深度与广度优先搜索:迷宫问题

合集下载

迷宫问题算法

迷宫问题算法

迷宫问题算法一、引言迷宫问题是一个经典的算法问题,对于寻找路径的算法有着广泛的应用。

迷宫是一个由通路和墙壁组成的结构,从起点出发,要找到通往终点的路径。

迷宫问题算法主要解决的是如何找到一条从起点到终点的最短路径。

二、DFS(深度优先搜索)算法深度优先搜索算法是迷宫问题求解中最常用的算法之一。

其基本思想是从起点开始,沿着一个方向不断向前走,当走到无法继续前进的位置时,回退到上一个位置,选择另一个方向继续前进,直到找到终点或者无路可走为止。

1. 算法步骤1.初始化一个空栈,并将起点入栈。

2.当栈不为空时,取出栈顶元素作为当前位置。

3.如果当前位置是终点,则返回找到的路径。

4.如果当前位置是墙壁或者已经访问过的位置,则回退到上一个位置。

5.如果当前位置是通路且未访问过,则将其加入路径中,并将其邻居位置入栈。

6.重复步骤2-5,直到找到终点或者栈为空。

2. 算法实现伪代码以下为DFS算法的实现伪代码:procedure DFS(maze, start, end):stack := empty stackpath := empty listvisited := empty setstack.push(start)while stack is not empty docurrent := stack.pop()if current == end thenreturn pathif current is wall or visited.contains(current) thencontinuepath.append(current)visited.add(current)for each neighbor in getNeighbors(current) dostack.push(neighbor)return "No path found"三、BFS(广度优先搜索)算法广度优先搜索算法也是解决迷宫问题的常用算法之一。

y迷宫计算公式

y迷宫计算公式

y迷宫计算公式迷宫计算公式是指用于求解迷宫路径的数学模型或算法。

迷宫是由通道和阻塞区域构成的一种图形结构,求解迷宫路径即是要找到从起点到终点的通行路径。

迷宫计算公式有很多种,下面是其中几种常见的算法。

1. 深度优先搜索算法(DFS):深度优先搜索算法是一种经典的求解迷宫路径的算法。

它通过递归的方式深入搜索迷宫中的每一个可能的路径,直到找到终点或者无法继续深入为止。

算法步骤:(1)选择起点,并将其标记为已访问。

(2)按照上、右、下、左的顺序依次尝试访问相邻的格子,如果格子是通道且未访问过,则继续递归地进行搜索。

(3)如果找到终点,则输出路径;否则,回退到上一步。

(4)重复上述步骤,直到找到终点或者无法继续搜索。

2. 广度优先搜索算法(BFS):广度优先搜索算法是一种另外一种常用的求解迷宫路径的算法。

它是通过逐层地扩展搜索范围来寻找终点的方法。

算法步骤:(1)选择起点,并将其标记为已访问。

(2)将起点加入队列。

(3)重复以下步骤直到找到终点或者队列为空:- 从队列中取出一个格子;- 按照上、右、下、左的顺序依次尝试访问相邻的格子;- 如果格子是通道且未访问过,则将其标记为已访问,并将其加入队列。

(4)如果找到终点,则输出路径;否则,说明没有可行的路径。

3. A*算法:A*算法是一种启发式搜索算法,它使用一个估计函数来评估每个格子的优先级,从而选择下一个扩展的格子。

算法步骤:(1)初始化起点,并将其加入开放列表(open list)。

(2)重复以下步骤直到找到终点或者开放列表为空:- 从开放列表中选择优先级最高的格子,并将其从开放列表中移除。

- 如果选择的格子是终点,则输出路径。

- 否则,对其所有相邻的可通行格子进行以下操作:* 如果格子不在开放列表中,则将其加入开放列表,并计算该格子的估计值和移动代价。

* 如果格子已经在开放列表中,并且新的移动路径更短,则更新该格子的估计值和移动代价。

(3)如果开放列表为空,说明没有可行的路径。

数据结构程序设计(迷宫问题)

数据结构程序设计(迷宫问题)

