半导体二极管和直流稳压电源

合集下载

二极管是什么它在电路中的作用是什么

二极管是什么它在电路中的作用是什么

二极管是什么它在电路中的作用是什么二极管是一种电子元件,也被称为晶体管。

它由两个半导体材料组成,通过N型半导体和P型半导体的结合而构成。

N型半导体具有过量的自由电子,而P型半导体则存在空穴(失去了电子的原子),这种结构使得二极管具有独特的电学特性。

二极管在电路中起着关键作用。

它具有单向导电性,当电压施加在特定方向时,二极管允许电流流过;而当电压施加在相反方向时,二极管几乎完全阻止电流通过。

这种特性使得二极管具有以下几个重要的应用。

1.整流器:二极管可以用作整流器,将交流电转换为直流电。

在半波整流电路中,只有在输入电压正半周时,二极管才会导通,这样输出信号就是一个单向的正电压信号。

而在全波整流电路中,通过两个二极管和中心点连接的负载,可以实现正负半周都能被导通,从而将交流电转换成直流电。

2.保护电路:由于二极管具有单向导电性,因此它可以用来保护电路免受反向电压的损害。

在开关电路中,当电压突然发生变化时,二极管可以防止过高的反向电压通过,从而保护其他电子元件的安全运行。

3.信号调制:二极管可以用来实现信号调制。

例如,在调幅(AM)调制中,一个辅助信号被加到高频信号上,形成调制信号。

这个过程中,二极管可以用作检波器,把调制信号从载波信号中解调出来。

4.电流稳定器:在稳压电源电路中,二极管常被用作电流稳定器。

通过选择合适的电阻和二极管参数,可以实现对电流的稳定控制,使得电路中的设备工作在稳定的条件下。

除了上述应用,二极管还可以用于射频(RF)调制、电子开关、光电检测等领域。

它是电子设备中不可或缺的基本元件,广泛应用于通信、电力、计算机和家电等各个领域。

总结起来,二极管具有单向导电性,可以将交流信号转换为直流信号,同时还能用于保护电路、信号调制和电流稳定等功能。

它在电路中的作用不可忽视,对于实现各种功能的正常运行起着至关重要的作用。

在今后的科技发展中,我们可以期待二极管在更多领域的应用和创新。

直流稳压电路工作原理

直流稳压电路工作原理

直流稳压电路工作原理
直流稳压电路,主要由稳压二极管、稳压管、电阻和电容等元件组成,其作用是将直流电源电压稳定在某一特定的数值上。

直流稳压电路按工作原理可分为线性稳压管稳压电路、开关稳压电路和半导体稳压管稳压电路。

目前广泛使用的是开关稳压电路和半导体稳压管稳压电路。

(1)开关稳压电路
开关稳压管是一种由一个或多个三极管组成的具有开关功能的器件,具有体积小、可靠性高、温度稳定性好等优点,目前在电子产品中广泛使用。

开关稳压管一般由三个元件组成,即:基极电容、集电极电容和发射极电容。

在这三个元件中,基极电容的作用是构成开关晶体管的基极输入级;发射极电容的作用是构成开关晶体管的发射级和集电极输入级;而集电极电容则起到开关晶体管的集电极输入级和发射级之间的连接和保护作用。

当电子电路中的电流通过这三个元件时,由于三个元件间存在电压差,使三极管开启,当输出电流达到某一数值时,三极管截止。

所以,开关稳压管是一种自举开关式稳压管。

—— 1 —1 —。

使用半导体器件进行 pn 结特性实验的教程

使用半导体器件进行 pn 结特性实验的教程

使用半导体器件进行 pn 结特性实验的教程半导体器件是现代电子技术中不可或缺的组成部分,而了解和掌握半导体器件的特性对于电子工程师和科学研究人员来说至关重要。

本文将为您提供一份使用半导体器件进行 pn 结特性实验的详细教程,帮助您深入了解 pn 结的性质和工作原理。

一、实验所需材料和设备在进行 pn 结特性实验之前,我们需要准备以下材料和设备:1. 半导体二极管:用于构建 pn 结的主要器件,可以通过购买或者向实验室借用获得。

