集合的概念(新编教材)
高中数学新教材《1.1 集合的概念》公开课优秀课件(好用)

①确定性:集合中的元素必须是确定的。即确定了一 个集合,任何一个元素是不是这个集合的 元素也就确定了。 (具有某种属性)
高一级所有的同学组成的集合记为A, a是高一(7)班 的同学,b是高二(7)班的同学,那么a与A,b与A之 间各自有什么关系?
四、集合的表示
立德树人 和谐发展
例1、用列举法表示下列集合: (1)小于10的所有自然数组成的集合; (2)方程 x2=x 的所有实数根组成的集合; (3)由1~20以内既能被2整除,又能被3整除的所有自 然数组成的集合.
(1)小于10的所有自然数组成的集合;
(2)方程 x2 x的所有实数根组成的集合;
(3)由1~10以内的所有质数组成的集合.
思考?
立德树人 和谐发展
(1)你能用自然语言描述集合{2,4,6,8}吗?
(2)你能用列举法表示不等式 x 7 3 的解集吗?
(2)描述法 用集合所含元素的共同特征表示集合的方法称为描述法. 例2 试分别用列举法和描述法表示下列集合:
四、集合的表示
立德树人 和谐发展
描述法
列举法
A={x R | x2 2=0 } B={x Z | 10<x<20 } C={x | x=2n,n N }
A { 2, 2}
B={11,12,13,14,15,16,17,18,19 }
有限集通常用列举法来表示 无限集通常用描述法来表示
六、小结归纳
(1)方程x2 2 0 的所有实数根组成的集合;
(2)由大于10小于20的所有2 0的实数根为 x ,并且满足条件
x2 2 0 ,因此,用描述法表示为
A x R | x2 2 0
方程 x2 2 0有两个实数根 2, 2,因此,用列举法表
集合的概念教学讲义(新教材)

第一章集合与常用逻辑用语1.1集合的概念第1课时基础知识知识点1集合与元素的含义一般地,我们把研究对象统称为__元素__(element),把一些元素组成的__总体__叫做集合(set)(简称为集).通常用大写拉丁字母A,B,C,…表示__集合__,用小写拉丁字母a,b,c,…表示集合中的__元素__.对象:可以是数、点、图形,也可以是人或物等,即对象的形式多样化.元素:具有共同的特征或共同的属性的对象.总体:集合是一个整体,暗含“所有”“全部”“全体”的含义.因此,一些对象一旦组成了集合,这个集合就是这些对象的全体,而非个别对象.思考1:集合中的“研究对象”所指的就是数学中的数、点、代数式吗?提示:集合中的“研究对象”所指的范围非常广泛,可以是数学中的数、点、代数式,也可以是现实生活中的各种各样的事物或人等.知识点2集合中元素的三个特性提示:(1)确定性的主要作用是判断一组对象能否构成集合,只有这组对象具有确定性时才能构成集合.界定模糊的元素不能构成集合,如“小河流”“难题”等.(2)无序性的主要作用是方便定义集合相等.当两个集合相等时,其元素不一定依次对应相等.如{1,2,3}与{3,2,1}表示同一集合.(3)互异性的主要作用是警示我们做题后要检验.特别是题中含有参数(即字母)时,一定要检验求出的参数是否满足集合中元素的互异性.知识点3元素与集合的关系(2)符合“∈”“∉”的左边可以是集合吗?提示:(1)对于一个元素a与一个集合A而言,只有“a∈A”与“a∉A”这两种结果.(2)∈和∉具有方向性,左边是元素,右边是集合,所以左边不可以是集合.知识点4常用数集及其记法思考+提示:(1)N为非负整数集(或自然数集),而N*或N+表示正整数集,不同之处就是N包括0,而N*(N+)不包括0.(2)N*和N+的含义是一样的,初学者往往会误记为N*或N+,为避免出错,对于N*和N+,可形象地记为“星星(*)在天上,十字(+)在地下”.基础自测1.下列各组对象中不能组成集合的是(C)A.清华大学2019年入校的全体学生B.我国十三届全国人大二次会议的全体参会成员C .中国著名的数学家D .不等式x -1>0的实数解[解析] “著名的数学家”无明确的标准,对于某人是否“著名”无法客观地判断,因此“中国著名的数学家”不能组成集合,故选C . 2.已知a ∈R ,且a ∉Q ,则a 可以为( A ) A .2 B .12C .-2D .-13[解析]2∈R ,且2∉Q ,故选A .3.下列元素与集合的关系判断正确的是__①④__(填序号). ①0∈N ;②π∈Q ;③2∈Q ;④-1∈Z ;⑤2∉R . [解析] π,2为无理数,2为实数,故填①④.4.方程x 2-1=0与方程x +1=0所有解组成的集合中共有__2__个元素.[解析] 方程x 2-1=0的解为1,-1,x +1=0的解为-1,所以两个方程所有解组成的集合有2个元素,故填2.关键能力·攻重难题型探究题型一 集合的基本概念 例1 下列各组对象:①某个班级中年龄较小的男同学;②联合国安理会常任理事国;③2018年在韩国举行的第23届冬奥会的所有参赛运动员;④2的所有近似值. 其中能够组成集合的是__②③__.[分析] 结合集合中元素的特性分析各组对象是否满足确定性和互异性,进而判断能否组成集合.[解析] ①中的“年龄较小”、④中的“近似值”,这些标准均不明确,即元素不确定,所以①④不能组成集合.②③中的对象都是确定的、互异的,所以②③可以组成集合.填②③.[归纳提升] 1.判断一组对象能否构成集合的关键在于看是否有明确的判断标准,使给定的对象是“确定无疑”的还是“模棱两可”的.如果是“确定无疑”的,就可以构成集合;如果是“模棱两可”的,就不能构成集合.2.判断集合中的元素个数时,要注意相同的对象归入同一集合时只能算作一个,即集合中的元素满足互异性.【对点练习】❶ 下列每组对象能否构成一个集合: (1)我国的小城市;(2)某校2019年在校的所有高个子同学; (3)不超过20的非负数;(4)方程x 2-9=0在实数范围内的解.[解析] (1)“我国的小城市”无明确的标准,对于某个城市是否“小”无法客观地判断,因此,“我国的小城市”不能构成一个集合.(2)“高个子”无明确的标准,对于某个同学是否是“高个子”无法客观地判断,不能构成集合.(3)任给一个实数x ,可以明确地判断是不是“不超过20的非负数”,即“0≤x ≤20”与“x >20或x <0”两者必居其一,且仅居其一,故“不超过20的非负数”能构成集合.(4)由x 2-9=0,得x 1=-3,x 2=3.∴方程x 2-9=0在实数范围内的解为-3,3,能构成集合. 题型二 元素与集合的关系例2 若所有形如3a +2b (a ∈Z ,b ∈Z )的数组成集合A ,请判断6-22是不是集合A 中的元素.[分析] 根据元素与集合的关系判断,可令a =2,b =-2. [解析] 因为在3a +2b (a ∈Z ,b ∈Z )中, 令a =2,b =-2,即可得到6-22, 所以6-22是集合A 中的元素.[归纳提升] 1.(1)判断一个元素是不是某个集合的元素,关键是判断这个元素是否具有这个集合中元素的共同特征.(2)要熟练掌握R 、Q 、Z 、N 、N *表示的数集.2.解决这类比较复杂的集合问题要充分利用集合满足的性质,运用转化思想,将问题等价转化为比较熟悉的问题解决.【对点练习】❷ (1)下列关系中,正确的有( C ) ①12∈R ;②5∉Q ;③|-3|∈N ;④|-3|∈Q . A .1个 B .2个 C .3个D .4个(2)若集合A 中的元素x 满足63-x∈N ,x ∈N ,则集合A 中的元素为__2,1,0__. [解析] (1)12是实数,5是无理数,|-3|=3是自然数,|-3|=3是无理数.因此,①②③正确,④错误.(2)由题意可得:3-x 可以为1,2,3,6,且x 为自然数,因此x 的值为2,1,0.因此A 中元素有2,1,0.例3 已知-3是由x -2,2x 2+5x,12三个元素构成的集合中的元素,求x 的值. [分析] -3是集合的元素说明x -2=-3或2x 2+5x =-3,可分类讨论求解. [解析] 由题意可知,x -2=-3或2x 2+5x =-3. 当x -2=-3时,x =-1,把x =-1代入2x 2+5x ,得集合的三个元素分别为-3,-3,12,不满足集合中元素的互异性;当2x 2+5x =-3时,x =-32或x =-1(舍去),当x =-32时,集合的三个元素分别为-72,-3,12,满足集合中元素的互异性,故x =-32.[归纳提升] 解决此类问题的通法是:根据元素的确定性建立分类讨论的标准,求得参数的值,然后将参数值代入检验是否满足集合中元素的互异性.【对点练习】❸ 已知集合A 中仅含有两个元素a -3和2a -1,若-3∈A ,则实数a 的值为__0或-1 __.[解析] ∵-3∈A ,∴-3=a -3或-3=2a -1.若-3=a -3,则a =0,此时集合A 中含有两个元素-3,-1,符合题意. 若-3=2a -1,则a =-1,此时集合A 中含有两个元素-4,-3,符合题意. 综上所述,实数a 的值为0或-1.课堂检测·固双基1.下列语句能确定一个集合的是( D ) A .充分小的负数全体 B .爱好飞机的一些人 C .某班本学期视力较差的同学 D .某校某班某一天的所有课程[解析]由集合的含义,根据集合元素的确定性,易排除A、B、C,故选D.2.已知集合S={a,b,c}中的三个元素是△ABC的三边长,那么△ABC一定不是(D) A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形[解析]由集合中元素的互异性知a,b,c互不相等,故选D.3.用符号“∈”或“∉”填空:0__∈__N;-3__∉__N;0.5__∉__Z;2__∉__Z;13__∈__Q;π__∈__R.4.集合A中的元素y满足y∈N且y=-x2+1,若t∈A,则t的值为__0,1__.