数据结构程序设计(迷宫问题)数据结构程序设计(迷宫问题)一、引言迷宫问题是计算机科学中常见的问题之一,它涉及到了数据结构的设计和算法的实现。

本文将介绍迷宫问题的定义、常见的解决算法和程序设计思路。

二、问题定义迷宫问题可以描述为:给定一个迷宫,迷宫由若干个连通的格子组成,其中有些格子是墙壁,有些格子是路径。

任务是找到一条从迷宫的起点(通常是左上角)到终点(通常是右下角)的路径。

三、基本数据结构1.迷宫表示:迷宫可以使用二维数组来表示,数组中的每个元素代表一个格子,可以用0表示路径,用1表示墙壁。

2.坐标表示:可以使用二维坐标表示迷宫中的每一个格子,使用(x, y)的形式表示。

四、算法设计1.深度优先搜索算法:深度优先搜索算法可以用来解决迷宫问题。

算法从起点开始,尝试向四个方向中的一个方向前进,如果可以移动则继续向前,直到到达终点或无法继续移动。

如果无法继续移动,则回溯到上一个节点,选择另一个方向继续搜索,直到找到一条路径或者所有路径都已经探索完毕。

2.广度优先搜索算法:广度优先搜索算法也可以用来解决迷宫问题。

算法从起点开始,先将起点加入队列,然后不断从队列中取出节点,并尝试向四个方向中的一个方向移动,将新的节点加入队列。

直到找到终点或者队列为空,如果队列为空则表示无法找到路径。

五、程序设计思路1.深度优先搜索算法实现思路:a) 使用递归函数来实现深度优先搜索算法,参数为当前节点的坐标和迷宫数据结构。

b) 判断当前节点是否为终点,如果是则返回成功。

c) 判断当前节点是否为墙壁或已访问过的节点,如果是则返回失败。

d) 将当前节点标记为已访问。

e) 递归调用四个方向,如果存在一条路径则返回成功。

f) 如果四个方向都无法找到路径,则将当前节点重新标记为未访问,并返回失败。

2.广度优先搜索算法实现思路:a) 使用队列保存待访问的节点。

b) 将起点加入队列,并标记为已访问。

c) 不断从队列中取出节点,尝试向四个方向移动,如果新的节点未被访问过且不是墙壁,则将新的节点加入队列,并标记为已访问。

迷宫问题求解算法设计实验报告

迷宫问题求解算法设计实验报告

迷宫问题求解算法设计实验报告一、引言迷宫问题一直是计算机科学中的一个经典问题,其解决方法也一直是研究者们探讨的重点之一。

本实验旨在通过设计不同的算法,对迷宫问题进行求解,并对比不同算法的效率和优缺点。

二、算法设计1. 暴力搜索算法暴力搜索算法是最简单直接的求解迷宫问题的方法。

其基本思路是从起点开始,按照某种规则依次尝试所有可能的路径,直到找到终点或所有路径都被尝试过为止。

2. 广度优先搜索算法广度优先搜索算法也称为BFS(Breadth First Search),其基本思路是从起点开始,按照层次依次遍历每个节点,并将其相邻节点加入队列中。

当找到终点时,即可得到最短路径。

3. 深度优先搜索算法深度优先搜索算法也称为DFS(Depth First Search),其基本思路是从起点开始,沿着某一个方向走到底,再回溯到上一个节点继续向其他方向探索。