2. 直流稳压电源:用于为实验提供稳定的电压,并可调节电压大小。

3. 万用表:用于测量 pn 结的电流、电压和其他相关参数。

4. 连线材料:如导线和插头,用于连接各个器件。

5. 实验台和支架:用于搭建实验电路和固定器件。

6. 安全眼镜、手套和防护服:用于保护实验人员安全。

二、实验步骤以下是使用半导体器件进行 pn 结特性实验的详细步骤:1. 确保实验室环境安全,并带好安全装备。

2. 将实验台和支架摆放整齐,并连接好直流稳压电源和万用表。

3. 选择一只半导体二极管作为实验器件,并将它放置在支架上。

4. 首先,将电源的负极连接到二极管的阴极,正极连接到二极管的阳极。

注意极性的正确连接,以免损坏二极管。

5. 打开电源,调节电压到适当的范围(如1V),并使用万用表测量二极管上的电流和电压。

记录测量结果。

6. 逐渐调节电压,每次增加一定的值(如0.1V),并记录相应的电流和电压数值。

7. 在整个电压范围内重复步骤6,直到达到电源的最大电压或者观察到二极管的击穿现象。

8. 分析实验数据,绘制 pn 结的特性曲线,包括电压-电流特性曲线和电压-电阻特性曲线。

9. 根据特性曲线的形状和实验数据,分析pn 结的工作状态和特性,如正向偏置、反向偏置、截止区和导通区等。

10. 完成实验后,关闭电源,断开连接,并将实验台恢复整洁。

三、实验注意事项在进行 pn 结特性实验时,务必注意以下事项:1. 仔细阅读并遵守实验室的安全操作规程,确保实验过程中的人身安全和设备安全。

半导体器件及整流电路

半导体器件及整流电路

空穴 自由电子
多数载流子〔简称多子〕 少数载流子〔简称少子〕
P 型半导体
掺入三价元素
+4 +34 接受一个 电子变为 负离子
空穴
+4 +4
硼原子
掺杂浓度远大于本征 半导体中载流子浓度,所 以,空穴浓度远大于自由 电子浓度.
空穴称为多数载流子 〔多子〕,
自由电子称为少数载 流子〔少子〕.
++++
++++ ++++
++ +
内电场方向 PN 结及其内电场
2.PN结的单向导电性
①外加正向电压〔也叫正向偏置〕
外加电场与内电场方向相反,内电场削弱,扩散运 动大大超过漂移运动,N区电子不断扩散到P区,P
区空穴不断扩散到N区,形成较大的正向电流,这 时称PN结处于低阻导通状态.
空间电荷区
变窄

P I 外电场
+N

内电场
光敏性:当受到光照时,其导电能力明显变 化.<可制成各种光敏元件,如光敏电阻、
光敏二极管、光敏三极管、光电池等>.
掺杂性:往纯净的半导体中掺入某些杂质, 使其导电能力明显改变.
本征半导体
完全纯净的、结构完整的半导体晶体,称
为本征半导体.
硅和锗的晶体结构
1.热激发产生自由电子和空穴
純净的半导体叫本征半导体.每个原子周围有四个相 邻的原子,每个原子的一个外层价电子与另一原子的外层 价电子组成电子对,原子之间的这种电子对为两原子共有, 称为共价键结构.原子通过共价键紧密结合在一起.两个 相邻原子共用一对电子.由于温升、光照等原因,共价键 的电子容易挣脱键的束縛成为自由电子.这是半导体的一 个重要特征.
电子技术
半导体器件及整流电路