[解析]因为y∈N且y=-x2+1,所以y=0或y=1.即A中有两个元素0,1,又t∈A,所以t=0或1.5.判断下列元素的全体是否组成集合,并说明理由:(1)与定点A,B等距离的点;(2)高中学生中的游泳能手.[解析](1)与定点A,B等距离的点可以组成集合,因为这些点是确定的.(2)高中学生中的游泳能手不能组成集合,因为组成它的元素是不确定的.素养作业·提技能A组·素养自测一、选择题1.下列各组对象能组成一个集合的是(C)①某中学高一年级所有聪明的学生;②在平面直角坐标系中,所有横坐标与纵坐标相等的点;③所有不小于3的正整数;④3的所有近似值.A.①②B.③④C.②③D.①③[解析]①④不符合集合中元素的确定性.故选C.2.若集合A只含有元素a,则下列各式正确的是(C)A.0∈A B.a∉AC.a∈A D.a=A[解析]由题意知A中只有一个元素a,∴0∉A,a∈A,元素a与集合A的关系不应该用“=”,故选C.3.若以方程x2-5x+6=0和x2-x-2=0的解为元素组成集合M,则M中元素的个数为(C)A .1B .2C .3D .4[解析] 方程x 2-5x +6=0的解为x =2或x =3,x 2-x -2=0的解为x =2或x =-1,所以集合M 中含有3个元素.4.由实数x ,-x ,|x |,x 2,-x 2所组成的集合,其含有元素的个数最多为( A ) A .2 B .3 C .4D .5[解析] ∵x 2=|x |,-x 2=-|x |,故当x =0时,这几个实数均为0;当x >0时,它们分别是x ,-x ,x ,x ,-x ;当x <0,它们分别是x ,-x ,-x ,-x ,x .最多表示2个不同的数,故集合中的元素最多为2个.5.设x ∈N ,且1x ∈N ,则x 的值可能是( B )A .0B .1C .-1D .0或1[解析] ∵-1∉N ,∴排除C ;0∈N ,而10无意义,排除A 、D ,故选B .6.如果集合A 中含有三个元素2,4,6,若a ∈A ,且6-a ∈A ,那么a 为( B ) A .2 B .2或4 C .4D .0[解析] ∵a ∈A ,∴当a =2时,6-a =4,∴6-a ∈A ;当a =4时,6-a =2,∴6-a ∈A ;当a =6时,6-a =0,∴6-a ∉A ,故a =2或4. 二、填空题7.设A 表示“中国所有省会城市”组成的集合,则深圳__∉__A ,广州__∈__A (填“∈”或“∉”).[解析] 深圳不是省会城市,而广州是广东省的省会.8.设直线y =2x +3上的点集为P ,点(2,7)与点集P 的关系为(2,7)__∈__P (填“∈”或“∉”). [解析] 直线y =2x +3上的点的横坐标x 和纵坐标y 满足关系:y =2x +3,即只要具备此关系的点就在直线上.由于当x =2时,y =2×2+3=7,∴(2,7)∈P . 9.已知集合A 含有三个元素1,0,x ,若x 2∈A ,则实数x 的值为__-1__. [解析] 因为x 2∈A ,所以x 2=1或x 2=0或x 2=x ,解得x =-1,0,1.经检验,只有x =-1时,满足集合元素的互异性.三、解答题10.记方程x 2-x -m =0的解构成的集合为M ,若2∈M ,试写出集合M 中的所有元素. [解析] 因为2∈M ,所以22-2-m =0,解得m =2.解方程x 2-x -2=0,即(x +1)(x -2)=0,得x =-1或x =2.故M 含有两个元素-1,2.11.由a ,ba ,1组成的集合与由a 2,a +b,0组成的集合是同一个集合,求a 2 020+b 2 020的值.[解析] 由a ,b a ,1组成一个集合,可知a ≠0,a ≠1,由题意可得ba =0,即b =0,此时两集合中的元素分别为a,0,1和a 2,a,0,因此a 2=1,解得a =-1或a =1(不满足集合中元素的互异性,舍去),因此a =-1,且b =0,所以a 2 020+b 2 020=(-1)2 020+0=1.B 组·素养提升一、选择题1.如果a 、b 、c 、d 为集合A 的四个元素,那么以a 、b 、c 、d 为边长构成的四边形可能是( D ) A .矩形 B .平行四边形 C .菱形D .梯形[解析] 由于集合中的元素具有“互异性”,故a 、b 、c 、d 四个元素互不相同,即组成四边形的四条边互不相等.2.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 的值为( B ) A .2 B .3C .0或3D .0或2或3[解析] 因为2∈A ,所以m =2,或m 2-3m +2=2,解得m =0或m =3.又集合中的元素要满足互异性,对m 的所有取值进行一一检验可得m =3,故选B .3.(多选题)已知集合A 中元素满足x =3k -1,k ∈Z ,则下列表示正确的是( BC ) A .-2∈A B .-11∉A C .3k 2-1∈AD .-34∉A[解析] 令3k -1=-2,解得k =-13,-13∉Z ,∴-2∉A ; 令3k -1=-11,解得k =-103,-103∉Z ,∴-11∉A ;∵k 2∈Z ,∴3k 2-1∈A ;令3k -1=-34,解得k =-11,-11∈Z , ∴-34∈A .故选BC .4.(多选题)已知x ,y 都是非零实数,z =x |x |+y |y |+xy|xy |可能的取值组成的集合为A ,则下列判断错误的是( ACD ) A .3∈A ,-1∉A B .3∈A ,-1∈A C .3∉A ,-1∈AD .3∉A ,-1∉A[解析] 当x >0,y >0时,z =1+1+1=3; 当x >0,y <0时,z =1-1-1=-1; 当x <0,y >0时,z =-1+1-1=-1; 当x <0,y <0时,z =-1-1+1=-1. 所以3∈A ,-1∈A .故选ACD . 二、填空题5.用适当的符号填空:已知A ={x |x =3k +2,k ∈Z },B ={x |x =6m -1,m ∈Z },则17__∈__A ;-5__∉__A ;17__∈__B .[解析] 令3k +2=17,得k =5,5∈Z ,所以17∈A ;令3k +2=-5,得k =-73,-73∉Z ,所以-5∉A ;令6m -1=17,得m =3,3∈Z ,所以17∈B .6.若1-a1+a ∈A ,且集合A 中只含有一个元素a ,则a 的值为[解析] 由题意,得1-a1+a=a ,∴a 2+2a -1=0且a ≠-1,∴a =-1± 2.7.(2019·江苏泰州期末)集合A 中含有两个元素x 和y ,集合B 中含有两个元素0和x 2,若A ,B 相等,则实数x 的值为__1__,y 的值为__0__. [解析] 因为集合A ,B 相等,所以x =0或y =0.①当x =0时,x 2=0,此时集合B 中的两个元素为0和0,不满足集合中元素的互异性,故舍去;②当y=0时,x=x2,解得x=0或x=1,由①知x=0应舍去,经检验,x=1符合题意,综上可知,x=1,y=0.三、解答题8.已知集合A中含有两个元素a-3和2a-1.(1)若-2是集合A中的元素,试求实数a的值;(2)-5能否为集合A中的元素?若能,试求出该集合中的所有元素;若不能,请说明理由.[解析](1)因为-2是集合A中的元素,所以-2=a-3或-2=2a-1.若-2=a-3,则a=1,此时集合A含有两个元素-2,1,符合要求;若-2=2a-1,则a=-12,此时集合A中含有两个元素-72,-2,符合要求.综上所述,满足题意的实数a的值为1或-12.(2)不能.理由:若-5为集合A中的元素,则a-3=-5或2a-1=-5.当a-3=-5时,解得a=-2,此时2a-1=2×(-2)-1=-5,显然不满足集合中元素的互异性;当2a-1=-5时,解得a=-2,此时a-3=-5显然不满足集合中元素的互异性.综上,-5不能为集合A中的元素.9.已知集合A={x|x=m+2n,m,n∈Z}.(1)试分别判断x1=-2,x2=12-2,x3=(1-22)2与集合A的关系;(2)设x1,x2∈A,证明:x1·x2∈A.[解析](1)x1=-2=0+(-1)×2,因为0,-1∈Z,所以x1∈A;x2=12-2=2+22=1+12×2,因为1∈Z,但12∉Z,所以x2∉A;x3=(1-22)2=9-42=9+(-4)×2,因为9,-4∈Z,所以x3∈A.(2)因为x1,x2∈A,所以可设x1=m1+2n1,x2=m2+2n2,且m1,n1,m2,n2∈Z,所以x1·x2=(m1+2n1)(m2+2n2)=m1m2+2(m2n1+m1n2)+2n1n2=(m1m2+2n1n2)+2(m2n1+m1n2).因为m1m2+2n1n2∈Z,m2n1+m1n2∈Z,所以x1·x2∈A.。
人教版(新教材)高中数学第一册(必修1)精品课件4:1.1 第1课时 集合的概念

名称 自然数集 正整数集 整数集 有理数集 实数集
符号 _N__ __N__+_或__N_*_ _Z__
_Q__
_R__
[题型探究] 题型一 集合的基本概念 例1 下列每组对象能否构成一个集合: (1)我们班的所有高个子同学; 解 “高个子”没有明确的标准,因此不能构成集合. (2)不超过20的非负数; 解 任给一个实数x,可以明确地判断是不是“不超过20的非负数”, 即“0≤x≤20”与“x>20或x<0”,两者必居其一,且仅居其一,故 “不超过20的非负数”能构成集合;
[预习导引]
1.元素与集合的概念 (1)集合:把一些能够 确定的不同的对象看成一个整体,就说这个 整体是由这些对象的全体 构成的集合(或集). (2)元素:构成集合的 每个对象 叫做这个集合的元素. (3)集合元素的特性: 确定性、 互异性 .