当找到终点时,即可得到一条路径。

4. A* 算法A* 算法是一种启发式搜索算法,其基本思路是综合考虑节点到起点的距离和节点到终点的距离,选择最优的路径。

具体实现中,可以使用估价函数来计算每个节点到终点的距离,并将其加入优先队列中。

三、实验过程本实验使用 Python 语言编写程序,在不同算法下对迷宫问题进行求解。

1. 数据准备首先需要准备迷宫数据,可以手动输入或从文件中读取。

本实验使用二维数组表示迷宫,其中 0 表示墙壁,1 表示路径。

起点和终点分别用 S 和 E 表示。

2. 暴力搜索算法暴力搜索算法比较简单直接,只需要按照某种规则遍历所有可能的路径即可。

具体实现中,可以使用递归函数来实现深度遍历。

3. 广度优先搜索算法广度优先搜索算法需要使用队列来存储待遍历的节点。

具体实现中,每次从队列中取出一个节点,并将其相邻节点加入队列中。

4. 深度优先搜索算法深度优先搜索算法也需要使用递归函数来实现深度遍历。

具体实现中,在回溯时需要将已经访问过的节点标记为已访问,防止重复访问。

迷宫求解实验报告

迷宫求解实验报告

迷宫求解实验报告迷宫求解实验报告引言:迷宫作为一种经典的智力游戏,一直以来都备受人们的喜爱。

在这个实验中,我们尝试使用计算机算法来解决迷宫问题。

通过设计并实现一个迷宫求解程序,我们将探索不同的算法和策略,以找到最佳路径解决迷宫。

实验设计:我们首先定义了迷宫的基本结构。

迷宫由一个二维矩阵表示,其中0代表通路,1代表墙壁。

我们使用了一个常见的5x5迷宫作为实验样本,其中包括了起点和终点。

接下来,我们尝试了两种不同的算法来解决迷宫问题。

算法一:深度优先搜索(DFS)深度优先搜索是一种常见的图搜索算法,在解决迷宫问题中也有广泛的应用。

该算法从起点开始,沿着一个路径一直向前探索,直到遇到死路或者到达终点。

如果遇到死路,则回溯到上一个节点,继续探索其他路径,直到找到一条通往终点的路径。

我们实现了一个递归函数来实现深度优先搜索算法。

通过不断调用该函数,我们可以找到一条从起点到终点的路径。

然而,由于深度优先搜索的特性,它并不能保证找到最短路径。

在我们的实验中,深度优先搜索找到的路径长度为8步。

算法二:广度优先搜索(BFS)广度优先搜索是另一种常见的图搜索算法,与深度优先搜索不同的是,它优先探索所有的相邻节点,再逐层向外扩展。

在解决迷宫问题时,广度优先搜索可以保证找到最短路径。

我们使用了一个队列数据结构来实现广度优先搜索算法。

通过不断将相邻节点加入队列,并记录每个节点的前驱节点,我们可以在找到终点后,追溯回起点,从而找到最短路径。

在我们的实验中,广度优先搜索找到的路径长度为6步。

实验结果:通过对比深度优先搜索和广度优先搜索的结果,我们可以看出广度优先搜索算法在解决迷宫问题时更加高效。

虽然深度优先搜索算法可以找到一条路径,但它并不能保证是最短路径。

而广度优先搜索算法通过逐层扩展的方式,可以保证找到的路径是最短的。

讨论与总结:通过这个实验,我们不仅学习了迷宫求解的基本算法,还深入了解了深度优先搜索和广度优先搜索的原理和应用。

广度优先和深度优先的例子

广度优先和深度优先的例子

广度优先和深度优先的例子广度优先搜索(BFS)和深度优先搜索(DFS)是图遍历中常用的两种算法。

它们在解决许多问题时都能提供有效的解决方案。

本文将分别介绍广度优先搜索和深度优先搜索,并给出各自的应用例子。

一、广度优先搜索(BFS)广度优先搜索是一种遍历或搜索图的算法,它从起始节点开始,逐层扩展,先访问起始节点的所有邻居节点,再依次访问其邻居节点的邻居节点,直到遍历完所有节点或找到目标节点。

例子1:迷宫问题假设有一个迷宫,迷宫中有多个房间,每个房间有四个相邻的房间:上、下、左、右。

现在我们需要找到从起始房间到目标房间的最短路径。

可以使用广度优先搜索算法来解决这个问题。

例子2:社交网络中的好友推荐在社交网络中,我们希望给用户推荐可能认识的新朋友。

可以使用广度优先搜索算法从用户的好友列表开始,逐层扩展,找到可能认识的新朋友。

例子3:网页爬虫网页爬虫是搜索引擎抓取网页的重要工具。

爬虫可以使用广度优先搜索算法从一个网页开始,逐层扩展,找到所有相关的网页并进行抓取。

例子4:图的最短路径在图中,我们希望找到两个节点之间的最短路径。

可以使用广度优先搜索算法从起始节点开始,逐层扩展,直到找到目标节点。

例子5:推荐系统在推荐系统中,我们希望给用户推荐可能感兴趣的物品。

可以使用广度优先搜索算法从用户喜欢的物品开始,逐层扩展,找到可能感兴趣的其他物品。

二、深度优先搜索(DFS)深度优先搜索是一种遍历或搜索图的算法,它从起始节点开始,沿着一条路径一直走到底,直到不能再继续下去为止,然后回溯到上一个节点,继续探索其他路径。

