杂质无法去除,如二氧化碳、氨、二氧化硅以及一些有机物。
新鲜的蒸馏水是无菌的,但储存后细菌易繁殖;此外,储存的容器也很讲究,若是非惰性的物质,离子和容器的塑形物质会析出造成二次污染。
2、去离子水(Deionized Water ):应用离子交换树脂去除水中的阴离子和阳离子,但水中仍然存在可溶性的有机物,可以污染离子交换柱从而降低其功效,去离子水存放后也容易引起细菌的繁殖。
3、反渗水(Reverse osmosis Water):其生成的原理是水分子在压力的作用下,通过反渗透膜成为纯水,水中的杂质被反渗透膜截留排出。
反渗水克服了蒸馏水和去离子水的许多缺点,利用反渗透技术可以有效的去除水中的溶解盐、胶体,细菌、病毒、细菌内毒素和大部分有机物等杂质,但不同厂家生产的反渗透膜对反渗水的质量影响很大。
4、超纯水(Ultra-pure grade water):其标准是水电阻率为Ω-cm。
但超纯水在TOC、细菌、内毒素等指标方面并不相同,要根据实验的要求来确定,如细胞培养则对细菌和内毒素有要求,而HPLC则要求TOC低。
评价水质的常用指标:1、电阻率(electrical resistivity):衡量实验室用水导电性能的指标,单位为MΩ-cm,随着水内无机离子的减少电阻加大则数值逐渐变大,实验室超纯水的标准:电阻率为Ω-cm。
2、总有机碳(Total Organic Carbon ,TOC):水中碳的的浓度,反映水中氧化的有机化合物的含量,单位为ppm 或 ppb。
3、内毒素(Endotoxin):革兰氏阴性细菌的脂多糖细胞壁碎片,又称之为“热原”,单位cuf/ml。
1、自来水(Tapwater)Tap water is usually of uncontrolled quality, may have seasonal variations suchas level of suspended sediment depending on the source (municipal reservoir,river, well), may contain other chem-icals purposely added to drinking water(chlorine, uoride), and is generally unsuitable for use in important is ne for washing glassware but should always be followed by a rinsewith a higher-grade water (distilled, deionized, etc.).2、蒸馏水(DistilledWater )Distillation generally eliminates much of the inorganic con-tamination andparticularly sediments present in tap water feedstock. Itwill also help reduce the level of some organic con-taminants inthe distilling simply gives a slightly higher grade distilled water, butcannot eliminate either inorganic or organic contaminants.Distilled water is often produced in large stills that serve an entiredepartment, or building. The quality of the water is dependent on how well theequipment is maintained. A signicant stir occurred within a large university’sbiochemistry department when the rst mention of a problem with the housedistilled water was a memo that came out from the maintenance department thatstated: “We would liketo inform you that the repairs have been made to thestill serving the department. There is no longer any radium in the water.” Thenext day, a follow-up memo was issued that stated:“Correction—there is nolonger any sodium in the dis-tilled water.”3、去离子水(DeionizedWater )Deionized water can vary greatly in quality depending on the type and efciencyof the deionizing cartridges used. Ion exchange beds used in home systems, forinstance, are used primarily to reduce the “hardness” of the water usually dueto high levels of divalent cations such as magnesium and calcium. The resin bedconsists of a cation exchanger, usually in the sodium form, which releasessodiuminto the water in exchange for removing the diva-lent ions. (Rememberthat when you attempt to reduce your sodium intake!) These beds therefore donot reduce the ionic content of the water but rather exchange one type of ionfor another.Laboratory deionizing cartridges are usually mixed-bed cartridges designed toeliminate both anions and cations from the water. This is accomplished bypreparing the anion-exchange bed in the hydroxide (OH-) form and thecation-exchange resin in the acid (H+) form. Anions or cations in the water(including monovalent) are exchanged for OH-or H+, respectively, which combineto form neutral water. Any imbalance inthe removal of the ions can result in apH change of the water from deion-izingbeds is slightly acidic, often between pH to .The deionizing resins can themselves increase the organiccon-taminant level in the water by leaching of resin contaminants, monomer, andso on, and should always be followed by a bed of activated carbon to eliminatethe organics so introduced.4、18MΩ水 (ReverseOsmosis/MilliQTM)The highest grade of water available is generally referred to as 18MW is because when the inorganic ions are completely removed, theability ofthe water to conduct electric current decreases dramatically, giving aresistance of 18 systems that produce this grade of waterusually apply a multiple-step cleanup process including reverse osmosis,mixed-bed ion exchangers, carbon beds, and lter disks for particulates. Somemay include lters that exclude microorganisms, resulting in a sterile waterstream. High-grade 18 MW water tends tobe fairly acidic—near pH pH adjustments of dilute buffer solutions preparedusing 18 MW water could cause discrep-ancies in the nalionic concentration ofthe buffer salts relative to buffers prepared using other water sources.5、WhenIs 18MΩ Water Not 18MΩWaterSuppose that your research requires 18 MW water, and you pur-chased the systemthat produces 500ml/min instead of the 2L/min version. If your research doesn’trequire a constant ow of water, you can connect a 20L carboy to your system tostore your pris-tine water. Bad Move.18MW is not the most inert solvent; in practice, it is very aggres-sive. Waterprefers the presence of some ions so as your 18 mW water enters the plasticcarboy, it starts leaching anything it can out of the plastic,contaminating thequality of the same thing happens ifyou try to store the water inglass. 