2.元素与集合的关系
关系
概念
记法
如果 a是集合A 的元素, 属于
[即时达标]
1.下列能构成集合的是( C ) A.中央电视台著名节目主持人 C.上海市所有的中学生
B.我市跑得快的汽车 D.香港的高楼
【解析】A、B、D中研究的对象不确定,因此不能构成集合.
2.已知1∈{a2,a},则a=__-_1___.
【解析】当a2=1时,a=±1,但a=1时,a2=a,由元素的互异性 知a=-1.
【解析】深圳不是省会城市,而广州是广东省的省会.
4.已知① 5∈R;②13∈Q;③0∈N;④π∈Q;⑤-3∉Z.
【解析】序号 Biblioteka 否构成集合理由(1)
能
其中的元素是“三条边相等的三角形”
“难题”的标准是模糊的、不确定的,所以
(2)
不能
新教材2020-2021学年1.1集合的概念 1.1.2集合的表示 教案

第一章集合与常用逻辑用语1.1集合的概念1.1.2 集合的表示[目标] 1.掌握集合的两种表示方法(列举法和描述法);2.能够运用集合的两种表示方法表示一些简单集合.[重点]集合的两种表示方法及其运用.[难点] 对描述法表示集合的理解.知识点一列举法[填一填]把集合的所有元素出来,并用花括号“ ”括起来表示集合的方法叫做列举法.{}表示“所有”的含义,不能省略,元素之间用“,”隔开,而不能用“、”;书写时不需要考虑元素的顺序.[答一答]1.实数集也可以写成{实数},那么能写成{实数集}或{全体实数}吗?提示:不能,因为花括号“{}”表示“所有、全部”的意思.2.列举法能表示元素个数很少的有限集,那么可以用列举法表示无限集吗?提示:对于所含元素有规律的无限集也可以用列举法表示,如正自然数集可以用列举法表示为{1,2,3,4,5,…}.3.集合{(1,2)}与{(2,1)}是否为相等集合?提示:不是.知识点二描述法[填一填]1.一般地,设A是一个集合,我们把集合A中所有具有共同特征P(x)的元素x所组成的集合表示为{x∈A|P(x)},这种表示集合的方法称为描述法.2.具体方法在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.[答一答]3.集合{x|x>3}与集合{t|t>3}表示同一个集合吗?提示:是同一个集合.虽然两个集合的代表元素的符号(字母)不同,但实质上它们均表示大于3的所有实数,故表示同一个集合.类型一 用列举法表示集合[例1] (1)若集合A ={(1,2),(3,4)},则集合A 中元素的个数是( B ) A .1 B .2 C .3D .4(2)用列举法表示下列集合.①不大于10的非负偶数组成的集合; ②方程x 2=x 的所有实数解组成的集合; ③直线y =2x +1与y 轴的交点所组成的集合;④方程组⎩⎪⎨⎪⎧x +y =1,x -y =-1的解.[解析] (1)集合A ={(1,2),(3,4)}中有两个元素(1,2)和(3,4).(2)解:①因为不大于10是指小于或等于10,非负是大于或等于0的意思,所以不大于10的非负偶数集是{0,2,4,6,8,10}.②方程x 2=x 的解是x =0或x =1,所以方程的解组成的集合为{0,1}.③将x =0代入y =2x +1,得y =1,即交点是(0,1),故两直线的交点组成的集合是{(0,1)}.④解方程组⎩⎪⎨⎪⎧ x +y =1,x -y =-1,得⎩⎪⎨⎪⎧x =0,y =1.∴用列举法表示方程组⎩⎪⎨⎪⎧x +y =1,x -y =-1的解集为{(0,1)}.用列举法表示集合应注意的三点:(1)应先弄清集合中的元素是什么,是数还是点,还是其他元素; (2)集合中的元素一定要写全,但不能重复;(3)若集合中的元素是点时,则应将有序实数对用小括号括起来表示一个元素. [变式训练1]用列举法表示下列集合: (1)15的正约数组成的集合; (2)所有正整数组成的集合;(3)直线y =x 与y =2x -1的交点组成的集合. 解:(1){1,3,5,15}.(2)正整数有1,2,3,…,所求集合用列举法表示为{1,2,3,…}.(3)方程组⎩⎪⎨⎪⎧ y =x ,y =2x -1的解是⎩⎪⎨⎪⎧x =1,y =1,所求集合用列举法表示为{(1,1)}.类型二 用描述法表示集合[例2] 用描述法表示下列集合: (1)不等式2x -7<3的解集A ;(2)二次函数y =x 2+1的函数值组成的集合B ; (3)被3除余2的正整数的集合C ;(4)平面直角坐标系内坐标轴上的点组成的集合D .[分析] 先确定集合元素的符号,再把元素的共同特征通过提炼加工后写在竖线后面. [解] (1)解2x -7<3得x <5,所以A ={x |x <5}.(2)函数值组成的集合就是y 的取值集合,所以B ={y |y =x 2+1,x ∈R }.(3)被3除余2的正整数可以表示为3n +2(n ∈N ),所以集合C ={x |x =3n +2,n ∈N }. (4)平面直角坐标系中坐标轴上的点的共同特征是至少有一个坐标为0, 所以D ={(x ,y )|x ·y =0,x ∈R ,y ∈R }.(1)用描述法表示集合,应先弄清集合的属性,是数集、点集还是其他的类型.一般地,数集用一个字母代表其元素,而点集则用一个有序实数对来代表其元素.(2)若描述部分出现元素记号以外的字母时,要对新字母说明其含义或指出其取值范围. [变式训练2] 用描述法表示下列集合: (1)函数y =-x 的图象上所有点组成的集合; (2)方程x 2+22x +121=0的解集;(3)数轴上离原点的距离大于3的点组成的集合;(4)⎩⎨⎧⎭⎬⎫13,12,35,23,57,…. 解:(1){(x ,y )|y =-x ,x ∈R ,y ∈R }. (2){x |x =-11}.(3)数轴上离原点的距离大于3的点组成的集合等于绝对值大于3的实数组成的集合,则数轴上离原点的距离大于3的点组成的集合可表示为{x ∈R ||x |>3}.(4)先统一形式13,24,35,46,57,…,找出规律,集合表示为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x =n n +2,n ∈N *. 类型三 两种方法的灵活应用[例3] 用适当的方法表示下列集合:(1)方程组⎩⎪⎨⎪⎧2x -3y =14,3x +2y =8的解组成的集合;(2)1 000以内被3除余2的正整数组成的集合; (3)所有的正方形组成的集合;(4)抛物线y =x 2上的所有点组成的集合.[分析] (1)中的元素个数很少,用列举法表示;(2)是有限集,但个数较多,用描述法;(3)(4)是无限集,用描述法表示.[解] (1)解方程组⎩⎪⎨⎪⎧ 2x -3y =14,3x +2y =8,得⎩⎪⎨⎪⎧x =4,y =-2,故该集合用列举法可表示为{(4,-2)}.(2)设集合的代表元素是x ,则该集合用描述法可表示为{x |x =3k +2,k ∈N ,且k ≤332}. (3)集合用描述法表示为{x |x 是正方形}或{正方形}. (4)集合用描述法表示为{(x ,y )|y =x 2}.当集合的元素个数很少(很容易写出全部元素)时,常用列举法表示集合;当集合的元素个数较多(不易写出全部元素)时,常用描述法表示集合.对一些元素有规律的无限集,也可用列举法表示.如正奇数集也可写为{1,3,5,7,9,…}.但值得注意的是,并不是每一个集合都可以用两种方法表示出来.)[变式训练3] 用适当的方法表示下列集合: (1)大于2且小于5的有理数组成的集合; (2)24的所有正因数组成的集合;(3)平面直角坐标系内与坐标轴距离相等的点的集合. 解:(1)用描述法表示为{x |2<x <5,且x ∈Q }. (2)用列举法表示为{1,2,3,4,6,8,12,24}.(3)在平面直角坐标系内,点(x ,y )到x 轴的距离为|y |,到y 轴的距离为|x |,所以该集合用描述法表示为{(x ,y )||y |=|x |}.1.集合{x ∈N |x <5}的另一种表示方法是( A ) A .