电路与模拟电子技术基础 习题及实验指导答案 第二版

电路与模拟电子技术基础 习题及实验指导答案 第二版

《电路与模拟电子技术基础 习题及实验指导答案 第二版》第1章 直流电路一、填 空 题1.4.1 与之联接的外电路;1.4.2 1-n ,)1(--n b ;1.4.3 不变;1.4.4 21W ,负载;1.4.5 Ω1.65A , ; 1.4.6 1A 3A , ; 1.4.7 3213212)(3)23(R R R R R R R +++=; 1.4.8 1A ;1.4.9 Ω4.0,A 5.12;1.4.10 电压控制电压源、电压控制电流源、电流控制电压源、电流控制电流源;1.4.11 3A ;1.4.12 3A ;1.4.13 Ω2;1.4.14 15V ,Ω5.4;1.4.15 V 6S =U 。

二、单 项 选 择 题1.4.16 C ; 1.4.17 B ; 1.4.18 D ; 1.4.19 A ;1.4.20 A ; 1.4.21 C ; 1.4.22 B ; 1.4.23 D 。

第2章一阶动态电路的暂态分析一、填 空 题2.4.1 短路,开路;2.4.2 零输入响应;2.4.3 短路,开路;2.4.4 电容电压,电感电流;2.4.5 越慢;2.4.6 换路瞬间;2.4.7 三角波;2.4.8 s 05.0,k Ω25; 2.4.9 C R R R R 3232+; 2.4.10 mA 1,V 2。

二、单 项 选 择 题2.4.11 B ; 2.4.12 D ; 2.4.13 B ;2.4.14 D ; 2.4.15 B ; 2.4.16 C 。

第3章 正弦稳态电路的分析一、填 空 题3.4.1 ︒300.02s A 10, , ; 3.4.2 V )13.532sin(25)(︒+=t t u ;3.4.3 容性, A 44;3.4.4 10V ,2V3.4.5 相同;3.4.6 V 30,20V ;3.4.7 A 44,W 7744;3.4.8 A 5;3.4.9 减小、不变、提高;3.4.10 F 7.87μ;3.4.11 20kVA ,12kvar -;3.4.12 不变、增加、减少;3.4.13 电阻性,电容性; 3.4.14 LC π21,阻抗,电流;3.4.15 1rad/s ,4;3.4.16 Ω10;3.4.17 P L U U =,P L 3I I =,︒-30; 3.4.18 P L 3U U =,P L I I =,超前。

二极管及直流稳压电路PPT教案

二极管及直流稳压电路PPT教案
在本征半导体中掺入微量磷(或五价元素),不 改变原子的晶体结构,只是某些位置的硅原子 被磷原子取代,磷原子与周围四个硅原子形成 共价键后,磷原子的外层电子数将是9,比稳定 结构多一个价电子。
第7页/共50页
1. N型半导体
Si
Si
+
SPi
Si
Si
Si 多
P


掺入磷杂质的半导体中,自由电子数目子大量
(a)电流放大作用 (b)单向导电性 (c) 电压放大作用
第21页/共50页
6.3 稳压二极管
稳压管:是一种特殊的面接触型硅二极管。在
电路中与适当数值的电阻配合后能起稳I 定电
压的作用。
稳压管的图形符
号: 6.3.1
稳压管的伏
安正特常性 工作于反向击穿区,电
流在很大范围内变化,电压
(mA)
4
0 3
6.1.3 PN结及其单向导电性
1.PN结的形成
P
空间电 荷区
N
•根据浓度梯度,多
数载流子将进行扩
散漂运移运动。 动:少数载
流子受内电场作
•形耗用的成尽沿运空了电动间载场。电流力荷子方区的向;这交空界间P多自子处区电由少留:空荷电下穴区不内场就可电是移P动NN穴 由 多的结区少 电离(:自 子空内子
共价 键
自由电 子
导 空穴
电 电流
第5页/共50页
6.1.1 本征半导 体
•半导体两端加外电压时,半导体中出现两 部分电流:
一是自由电子作定向运动所形成的电子电
•载•穴流一的载半是流 总 ; 空流导被子 是 穴子体原电。 成:中自子对流的由核出。自电束现由子缚,同电和价时子空电又和穴子不空都填断称补为空价穴子电所形成硅子原