18mW water loves to attack glass, leaching silicates and other ionsfrom the con-tainer. If you need the highest purity water, it’s best not tostore large q uantities, but rather prepare it fresh.For the same reason, the tubing used to transfer your high-grade water shouldalways be the most inert available, typically TeonTM or similar use highly plasticized exible plastic tubing. Absolutely avoid metalssuch as copper or stainless steel, as these almost always guarantee some levelof contaminants in your water.6、水的初始pH值是多少As mentioned above, the initial pH of typical laboratory-gradedistilled and deionized water is often between and your water supply from time to time, particularly when deionizing bedsare changed to ensure that no major change in pH has occurred because ofseasonal variation or improperly conditioned resin beds.Although the initial pH of laboratory water may be slightly acidic, the goodnews is deionized water should have little or no buffer capacity, so yournormal pH adjustment procedures should not be affected much. Payparticular attention if your buffer concentrations are very low (<10mM)resulting in low buffer capacity.7、水中有哪些有机物质:The answer to this important question depends on the upstream processing of thewater and the initial water source. Municipal water drawn from lakes or streamscan have a whole host of organics in them to start with, ranging from petroleumproducts to pesticides to humic substances from decaying plant material tochlorinated species like chloroform resulting from the chlorina-tion water may have lower levels of these contami-nants (since the water hasbeen ltered through lots of soil and rock, but even groundwater may containpesticides and chlori-nated species like trichloroethylene depending on landuse near the aquifer.Municipal processing will remove many organic contaminants from the tap water,but your in-lab water purier is responsible for polishing the water to a gradet for experimental use. Most commercial systems do a good job of that, but asmentioned pre-viously, care must be taken to not introduce contaminants afterthe water has been polished. Plasticizers from tubing or plastic storage tanks,monomer or resin components from deionizer beds, and surfactants or lubricantson lters or other system compo-nents are the most common type of organic to befound in a newly installed system.Another common, yet often overlooked source, is microbialcontamination. In one case, a high-grade water puriermounted on a wall near a window suddenly started showing evidence of organicbackground. Changing the carbon cartridge did not help the situation. Closeinspection of the system showed the translu-cent plastic tubing connecting thereverse osmosis holding tank to the deionizer beds, and ultimately the linesthat delivered the polished water to the spigot, had been contaminated bymicrobial growth. It was surmised that the intense sunlight during part of theday was providing a more hospitable environment for microorganisms to gain afoothold in the system. The clear tubing was replaced with opaque tubing andthe problem disappeared.In a second instance, a facility changed its water source from wells to a riverdraw-off. This drastically changed the stability of the incoming water periods of heavy rain, silt levels in the incoming water increaseddramatically, quickly destroying expensive reverse osmosis cartridges in thewater puri-er system. The solution was to install two pre-lters ofdecreas-ing porosity in line ahead of the reverse osmosis unit. The rst lterneeded replacing monthly, but the second lter was good for three to six system functioned properly for a while, but then problems reappeared in thereverse osmosis unit. Inspec-tion showed heavy microbial contamination in thesecond pre-lter which had a clear housing, admitting sunlight. After cleaningand sterilizing the lter unit, the outside of the housing was covered withblack electrical tape, and the microbial contamina-tion problem never returned.As discussed in Chapter 12, dispensing hoses from water reservoirs resting insinks can also lead to microbial contamination.8、在水的使用中还有哪些问题LeaksLeaks are sometimes one of the most serious problems that can occur with in-labwater purication systems. Leaks come in three kinds, typically. Leaks of therst kind start as slow drips, and can be spotted and corrected beforedeveloping into big unfriendly leaks.Leaks of the second kind are generally caused by a catastrophicfailure of asystem component (tubing, valve, automatic shutoff switch, or backush drain).Although highly uncommon, they usually occur around midnight on Fridays so asto maximize the amount of water that can escape from the system, thereforemax-imizing the resulting ooding in the lab. The likelihood of a leak of thesecond kind seems to increase exponentially with the cost of instrumentation inlaboratories on oors directly below the lab with the water purier system.Leaks of the third kind result when a person places a relativelylarge vesselbeneath the water system, begins lling, and walks away to tend to a few minortasks or is otherwise distracted. The vessel overows, ooding the lab with theextent of the ood depending on the duration of the distraction.Leaks of the third kind are by far the most common type of leak, and are alsothe most preventable. Locating the water puri-cation system immediately abovea sink, so that any vessel being lled can be placedin the sink, usuallyprevents this type of cata-strophe. If placement above a sink is not possible,locating the water purication system ina (relatively) high-trafc orwell-used location in the lab can also minimize or eliminate the possibility ofmajor spills, since someoneis likely to notice a spill or leak.Leaks of the rst or second type are highly uncommon, but do occur.The bestprevention is to have the system periodicallyinspected and maintained by qualied personnel, and never have major servicingdone on a Friday. Problems seem to be most likely after the system has beenpoked and prodded, so best to do that early in the week. Then the system can beclosly watched for a few days afterward before leaving it unattended.。