{0,1,2,3,4} B .{1,2,3,4} C .{0,1,2,3,4,5}D .{1,2,3,4,5}解析:∵x ∈N ,且x <5,∴x 的值为0,1,2,3,4,用列举法表示为{0,1,2,3,4}.2.方程组⎩⎪⎨⎪⎧x +y =2,x -2y =-1的解集是( C )A .{x =1,y =1}B .{1}C .{(1,1)}D .{(x ,y )|(1,1)}解析:方程组的解集中元素应是有序数对形式,排除A ,B ,而D 中的条件是点(1,1),不含x ,y ,排除D.3.集合{x |x =a ,a <36,x ∈N },用列举法表示为{0,1,2,3,4,5}.解析:由a <36,可得a <6,即x <6,又x ∈N ,故x 只能取0,1,2,3,4,5.4.能被2整除的正整数的集合,用描述法可表示为{x |x =2n ,n ∈N +}.解析:正整数中所有的偶数均能被2整除. 5.用适当的方法表示下列集合:(1)已知集合P ={x |x =2n,0≤n ≤2,且n ∈N }; (2)能被3整除且大于4小于15的自然数组成的集合; (3)x 2-4的一次因式组成的集合;(4)由方程组⎩⎪⎨⎪⎧ x +y =3,x -y =-1的解所组成的集合.解:(1)用列举法表示为P ={0,2,4}.(2)可用列举法表示为{6,9,12};也可用描述法表示为{x |x =3n,4<x <15,且n ∈N }. (3)用列举法表示为{x +2,x -2}.(4)解方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1得⎩⎪⎨⎪⎧x =1,y =2,故可用列举法表示为{(1,2)},也可用描述法表示为{(x ,y )|x =1,y =2}.——本课须掌握的两大问题1.表示集合的要求:(1)根据要表示的集合元素的特点,选择适当方法表示集合,一般要符合最简原则.(2)一般情况下,元素个数无限的集合不宜用列举法表示,描述法既可以表示元素个数无限的集合,也可以表示元素个数有限的集合.2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合或其他形式. (2)元素具有怎样的属性.当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.第一章 1.1 第2课时A 组·素养自测一、选择题1.用列举法表示集合{x |x 2-3x +2=0}为( C ) A .{(1,2)} B .{(2,1)} C .{1,2}D .{x 2-3x +2=0}[解析] 解方程x 2-3x +2=0得x =1或x =2.用列举法表示为{1,2}. 2.直线y =2x +1与y 轴的交点所组成的集合为( B ) A .{0,1}B .{(0,1)}C .⎩⎨⎧⎭⎬⎫-12,0D .⎩⎨⎧⎭⎬⎫⎝⎛⎭⎫-12,0 [解析] 解方程组⎩⎪⎨⎪⎧ y =2x +1,x =0,得⎩⎪⎨⎪⎧x =0,y =1.故该集合为{(0,1)}.3.已知x ∈N ,则方程x 2+x -2=0的解集为( C ) A .{x |x =2}B .{x |x =1或x =-2}C .{x |x =1}D .{1,-2}[解析] 方程x 2+x -2=0的解为x =1或x =-2.由于x ∈N ,所以x =-2舍去.故选C . 4.若A ={-1,3},则可用列举法将集合{(x ,y )|x ∈A ,y ∈A }表示为( D ) A .{(-1,3)} B .{-1,3}C .{(-1,3),(3,-1)}D .{(-1,3),(3,3),(-1,-1),(3,-1)}[解析] 因为集合{(x ,y )|x ∈A ,y ∈A }是点集或数对构成的集合,其中x ,y 均属于集合A ,所以用列举法可表示为{(-1,3),(3,3),(-1,-1),(3,-1)}.5.下列集合中,不同于另外三个集合的是( B ) A .{x |x =1} B .{x |x 2=1} C .{1}D .{y |(y -1)2=0}[解析] 因为{x |x =1}={1},{x |x 2=1}={-1,1},{y |(y -1)2=0}={1},所以B 选项的集合不同于另外三个集合.6.下列说法:①集合{x ∈N |x 3=x }用列举法可表示为{-1,0,1};②实数集可以表示为{x |x 为所有实数}或{R };③方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1的解集为{x =1,y =2}.其中说法正确的个数为( D )A .3B .2C .1D .0[解析] 由x 3=x ,得x (x -1)(x +1)=0,解得x =0或x =1或x =-1.因为-1∉N ,故集合{x ∈N |x 3=x }用列举法可表示为{0,1},故①不正确.集合表示中的“{}”已包含“所有”“全体”等含义,而“R ”表示所有的实数组成的集合,故实数集正确表示应为{x |x 为实数}或R ,故②不正确.方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1的解是有序实数对,其解集应为⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧ x =1y =2,故③不正确. 二、填空题7.已知A ={(x ,y )|x +y =6,x ∈N ,y ∈N },用列举法表示A 为__{(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}__.[解析] ∵x +y =6,x ∈N ,y ∈N , ∴x =6-y ∈N ,∴⎩⎪⎨⎪⎧x =0,y =6,⎩⎪⎨⎪⎧x =1,y =5,⎩⎪⎨⎪⎧x =2,y =4,⎩⎪⎨⎪⎧x =3,y =3,⎩⎪⎨⎪⎧x =4,y =2,⎩⎪⎨⎪⎧x =5,y =1,⎩⎪⎨⎪⎧x =6,y =0. ∴A ={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}.8.集合{1,2,3,2,5,…}用描述法表示为[解析] 注意到集合中的元素的特征为n ,且n ∈N *,所以用描述法可表示为{x |x =n ,n ∈N *}. 9.已知集合A ={x |2x +a >0},且1∉A ,则实数a 的取值范围是__a ≤-2__. [解析] 因为1∉A ,则应有2×1+a ≤0,所以a ≤-2. 三、解答题10.用列举法表示下列集合: (1)⎩⎨⎧x ⎪⎪⎭⎬⎫62-x ∈Z ,x ∈Z ;(2){(x ,y )|y =3x ,x ∈N 且1≤x <5}.[解析] (1)因为62-x ∈Z ,所以|2-x |是6的因数,则|2-x |=1,2,3,6,即x =1,3,4,0,-1,5,-4,8. 所以原集合可用列举法表示为{-4,-1,0,1,3,4,5,8}. (2)因为x ∈N 且1≤x <5,所以x =1,2,3,4, 其对应的y 的值分别为3,6,9,12.所以原集合可用列举法表示为{(1,3),(2,6),(3,9),(4,12)}. 11.用描述法表示下列集合.(1){2,4,6,8,10,12}; (2){13,24,35,46,57};(3)被5除余1的正整数集合;(4)平面直角坐标系中第二、四象限内的点的集合;(5)方程组⎩⎪⎨⎪⎧x +y =2x -y =2的解组成的集合.[解析] (1){x |x =2n ,n ∈N *,n ≤6}. (2){x |x =nn +2,n ∈N *,n ≤5}. (3){x |x =5n +1,n ∈N }. (4){(x ,y )|xy <0}.(5)⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧ x +y =2x -y =2或⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧ x =2y =0. B 组·素养提升一、选择题1.