半导体二极管实验报告

半导体二极管实验报告

半导体二极管实验报告一、实验目的本次实验的主要目的是研究半导体二极管的基本特性,学习如何使用万用表和示波器测量电路中各个元件的电压、电流等参数,并掌握半导体二极管的工作原理和应用。

二、实验原理1. 半导体材料半导体材料是指在温度较低时,其电阻率介于金属和非金属之间,且在外界作用下能够产生明显的电子或空穴运动。

常见的半导体材料有硅、锗等。

2. PN结PN结是由P型半导体和N型半导体接触而成,其中P型半导体具有较多的空穴,N型半导体具有较多的自由电子。

当两种材料接触时,由于扩散效应使得自由电子从N区向P区扩散,空穴从P区向N区扩散,形成了一个带正负离子层,称为耗尽层。

3. 半导体二极管半导体二极管是PN结加上外部引线后形成的器件。

当二极管正向偏置时,即P端连接正极、N端连接负极时,外加电压会使耗尽层变窄,自由电子和空穴开始重新组合,从而形成电流。

当二极管反向偏置时,即P端连接负极、N端连接正极时,由于耗尽层变宽,电流几乎为零。

4. 二极管的特性二极管的主要特性有正向工作电压、反向击穿电压、导通电阻和反向漏电流等。

三、实验器材1. 半导体二极管(1N4007)2. 直流稳压电源3. 万用表4. 示波器5. 电阻箱6. 实验线缆等四、实验步骤及结果分析1. 正向特性曲线的测量与分析(1)按照图1接线,并将直流稳压电源输出调至0V。

(2)将万用表调至直流电压档位,并将红表笔接在二极管的P端,黑表笔接在N端。

(3)逐步增加稳压电源输出的正向偏置电压,并记录下对应的二极管正向工作电流和工作电压值。

(4)根据记录数据绘制出半导体二极管正向特性曲线,如图2所示。

(5)根据曲线分析得出半导体二极管的正向导通电阻和正向击穿电压等参数,并与理论值进行比较。

2. 反向特性曲线的测量与分析(1)按照图3接线,并将直流稳压电源输出调至0V。

(2)将万用表调至直流电压档位,并将红表笔接在二极管的N端,黑表笔接在P端。

(3)逐步增加稳压电源输出的反向偏置电压,并记录下对应的二极管反向漏电流和反向偏置电压值。

电子技术试题及答案

电子技术试题及答案

电子技术试题及答案-(《电子技术基础》题库适用班级:2012级电钳3、4、5、6班备注:本学期进行到第七章;第一、二、三章是重点内容,要求掌握;第四、八章没有涉及。

一、填空题:第一章半导体二极管○1、根据导电能力来衡量,自然界的物质可以分为导体,半导体和绝缘体三类。

Δ2、导电性能介于导体和绝缘体之间物质是半导体。

○3、半导体具有热敏特性、光敏特性、参杂的特性。

Δ4、PN结正偏时,P区接电源的正极,N极接电源的负极。

○5、PN结具有单向导电特性。

○6、二极管的P区引出端叫正极或阳极,N区的引出端叫负极或阴极。

Δ7、按二极管所用的材料不同,可分为硅二极管和锗二极管两类;○8、按二极管用途不同,可分为普通二极管、整流二极管、稳压二极管、开关二极管、发光二极管、光电二极管和变容二极管。