例子1:二叉树的遍历在二叉树中,深度优先搜索算法可以用来实现前序遍历、中序遍历和后序遍历。

通过深度优先搜索算法,我们可以按照不同的遍历顺序找到二叉树中所有节点。

例子2:回溯算法回溯算法是一种通过深度优先搜索的方式,在问题的解空间中搜索所有可能的解的算法。

回溯算法常用于解决组合问题、排列问题和子集问题。

例子3:拓扑排序拓扑排序是一种对有向无环图(DAG)进行排序的算法。

深度优先搜索(深搜)——DeepFirstSearch【例题:迷宫】

深度优先搜索(深搜)——DeepFirstSearch【例题:迷宫】

深度优先搜索(深搜)——DeepFirstSearch【例题:迷宫】深度优先搜索 基本思想:先选择⼀种可能情况向前探索,在探索过程中,⼀点那发现原来的选择是错误的,就退回⼀步重新选择,继续向前探索,(回溯)反复进⾏。

【例题】迷宫问题思路:先随意选择⼀个⽅向,⼀步步向前试探,如果碰到死胡同说明该前进⽅向已经⽆路可⾛,这时⾸先看别的⽅向还是否有路可⾛,若有路可⾛,则该⽅向再次向前试探,若没有,则退回上⼀步,再看其他⽅向是否有路可⾛,,按此原则不断回溯和探索,知道找到⼊⼝为⽌。

框架:int search(int ......){for(i=1;i<=⽅向总数;i++)if(满⾜条件){保存结果;if(到达⽬的地)输出解;else search(k+1);恢复:保存结果之前的状态{回溯⼀步};}}具体代码实现如下:#include<iostream>#include<cstdio>#include<cstring>#define MAXN 20using namespace std;int map[MAXN][MAXN];//表⽰迷宫地图bool temp[MAXN][MAXN];//标记是否⾛过int dx[4]={0,0,1,-1};//横坐标的上下左右int dy[4]={-1,1,0,0};//纵坐标的上下左右int m,n,total,sx,sy,fx,fy,l,r,t;//m,n:地图的长宽,total:⽅案总数,sx,sy起点的横纵坐标,fx,fy:终点的横纵坐标,t:障碍总数,l,r:障碍坐标void search(int x,int y)//x,y:现在所在的点的坐标{if(x==fx&&y==fy)//到达终点{total++;//⽅案总数return; //返回继续寻找}for(int i=0;i<=3;i++)if(temp[x+dx[i]][y+dy[i]]==0&&map[x+dx[i]][y+dy[i]]==1)//判断下⾯要⾛的路是否有障碍if(x+dx[i]>=1&&y+dy[i]>=1&&x+dx[i]<=n&&y+dy[i]<=m)//判断是否超越迷宫边界{temp[x+dx[i]][y+dy[i]]=1;search(x+dx[i],y+dy[i]);temp[x+dx[i]][y+dy[i]]=0;//回溯⼀步}}int main(){cin>>n>>m>>t;for(int i=1;i<=n;i++)for(int j=1;j<=m;j++)map[i][j]=1;cin>>sx>>sy;cin>>fx>>fy;for(int i=1;i<=t;i++){cin>>l>>r;map[l][r]=0;}map[sx][sy]=0; search(sx,sy); printf("%d",total); return0;}。

栈和队列的应用——迷宫问题(深度、广度优先搜索)

栈和队列的应用——迷宫问题(深度、广度优先搜索)

栈和队列的应⽤——迷宫问题(深度、⼴度优先搜索)⼀、迷宫问题 给⼀个⼆维列表,表⽰迷宫(0表⽰通道,1表⽰围墙)。

给出算法,求⼀条⾛出迷宫的路径。

maze = [[1,1,1,1,1,1,1,1,1,1],[1,0,0,1,0,0,0,1,0,1],[1,0,0,1,0,0,0,1,0,1],[1,0,0,0,0,1,1,0,0,1],[1,0,1,1,1,0,0,0,0,1],[1,0,0,0,1,0,0,0,0,1],[1,0,1,0,0,0,1,0,0,1],[1,0,1,1,1,0,1,1,0,1],[1,1,0,0,0,0,0,0,0,1],[1,1,1,1,1,1,1,1,1,1]] 1代表墙,0代表路,图⽰如下:⼆、栈——深度优先搜索 应⽤栈解决迷宫问题,叫做深度优先搜索(⼀条路⾛到⿊),也叫做回溯法。