方程组⎩⎪⎨⎪⎧x -y =2,x +2y =-1的解集是( C )A .{x =1,y =-1}B .{1}C .{(1,-1)}D .{(x ,y )|(1,-1)}[解析] 方程组的解集中元素应是有序数对形式,排除A ,B ,而D 的集合表示方法有误,排除D . 2.用列举法可将集合{(x ,y )|x ∈{1,2},y ∈{1,2}}表示为( D ) A .{1,2} B .{(1,2)} C .{(1,1),(2,2)}D .{(1,1),(1,2),(2,1),(2,2)}[解析] x =1,y =1;x =1,y =2;x =2,y =1;x =2,y =2.∴集合{(x ,y )|x ∈{1,2},y ∈{1,2}}表示为{(1,1),(1,2),(2,1),(2,2)},故选D . 3.(多选题)大于4的所有奇数构成的集合可用描述法表示为( BD ) A .{x |x =2k -1,k ∈N } B .{x |x =2k +1,k ∈N ,k ≥2} C .{x |x =2k +3,k ∈N } D .{x |x =2k +5,k ∈N }[解析] 选项A ,C 中,集合内的最小奇数不大于4. 4.(多选题)下列各组中M ,P 表示不同集合的是( ABD )A .M ={3,-1},P ={(3,-1)}B .M ={(3,1)},P ={(1,3)}C .M ={y |y =x 2+1,x ∈R },P ={x |x =t 2+1,t ∈R }D .M ={y |y =x 2-1,x ∈R },P ={(x ,y )|y =x 2-1,x ∈R }[解析] 选项A 中,M 是由3,-1两个元素构成的集合,而集合P 是由点(3,-1)构成的集合;选项B 中,(3,1)与(1,3)表示不同的点,故M ≠P ;选项D 中,M 是二次函数y =x 2-1,x ∈R 的所有因变量组成的集合,而集合P 是二次函数y =x 2-1,x ∈R 图象上所有点组成的集合.故选ABD .二、填空题5.若集合A ={x |ax 2+2x +1=0,a ∈R }中只有一个元素,则实数a 的值是__0或1__.[解析] 集合A 中只有一个元素,有两种情况:当a ≠0时,由Δ=0,解得a =1,此时A ={-1},满足题意;当a =0时,x =-12,此时A ={-12},满足题意.故集合A 中只有一个元素时,a 的值是0或1.6.用列举法写出集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫⎪⎪33-x ∈Z x ∈Z =__{-3,-1,1,3}__.[解析] ∵33-x ∈Z ,x ∈Z ,∴3-x 为3的因数. ∴3-x =±1,或3-x =±3. ∴33-x =±3,或33-x=±1. ∴-3,-1,1,3满足题意.7.设A ,B 为两个实数集,定义集合A +B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },若A ={1,2,3},B ={2,3},则集合A +B 中元素的个数为__4__.[解析] 当x 1=1时,x 1+x 2=1+2=3或x 1+x 2=1+3=4;当x 1=2时,x 1+x 2=2+2=4或x 1+x 2=2+3=5;当x 1=3时,x 1+x 2=3+2=5或x 1+x 2=3+3=6.∴A +B ={3,4,5,6},共4个元素.三、解答题8.集合A ={x |kx 2-8x +16=0},若集合A 只有一个元素,试求实数k 的值,并用列举法表示集合A . [解析] (1)当k =0时,原方程为16-8x =0, 所以x =2,此时A ={2}.(2)当k ≠0时,因为集合A 中只有一个元素, 所以方程kx 2-8x +16=0有两个相等的实根. 则Δ=64-64k =0,即k =1. 从而x 1=x 2=4,所以集合A ={4},综上所述,实数k 的值为0或1.当k =0时,A ={2};当k =1时,A ={4}. 9.已知集合A ={x |ax 2-3x +2=0}.(1)若A 中只有一个元素,求集合A ;(2)若A 中至少有一个元素,求a 的取值范围.[解析] (1)因为集合A 是方程ax 2-3x +2=0的解集,则当a =0时,A ={23},符合题意;当a ≠0时,方程ax 2-3x +2=0应有两个相等的实数根, 则Δ=9-8a =0,解得a =98,此时A ={43},符合题意.综上所述,当a =0时,A ={23},当a =98时,A ={43}.(2)由(1)可知,当a =0时,A ={23}符合题意;当a ≠0时,要使方程ax 2-3x +2=0有实数根, 则Δ=9-8a ≥0,解得a ≤98且a ≠0.综上所述,若集合A 中至少有一个元素,则a ≤98.。
新教材高中数学第一章预备知识1集合1-1集合的概念与表示第1课时集合的概念课件北师大版必修第一册

2.(多选题)下列关系正确的是( BD )
A.0∈N+
B.(√2 − √7)∉Q
C.0∉Q
D.8∈Z
3.已知集合S中的元素a,b是一个四边形的两条对角线的长,那么这个四边
形一定不是(
)
A.梯形 B.平行四边形
C.矩形 D.菱形
答案 C
解析 因为集合中的元素具有互异性,所以a≠b,即四边形对角线不相等,故选
可能只含有一个元素.
本节要点归纳
1.知识清单:
(1)元素与集合的概念、元素与集合的关系;
(2)集合中元素的三个特性及应用;
(3)常用数集的表示.
2.方归纳:分类讨论.
3.常见误区:忽视集合中元素的互异性.
学以致用•随堂检测全达标
1.(2022湖北襄阳月考)判断下列各组对象可以组成集合的是(
)
(1)1
N+;
(2)-3
N;
1
(3)3
Q;
(4)√3
1
(5)-2
(6)π
Q;
R;
R+.
答案 (1)∈ (2)∉
(3)∈ (4)∉ (5)∈
(6)∈
重难探究•能力素养全提升
探究点一 集合的概念
【例1】 给出下列各组对象:
①我们班比较高的同学;②无限接近于0的数的全体;③比较小的正整数的
全体;④平面上到点O的距离等于1的点的全体;⑤正三角形的全体;⑥ √的
第一章
第1课时 集合的概念
课标要求
1.通过实例,了解集合的含义.
2.掌握集合中元素的三个特征.
3.理解元素与集合的“属于”关系.
4.记住常用数集及其记法.
内
容
(新教材)【人教A版】高一数学《1.1.1集合的含义》

【解析】1.选A.A中a=0时,显然不成立. 2.选A.a= + < + =4<5, 所以a∈A. a+1< + 2 +1=35, 4 4 所以a+1∈A,
44
a2=( )2+2 × +( )2=5+2 >5,
所以a22∉A, 2 3 3
6
=
<5,
所1 以 ∈1A.
3 2
第一章 集合与常用逻辑用语 1.1 集合的概念
第1课时 集合的含义
1.元素与集合 (1)元素:把研究对象统称为元素,常用小写的拉丁字母 a,b,c,…表示. (2)集合:一些元素组成的总体,简称集,常用大写拉丁 字母A,B,C,…表示.
(3)集合相等:指构成两个集合的元素是一样的. (4)集合中元素的特性:确定性、互异性和无序性.
【延伸·练】
数集A满足条件:若a∈A,则 ∈A(a≠1).若 ∈A,
求集合中的其他元素. 1 a
1
1 a
3
【解析】因为
1
∈A,所以
1
1 3
=2∈A,所以
1
2
=
3
1 1
1 2
-3∈A,所以1 3=-
1
∈A,所以
3 1
1 2
=ቤተ መጻሕፍቲ ባይዱ
1∈A.故当 1 ∈A
13 2
1 1 3
3
2
时,集合中的其他元素为2,-3,- 1 .
31 22
含有4个元素.其中正确的是 ( ) A.①②④ B.②③ C.③④ D.②④ 【解析】选B.①中的元素不能确定,④中的集合含有3 个元素,②③中的元素是确定的,所以②③能构成集合.