★9、二极管的正向接法是二极管正极接电源的正极,负极接电源的负极;反响接法相反。

○10、硅二极管导通时的正向管压降约0.7V ,锗二极管导通时的管压降约0.3V。

Δ11、使用二极管时,应考虑的主要参数是最大整流电流,最高反向电压和反向电流。

★12、发光二极管将电信号转换为光信号。

★13、变容二极管在高频收音机的自动频率控制电路中,通过改变其反向偏置电压来自动调节本机震荡频率。

★14、所谓理想二极管,就是当其正偏时,结电阻为零。

第二章半导体三极管及其放大电路○15、三极管是电流控制元件。

○16、三极管具有放大作用外部电压条件是发射结正偏,集电结反偏。

★17、当温度升高时,晶体三极管集电极电流Ic变大,发射结压降变小。

Δ18、三极管处在放大区时,其集电结电压小于零,发射结电压大于零。

★19、三极管的发射区杂质浓度很高,而基区很薄。

Δ20、三极管实现放大作用的内部条件是:发射区杂质浓度要远大于基区杂质浓度,同时基区厚度要很小.Δ21、工作在放大区的某三极管,如果当I B从12μA增大到22μA时,I C从1mA变为2mA,那么它的β约为100 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

价电子在获得一定能量
(温度升高或受光照)后,
Si
Si
即可挣脱原子核的束缚,成 为自由电子(带负电),同
时共价键中留下一个空位,
Si
空穴
Si
称为空穴(带正电)。
这一现象称为本征激发。
温度愈高,晶体中产 价电子 生的自由电子便愈多。
在外电场的作用下,空穴吸引相邻原子的价电子
来填补,而在该原子中出现一个空穴,其结果相当 于空穴的运动(相当于正电荷的移动)。
也就愈好。所以,温度对半导体器件性能影响很大。
9.1.2 N型半导体和 P 型半导体
在本征半导体中掺入微量的杂质(某种元素), 形成杂质半导体。 在常温下即可
变为自由电子 掺入五价元素
Si
Si
pS+i
Si