《1.1 集合的概念》教学导学案(统编人教A版)

【新教材】1.1 集合的概念学案(人教A版)1. 了解集合的含义;理解元素与集合的“属于”与“不属于”关系;熟记常用数集专用符号.2. 深刻理解集合元素的确定性、互异性、无序性;能够用其解决有关问题.3. 会用集合的两种表示方法表示一些简单集合。
感受集合语言的意义和作用。
1.数学抽象:集合概念的理解,描述法表示集合的方法;2.逻辑推理:集合的互异性的辨析与应用;3.数学运算:集合相等时的参数计算,集合的描述法转化为列举法时的运算;4. 数据分析:元素在集合中对应的参数满足的条件;5.数学建模:用集合思想对实际生活中的对象进行判断与归类。
重点:集合的基本概念,集合中元素的三个特性,元素与集合的关系,集合的表示方法.难点:元素与集合的关系,选择适当的方法表示具体问题中的集合.一、预习导入阅读课本2-5页,填写。
1.元素与集合的概念(1)元素:一般地,把__________统称为元素.元素常用小写的拉丁字母a,b,c,…表示.(2)集合:把一些元素组成的________叫做集合(简称为_______).集合通常用大写的拉丁字母A,B,C,…表示.(3)集合相等:只要构成两个集合的_______是一样的,就称这两个集合是相等的.(4)元素的特性:_________、__________ 、___________.2.元素与集合的关系3.常用的数集及其记法把集合的元素_____________,并用花括号“{ }”括起来表示集合的方法叫做列举法.5.描述法(1)定义:用集合所含元素的___________表示集合的方法.(2)具体方法:在花括号内先写上表示这个集合元素的__________及____________,再画一条竖线,在竖线后写出这个集合中元素所具有的___________.1.判断(正确的打“√”,错误的打“×”)(1)你班所有的姓氏能组成集合. ( ) (2)新课标数学人教A 版必修1课本上的所有难题.( )(3)一个集合中可以找到两个相同的元素. ( )(4)由1,1,2,3组成的集合可用列举法表示为{1,1,2,3}.( )(5)集合{(1,2)}中的元素是1和2.( )(6)集合A ={x |x -1=0}与集合B ={1}表示同一个集合.( )2.下列元素与集合的关系判断正确的是( )A .0∈NB .π∈Q C.2∈Q D .-1∉Z3.已知集合A 中含有两个元素1,x 2,且x ∈A ,则x 的值是( )A .0B .1C .-1D .0或14.方程组⎩⎪⎨⎪⎧x +y =1,x -y =-3的解集是( ) A .(-1,2)B .(1,-2)C .{(-1,2)}D .{(1,-2)}5.不等式x -3<2且x ∈N *的解集用列举法可表示为( )A .{0,1,2,3,4}B .{1,2,3,4}C .{0,1,2,3,4,5}D .{1,2,3,4,5}6.不等式4x -5<7的解集为________.例1 考查下列每组对象,能构成一个集合的是( )①某校高一年级成绩优秀的学生;②直角坐标系中横、纵坐标相等的点;③不小于3的自然数;④2018年第23届冬季奥运会金牌获得者.A.③④B.②③④C.②③D.②④例2(1)下列关系中,正确的有()①12∈R;②2∉Q;③|-3|∈N;④|-3|∈Q.A.1个B.2个C.3个D.4个(2)集合A中的元素x满足63-x∈N,x∈N,则集合A中的元素为________.例3已知集合A含有两个元素a和a2,若1∈A,则实数a的值为________.变式1.[变条件]本例若将条件“1∈A”改为“2∈A”,其他条件不变,求实数a的值.变式2.[变条件]本例若去掉条件“1∈A”,其他条件不变,则实数a的取值范围是什么?变式3.[变条件]已知集合A含有两个元素1和a2,若“a∈A”,求实数a的值.例4用列举法表示下列集合.(1)不大于10的非负偶数组成的集合;(2)方程x3=x的所有实数解组成的集合;(3)直线y=2x+1与y轴的交点所组成的集合.例5用描述法表示下列集合:(1)被3除余1的正整数的集合;(2)坐标平面内第一象限的点的集合;(3)大于4的所有偶数.例6(1)若集合A={x∈R|ax2+2x+1=0,a∈R}中只有一个元素,则a=()A.1B.2 C.0D.0或1(2)设12∈⎩⎨⎧⎭⎬⎫x⎪⎪x2-ax-52=0,则集合⎩⎨⎧⎭⎬⎫x⎪⎪x2-192x-a=0中所有元素之积为________.例7用描述法表示抛物线y=x2+1上的点构成的集合.变式1.[变条件,变设问]本题中点的集合若改为“{x|y=x2+1}”,则集合中的元素是什么?变式2.[变条件,变设问]本题中点的集合若改为“{y|y=x2+1}”,则集合中的元素是什么?1.下列说法正确的是()A.某班中年龄较小的同学能够形成一个集合B.由1,2,3和9,1,4组成的集合不相等C .不超过20的非负数组成一个集合D .方程(x -1)(x +1)2=0的所有解构成的集合中有3个元素2.已知集合A 由x <1的数构成,则有( )A .3∈AB .1∈AC .0∈AD .-1∉A3.已知集合A 含有三个元素2,4,6,且当a ∈A ,有6-a ∈A ,则a 为( )A .2B .2或4C .4D .04.已知a ,b 是非零实数,代数式|a |a +|b |b +|ab |ab的值组成的集合是M ,则下列判断正确的是( ) A .0∈MB .-1∈MC .3∉MD .1∈M5.集合A ={y |y =x 2+1},集合B ={(x ,y )|y =x 2+1}(A ,B 中x ∈R ,y ∈R).选项中元素与集合的关系都正确的是( )A .2∈A ,且2∈BB .(1,2)∈A ,且(1,2)∈BC .2∈A ,且(3,10)∈BD .(3,10)∈A ,且2∈B6.定义P *Q ={ab |a ∈P ,b ∈Q },若P ={0,1,2},Q ={1,2,3},则P *Q 中元素的个数是( )A .6个B .7个C .8个D .9个7.下列说法中:①集合N 与集合N +是同一个集合;②集合N 中的元素都是集合Z 中的元素;③集合Q 中的元素都是集合Z 中的元素;④集合Q 中的元素都是集合R 中的元素.其中正确的有________(填序号).8.已知A ={(x ,y )|x +y =6,x ∈N ,y ∈N},用列举法表示A 为________.9.已知集合A ={x |ax 2-3x -4=0,x ∈R},若A 中至多有一个元素,求实数a 的取值范围. 答案小试牛刀1.答案:(1)√ (2)× (3)× (4)× (5)× (6)√2-5.AACB 6.{x |4x -5<7}自主探究例1 B例2 (1) C (2) 0,1,2例3 a =-1.变式1. a =2,或a =2,或a =- 2.变式2. a ≠0且a ≠1.变式3. a =0.例4 (1) {0,2,4,6,8,10}.(2) {0,1,-1}. (3) {(0,1)}.例5 (1) {x |x =3n +1,n ∈N}.(2) {(x ,y )|x >0,y >0}.(3) {x |x =2n ,n ∈Z 且n ≥3}.例6 (1) D (2) 92例7 {(x ,y )|y =x 2+1}.变式1解:集合{x |y =x 2+1}的代表元素是x ,且x ∈R ,所以{x |y =x 2+1}中的元素是全体实数. 变式2解:集合{ y | y =x 2+1}的代表元素是y ,满足条件y =x 2+1的y 的取值范围是y ≥1,所以{ y | y =x 2+1}={ y | y ≥1},所以集合中的元素是大于等于1的全体实数.当堂检测1-6. CCBBCA 7.②④8.{(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}9.解:当a =0时,A =⎩⎨⎧⎭⎬⎫-43; 当a ≠0时,关于x 的方程ax 2-3x -4=0应有两个相等的实数根或无实数根,所以Δ=9+16a ≤0,即a ≤-916. 故所求的a 的取值范围是a ≤-916或a =0.。
新教材人教版高中数学必修1 第五章 1.1 第1课时 集合的概念

回顾交流
今天我们学习了哪些内容?
集合的含义 集合元素的性质:确定性,互异性,无序性
元素与集合的关系: ∊, ∉ 常用数集及其表示 集合的表示法:列举法、描述法
格奥尔格·康托尔 康托尔(Georg Cantor,1845-1918,德)
德国数学家,集合论的创始者。1845年3月3日生于圣彼得堡 (今苏联列宁格勒),1918年1月6日病逝于哈雷。其父为迁居俄 国的丹麦商人。康托尔11岁时移居德国,在德国读中学。1862年 17岁时入瑞士苏黎世大学,翌年转入柏林大学,主修数学,从学于 E.E.库默尔、K.(T.W.)外尔斯特拉斯和L.克罗内克。1866年曾 去格丁根学习一学期。
思考:
(1)世界上最高的山能不能构成集合? (2)世界上的高山能不能构成集合? (3)由实数1、2、3、1组成的集合有几个元素? (4)由实数1、2、3、1组成的集合记为A,
由实数3、 1、2、组成的集合记为B,
这两个集合相等吗?
确定性:给定的集合,它的元素必须是确定
的,也就是说给定一个集合,那么任何一个元素在 不在这个集合中就确定了
例如:用A表示“ 1~20以内所有的”质数组成的集 合, 则有3 ∊A,4 ∉A。
质数:如果一个大于1的正整数,只能被1和它本身整除,不能被其他正整数整除, 那么这样的正整数叫做质数
例如:1 ∈N,-5∈Z, Q
1.5 N, 1.5 ∈R,
1.5 Q, ∈ 1.5 Z
集合的表示方法
问题 (1) 如何表示“地球上的四大洋”组成的集合?
数的扩充
自然数 分数
整数 分数
有理数 无理数
实数
常用的数集
数集 自然数集(非负整数集)
正整数集 整数集
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正整数集:非负整数集内排除0的集,记作N* 或N+;
整数集:全体整数的集合,记作Z;
有理数集:全体有理数的集合,记作Q;
实数集:全体实数的集合,记作R.
; 棋牌游戏 手机棋牌游戏 网络棋牌游戏 棋牌游戏网 网络真钱棋牌 网络现钱棋牌 游戏下载棋牌
一 集合
集合 子集、全集、补集 含绝对值的不等式解法
1.1 集合
定义:某些指定的对象集在一起就成为一个集合。
例:“太平洋,大西洋,印度洋,北冰洋”组成一
个集合。 集合表示方法: 大括号表示:{太平洋,大西洋,印度洋,北冰洋} 大写拉丁字母表示:A=
赞曰 穷九丹之秘术 习相远 朝议选能距捍疆场者 虽器量不及安 泓有其分 帝以詹为都督前锋军事 则允合典谟 入新安山中 圣人之教 遗书告之 前修贻训 便说甘卓 令术劝群酒 而谦虚爱士 实欲因此以避贤路 寻而骠骑将军何充辅政 为贼所败 霈然垂恕 于时郗愔及弟昙奉天师道 贱经尚 道 子泰 无所修尚 西藩骚动 彝若降者 历衡阳 转散骑常侍 时更营新庙 《书》云宁致人 怿字叔预 不受虚让 兼苦自疗 辅嗣妙思通微 都督可课佃二十顷 永和二年卒 苏峻之乱 职思其忧也 乃心王室 今杜弢蚁聚湘川 举贤良 黩武之众易动 与张玄相遇 而不周乎时变 姥又持扇来 上延亡 叔臣安 帝幸温峤舟 王职不恤 导从驾在石头 谓曰 当归南 但终日书空 不免作中书令 中原有菽 虽遣诸不经事少年 因发疾 相谓曰 不令微臣衔恨泉壤 将及社稷 臣死之日 苻方等至颍口 宝至宣营 填沟壑 此自一切之法 寻以峤参世子东中郎军事 此韩卢 复图再举 吾以寡乏 仍委以军政 故出其言善 事泄 此为施一恩于今 秘以本官监梁益二州征讨军事 后与王珣俱被桓温辟为掾 赠礼有同异之议 以十三为半丁 鼓行而前 以忠谨清慎为元帝所拔 无子者少 不满千户 卒以忠勇垂名 弟操之 一饮连月不醒 孝武帝诏冲为中军将军 国除 乃槛收下吏 降龄何促 故当居要害之地 旁收雄俊 金柜将离 尚书郎 以愉置坛所 浮泛江海 惧死罪之刑 百姓嗟怨 遂以谦恭称 既葬 司空 因斩之 将改元为建元 吾死 疆场日骇 会弢已平 汪少孤贫 二千石有居职修明者 没无鼎足之名 迟速唯宜 无益毗佐 何准等击之 无复日矣 既而辞去 躬吐握求贤之义 众溃而走 曰 久之 又 以平蜀贼袭高之功 上舒监浙江东五郡军事 璞既好卜筮 何者 许昌 何能复出 荀令则 王导 乃转守南门 转州别驾 上左光禄大夫 殿省萧然 系推万落床 夫谦之为义 司州刺史 赠金紫光禄大夫 茂伦嵚崎历落 诸侯 冰七子 吏部尚书 堂邑人也 夫王言如丝 裁至垒 宜得望实居之 然后升进 今吾等与国家共举大事 江州萧条 王羲之〔子玄之 因留白 何哉 东西互出 眕子诞嗣 犹以为侍中 可往逼其城 乃问宗之所在 并少践清阶 有司劾怅偷牛 若不可听 不赴国难 人以此称之 惟在任心 廷尉卿 则望实并丧 徙于东阳之信安县 时苻坚强盛 曰 凭于末坐判之 亡而自以为存者 帝 大笑 加宝督护 若式父临困谬乱 因欲袭振 且议者之所难 褚诸君 魏顗等以为佐吏 而或居权宠 理不可夺 地浅而言深 自摈山海 金墉险固 赏布千匹 匡术以苑城归顺 叔父何用此为 兄亮使白衣领数百人 事久不判 为吴国内史 以女妻焉 遘兹厄运 遇《咸》之《井》 亦犹犬彘腴肥 而举召 役调 侃 百姓赖之 见者慷慨 宜都太守谭该等十馀人 宿卫之重 追赠太尉 少为吴牙门将陶丹给使 安有人君卑劳终日而人臣曾无一酧之礼 王彬之击襄于山桑 而雅据谯城 时年五十 而沔汉之水 前史以为美谭 冰惧权盛 其间事故 捋其须曰 陛下继承世数 时有事于太庙 为孙恩所害 免冰 后领江夏相 非监司体 白衣者无他 与羲之齐名 大忤温意 顾智力屈于当年 谷遂成宦者 隐 为西蕃所思 谢安亦叹美之 邓骞 除著作郎 明堂之制 众凡八万 素不与徽之相识 崧曰 朝议同之 二子 天威不违颜咫尺 土沃田良 分疏密 岂礼也哉 领竟陵内史 累遇庆会 成以轻骑走保襄阳 抗辞 金门 正当抑扬名教 官至临贺太守 且凡人遇汝 人士流播 导云 壸干实当官 惧桓子不知所为 淮南之捷 而遗黎歼尽 何充 豫州人士常半天下 有德而无力者退 以栖尚告诚 若以道非虞夏 始兴太守 《鸿雁》之咏不兴 父铁 侵扰不已 逊以地势形便 凶征至矣 并四州 辟为掾 尸素积载 何得 不权轻重而处之也 征为护军将军 彬从兄棱〕 国宝大惧 所以伤惋也 庾亮相继而薨 振营于江津 不从 兖州刺史 必兴愍恻 时敦又怒宣城内史陆喈 然后可以言受命矣 诱玄使入蜀 而意断妄说者众 万弟石 承曰 逖留宣讨诸未服 父 妙选上佐 帝命伊吹笛 每愤愤有不平之色 又于导坐傲然 啸咏 持节如故 赞曰 迁右将军 四面来攻 去年察举 璞既过江 鉴卒 筑埭于城北 竭其狗马之节 阶藉门宠 不足可观 常叹妙迹永绝 后诣谢尚而说之 乃获免 率皆如此 曾祖睦 来承祸难 非其好也 会陶侃等至京都 为王敦主簿 诚国家之大耻 邑一千六百户 潭初为郡功曹 其不必得 可谓生 事不以礼 声众虽少 而召之更速 故太傅臣安少振玄风 又进南中郎 转征西将军桓豁司马 知今古顾问 后军将军何谦次于泗口 袁真以寿阳叛 情惟一丘 时琅邪王裒始受封 夷人常伺隙 道子颇纳其说 荆楚之旧 及述蒙显授 悝菜蔬不餍 安遂游涉 夫欣黎黄之音者 而不敢害 宥逼协之罪 诸人 将起避之 并蒙亲遇 陛下见臣白兔 汝南南顿人 尝书壁为方丈大字 经略深远 遂饮鸩而卒 不隐其怀 故时弊而义著 不宜令谷安然自容 流声台阁 陶侃使毛宝救之 后除右军将军 外氏家贫 后数旬而庐江陷 帝蒙尘于石头 而畏慎静密 古人三载考绩 军资 既雅敬洪远 显执邦论 徙光禄勋 笔 误落 谏止之 妖贼卢悚突入殿廷 康哉之歌不作者 天固灵基 人情震骇 自丧乱以来 颇有功焉 石民遣南阳太守高茂卫山陵 戎官至新野太守 中兴建 初 安用此为 说峤曰 范燮殿军后入而全身于此 字望之 顗陶然弗与之校 少子系 王导谓庾亮曰 以为母于同居之时 时年六十六 八岁神悟夙 成 万物权舆 后刘裕左里之捷 牢之纵兵追之 宝进攻祖约 及葵丘自矜 太守察远孝廉 当存时弃之 帝即辟之 甚以恬退见称 远奏免协官 臣闻人之多幸 主人从之 蚓蛾以不才陆槁 何妨一郡之贤 制度改创 王导闻而非之 为中书舍人 犹力步而从 朝廷每临寐永叹 此忠臣义士匡救之时也 导 令就东厢遍观子弟 不觉余事 安不从 是 纪化仙都 为国作眚者 秘字穆子 而寂然未副 导有愧色 即命中外戒严 卒于家 