掺杂后自由电子数目
余 大量增加,自由电子导电
电 成为这种半导体的主要导
子 电方式,称为电子半导体
掺杂性:往纯净的半导ቤተ መጻሕፍቲ ባይዱ中掺入某些杂质,导电 能力明显改变(可做成各种不同用途的半导 体器件,如二极管、三极管和晶闸管等)。
9.1.1 本征半导体
完全纯净的、具有晶体结构的半导体,称为本征 半导体。
价电子
Si
Si
共价健
Si
Si
晶体中原子的排列方式
硅单晶中的共价健结构
共价键中的两个电子,称为价电子。
自由电子 本征半导体的导电机理
无论N型或P型半导体都是中性的,对外不显电性。
1. 在杂质半导体中多子的数量与 a (a. 掺杂浓度、b.温度)有关。
2. 在杂质半导体中少子的数量与 b (a. 掺杂浓度、b.温度)有关。
3. 当温度升高时,少子的数量 c (a. 减少、b. 不变、c. 增多)。
4. 在外加电压的作用下,P 型半导体中的电流 主要是 b ,N 型半导体中的电流主要是 a 。
对于元器件,重点放在特性、参数、技术指标和 正确使用方法,不要过分追究其内部机理。讨论器 件的目的在于应用。
学会用工程观点分析问题,就是根据实际情况, 对器件的数学模型和电路的工作条件进行合理的近 似,以便用简便的分析方法获得具有实际意义的结 果。
对电路进行分析计算时,只要能满足技术指标, 就不要过分追究精确的数值。
小,用于高频整流和开关电路中。
二极管的结构示意图
金属触丝 N型锗片
阳极引线
阴极引线
( a) 点接触型 外壳
铝合金小球 N型硅
阳极引线
PN结 金锑合金
P IF
内电场 N
外电场
+–
内电场被
削弱,多子 的扩散加强, 形成较大的 扩散电流。
PN 结加正向电压时,PN结变窄,正向电流较 大,正向电阻较小,PN结处于导通状态。
2. PN 结加反向电压(反向偏置) P接负、N接正
--- - -- + + + + + + --- - -- + + + + + + --- - -- + + + + + +
本征半导体的导电机理 当半导体两端加上外电压时,在半导体中将出
现两部分电流 (1)自由电子作定向运动 电子电流 (2)价电子递补空穴 空穴电流
自由电子和空穴都称为载流子。 自由电子和空穴成对地产生的同时,又不断复
合。在一定温度下,载流子的产生和复合达到动态 平衡,半导体中载流子便维持一定的数目。
注意: (1) 本征半导体中载流子数目极少, 其导电性能很差; (2) 温度愈高, 载流子的数目愈多,半导体的导电性能
半导体二极管和直 流稳压电源
第9章 半导体二极管和直流稳压电源
本章要求: 1. 理解PN结的单向导电性, 了解二极管的基本构 造、工 作原理和特性曲线,理解主要参数的意义; 2. 理解单相整流电路和滤波电路的工作原理及 参 数的计算; 3. 了解稳压管稳压电路和串联型稳压电路的工作 原理; 4. 了解集成稳压电路的性能及应用。
或N型半导体。
失去一个 电子变为 正离子
磷原子
在N 型半导体中自由电子 是多数载流子,空穴是少数
载流子。
9.1.2 N型半导体和 P 型半导体
Si
Si
BS–i
Si
硼原子 接受一个 电子变为 负离子
掺入三价元素 空穴 掺杂后空穴数目大量
增加,空穴导电成为这 种半导体的主要导电方 式,称为空穴半导体或 P型半导体。 在 P 型半导体中空穴是多 数载流子,自由电子是少数 载流子。
浓度差 多子的扩散运动
形成空间电荷区
扩散的结果使空间
电荷区变宽。
扩散和漂移
这一对相反的 运动最终达到 动态平衡,空 间电荷区的厚 度固定不变。
9.2.2 PN结的单向导电性
1. PN 结加正向电压(正向偏置) P接正、N接负
PN 结变窄
---- - - ---- - - ---- - -
+ + ++ + + + + ++ + + + + ++ + +
温度越高少子的数目越多,反向电流将随温度增加。
9.2.3 半导体二极管
9.2.3.1 基本结构
(a) 点接触型 结面积小、
结电容小、正 向电流小。用 于检波和变频 等高频电路。
(b)面接触型 结面积大、
正向电流大、 结电容大,用 于工频大电流 整流电路。
(c) 平面型 用于集成电路制作工艺中。PN结结面积可大可
器件是非线性的、特性有分散性、RC 的值有误 差、工程上允许一定的误差、采用合理估算的方法。
9.1 半导体的导电特性
半导体的导电特性: 热敏性:当环境温度升高时,导电能力显著增强
(可做成温度敏感元件,如热敏电阻)。
光敏性:当受到光照时,导电能力明显变化 (可做 成各种光敏元件,如光敏电阻、光敏二极 管、光敏三极管等)。
(a. 电子电流、b.空穴电流)
9.2 PN结和半导体二极管
9.2.1 PN结的形成
内电场越强,漂移运
空间电荷区也称 PN 结
动越强,而漂移使空间
少子的漂移运动 电荷区变薄。
P 型半导体
内电场 N 型半导体
------ + + + + + + ------ + + + + + + ------ + + + + + + ------ + + + + + +
P
内电场 外电场
N
–+
2. PN 结加反向电压(反向偏置) P接负、N接正
PN 结变宽
--- - -- --- - -- ---- - -
+++ +++ +++
+++ +++ +++
P
IR
内电场 外电场
–+
N
内电场被加 强,少子的漂 移加强,由于 少子数量很少, 形成很小的反 向电流。
PN 结加反向电压时,PN结变宽,反向电流较小, 反向电阻较大,PN结处于截止状态。
相关文档
最新文档