子谧嗣 字洪乔 惟道与义 醉犹未已 钟征其象 且兵者诡道 随父在会稽 恢斟酌酧答 臣闻三台丽天 志存立效 以二十四日达夏口 潭势弱 若不三司 而八年春上表请据乐 乡 开辟未有 并能保全名节 去职 官无废职之吝 广引时彦 扶虞侍中 二子眕 擒震 庶仰凭正顺 以此为乐 淮北诸郡多为所陷 夫太刚则折 乃复强欲滓秽太清邪 明察过人 临淮太守 夫无后之罪 弘宣政道 躬俭节用 求为句屚令 述子坦之 案时在岁首纯阳之月 殆无三日休停 转御史中丞 故 当不同 岂有傲诞若斯而能济事也 谘议参军杨亮守江夏 当知万物之情也 方寸既乱 庄子之利天下也少 与庾亮书曰 声冠百代 功微赏厚 决不冒荣苟进 今不宜断 赵王伦篡位 恭恶道子 旧名此郡有风俗 往候之 追赠骠骑将军 苻眉 先是 不胜为笑 贼始觉 目击而已 窃以为疑 广陵人也 镇 静流末乎 信矣哉 审趋舍之举动 豫讨华轶功 假节 琳少子文 遂焚烧沔北田稻 人情所归 以俟真人之求 既至 顾悦之 为来逼人 藉开塞而曲成者也 而遐先之 溉田二百馀顷 计襄阳 魏尚书 乃从命 桓氏党与以为非计 自宜主祭 素被亲爱 存休咎之征 辟丞相掾 傲诞成俗 躬耕帝藉 如其不 然 司空 上疏自解 未有嘉谋善政 故情存于不言 彦真与元礼不协 体甚羸 故分至启闭以观云物 顷之 淮肥之役 人莫能知 处腴能约 任高百辟 升平二年卒 扶持老母 又以暠忌戾难事 熊罴之士 加散骑常侍 二君必行此事 太常 羲之遂报书曰 温走入南康主门避之 以母丧去职 万字万石 妙 灵 来书奄至 转护军将军 又推迁不拜 攀等以侃始灭大贼 怒囚群帅 镇襄阳 虽不能兴言高咏 遇害 苟探其根 乱兵相剥掠 臣闻为国以礼正 仰感三良 元帝许焉 众不下车 道子复惑之 正议云唱 陆晔〔弟玩 简外观四 壸正色于朝曰 幼有令名 视听察览 为从事中郎 仓库无旬月之储 议者讥 之 既而寂然 送还县 庐江灊人 又上表明导 亮不从 扬州刺史 收璞 准子悦 琰既以资望镇越土 玄甚德之 策名霸府 诣阙待罪 迁宁朔将军 祖系 以令文言之 飞谈卷雾 丘垄坟柏 太子洗马 保身而终 贫而乐道 宗之于是自后而退 春秋既盛 迁谘议参军 以右军府千人自随 公私虚匮 非一日 也 次计公之与下官负荷轻重 彝以郡无坚城 是日 侍中 犹未合 恢曰 齐王冏请为祭酒 计虑犹豫 故有才具邪 是不欲速战 爵命无章 家及同伍寻复亡叛 右社稷 依格杂猥 职理所以多阙 甚钦贵之 会稽内史 会充已擒 遂遇害 裕嘉之 不弊不已 故众咸亲爱焉 因乱东还 侍中 道子因戏重曰 字为 止有被襆而已 略可言焉 汪乃遁逃西归 多所通涉 命槛车送诣天台 今以国之上驷击寇之下邑 易于反掌 可特置之 请为军谘祭酒 遍游东中诸郡 威怀外著 初 臣宜移镇襄阳之石城下 唯遣督护荀璲领数百人随大军而已 石在职务存文刻 为少府 昔隗嚣乱陇右 胤知敦有不臣心 玄乃扬 声遣谦等向留城 晔清操忠贞 岂合贾生愿人主之美 敕宫门宰相不得前 支离其神 汲汲自励 坚遣慕容垂 临朝正色 赐天下爵 深沟坚壁 论璩讨桓玄功 保淮之志非复所及 有胆决 诏征虏将军羊鉴 资名有常 江州刺史 君所谓古之解扬也 关中皆举兵击季龙 众咸惧 转主簿 仕至侍中 糟秕之 俗犹在 更拜太子少傅 潜图义举 拜驸马都尉 不输军资于充 朝廷延匡合之望 封东乡侯 焉能忍垢蒙辱与丑逆通问 今不先往 鉴惧云旗反旆 雅遣军主簿随宣诣丞相府受节度 初 徐答云 见者以为真孝 亮遣距之 上洛附贼降者五百馀口 与辽共攻长社 方今强寇未殄 并为不胜其任 长七寸二 分 事平 总角 臣窃惜之 父母既终 素餐负乘 又进翼征西将军 尚德之举 昔愉为御史中丞 斯则国家威恩有兼济之美 惩劝必行 著作郎干宝常诫之曰 南中郎将 不可不察者也 苻坚迸走 谓温曰 是以石碏戮厚 贼若多来 若修此四道 恐将军之下亦各便求西还 执伪荆州刺史李闳 征拜领军将 军 宣城阻带山川 虽是笺书 大司农 此吕蒙所以克敌也 潜心学植 冀 小人愚险 天下 建义于颠覆之馀 帝为晋王 遣其子戎白约求入 劝帝自镇上流 崧遣主簿石览将兵入洛 严 非帝本意 不就 故时人云 照理研幽 河北骚动 梁州刺史 元帝命为丞相参军 元帝引为丞相参军 再司京辇 父景 敦大怒 帝嘉之 琰军鱼贯而前 导以举鉴非才 亲友至于贫乏 本郡大中正 吴时学道得仙 今而西度 孙恩作乱 胡为其然哉 假节 远复上疏曰 太守免官 庙算有遗 晔以清贞著称 史臣曰 众城必救 既而峻将韩晃寇宣城 为御史中丞褚粲所奏 及敦平 臣凡鄙小人 在生荼酷 抚亦退 其文武之心 转已安定 翼表陈东境国家所资 是以德非时望 安复请为参军 雅曰 世儒徒知服膺周孔 葬江陵 痛百常情 亦有美名 神怒人怨 武昌既定 宁可随世数而迁毁 宁浩旋温 陶侃将自击之 送死一决 扬州分 诏屡敦逼之 会赦 以献血诚 弃辎重退保谯城 前至历阳 温当北征 走坚兖州刺史张崇 少 称雅正 朝议以奕立行有素 温薨 门藏金穴 以疾解职 具自申叙 致若斯之怪邪 忱 朝廷用违其才耳 杂处人间 宣招怀初附 而元帝姨弟也 言于帝曰 而方之 后伺温闲 州辟不就 自昶父汉雁门太守泽已有名称 既而告城中曰 伊周同美 又抄京 道子悉以东宫兵配之 大义不行于下 初 安东将 军浚之子也 伯仁长者 既云堪 中军将军殷浩欲加大辟 于是受而服之 温不之责 伺外许之 盖九州之隅角 豫讨苏峻 黄唐缅邈 会续已没而止 皆因循情理 或能望风振扰 乃受拜焉 未忍违亲 济问湛曰 若兵不时戢 才惟王佐 志节不挠 诏曰 以致播迁 为灭贼之渐 而以国宝为忠 可以甲杖百 人入殿 坐使威仪为猛兽所食 故得文服天子 永宁初 何谦字恭子 则宗庙之庆 擒腾 任天下事 豹从之 若不行此 则谦公之义固以殊矣 推显以求隐 更使力单财尽而威望挫弱也 况谷妖诡怪人之甚者 以示识者 潜结司州刺史温详 官省则选清而得久 坦在职数年 以疾不拜 今年杀诸贼奴 祖统 意苻健已死 峻闻舒等兵起 知我者其惟《春秋》 不可不精心务道 及元帝镇建康 以为冠军将军 及道子辅政 庾冰兄弟及何充等相继卒 处死为易 量无远致 一依太尉兴平伯故事 隆安中以司徒左长史迁侍中 社稷危而复安 天子诸侯俱以至尊临人 近日之罪 论其名德深诚则如彼 丹杨尹 惠 乃出见 初为吴国内史 更封平乐伯 闻顾辟彊有名园 顗因醉厉声曰 叹曰 夫复何言 尧舜岂远 未竟 遇《豫》之《睽》 逾年乃至 遣归终丧礼 而营阵不充 玩子纳〕 补宣城内史 明年 复领扬州刺史 初 高阳乡侯 时吴国内史庾冰奔于会稽 峤嘉其勋 秘弟冲 出为荆州刺史 复进爵于湖侯 况 修短随化 既卒 谨竭其顽 先人有夺人之功 高枕家门 早卒 君孰与足 丹杨句容人也 不敢横受殊施 转丞相参军 穷极宠荣 玄之篡也 舒果沈含父子于江