1、⽤栈解决的思路 思路:从上⼀个节点开始,任意找下⼀个能⾛的点,当找不到能⾛的点时,退回上⼀个点寻找是否有其他⽅向的点。

使⽤栈存储当前路径。

后进先出,⽅便回退到上⼀个点。

2、⽤栈代码实现maze = [[1,1,1,1,1,1,1,1,1,1],[1,0,0,1,0,0,0,1,0,1],[1,0,0,1,0,0,0,1,0,1],[1,0,0,0,0,1,1,0,0,1],[1,0,1,1,1,0,0,0,0,1],[1,0,0,0,1,0,0,0,0,1],[1,0,1,0,0,0,1,0,0,1],[1,0,1,1,1,0,1,1,0,1],[1,1,0,0,0,0,0,0,0,1],[1,1,1,1,1,1,1,1,1,1]]# 四个移动⽅向dirs = [lambda x,y: (x+1, y), # 下lambda x,y: (x-1, y), # 上lambda x,y: (x, y-1), # 左lambda x,y: (x, y+1) # 右]def maze_path(x1, y1, x2, y2): # (x1,y1)代表起点;(x2,y2)代表终点stack = []stack.append((x1, y1))while(len(stack)>0):curNode = stack[-1] # 当前的节点(栈顶)if curNode[0] ==x2 and curNode[1] == y2: # 判断是否⾛到终点# ⾛到终点,遍历栈输出路线for p in stack:print(p)return True"""搜索四个⽅向"""for dir in dirs:nextNode = dir(curNode[0], curNode[1])# 如果下⼀个阶段能⾛if maze[nextNode[0]][nextNode[1]] == 0:stack.append(nextNode) # 将节点加⼊栈maze[nextNode[0]][nextNode[1]] = 2 # 将⾛过的这个节点标记为2表⽰已经⾛过了break # 找到⼀个能⾛的点就不再遍历四个⽅向else:# ⼀个都找不到,将该位置标记并该回退maze[nextNode[0]][nextNode[1]] = 2stack.pop()else:print("没有路")return Falsemaze_path(1,1,8,8)"""(1, 1) (2, 1) (3, 1) (4, 1) (5, 1) (5, 2) (5, 3) (6, 3) (6, 4)(6, 5) (7, 5) (8, 5) (8, 6) (8, 7) (8, 8)""" 总结算法就是:创建⼀个空栈,⾸先将⼊⼝位置进栈。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数据结构课程设计》报告题目:深度与广度优先搜索--迷宫问题专业计算机科学与技术学生姓名李柏班级B计算机115学号1110704512指导教师巩永旺完成日期2013年1月11日目录1简介 (1)2算法说明 (1)3测试结果 (3)4分析与探讨 (7)5小结 (9)附录 (10)附录1 源程序清单 (10)迷宫问题1 简介1、图的存储结构图的存储结构又称图的表示,其最常用的方法是邻接矩阵和邻接表。

无论采用什么存储方式,其目标总是相同的,既不仅要存储图中各个顶点的信息,同时还要存储顶点之间的所有关系。

2、图的遍历图的遍历就是从指定的某个顶点(称其为初始点)出发,按照一定的搜索方法对图中的所有顶点各做一次访问过程。

根据搜索方法不同,遍历一般分为深度优先搜索遍历和广度优先搜索遍历。

本实验中用到的是广度优先搜索遍历。

即首先访问初始点v i,并将其标记为已访问过,接着访问v i的所有未被访问过的邻接点,顺序任意,并均标记为已访问过,以此类推,直到图中所有和初始点v i有路径相通的顶点都被访问过为止。

鉴于广度优先搜索是将所有路径同时按照顺序遍历,直到遍历出迷宫出口,生成的路径为最短路径。

因此我们采用了广度优先搜索。

无论是深度优先搜索还是广度优先搜索,其本质都是将图的二维顶点结构线性化的过程,并将当前顶点相邻的未被访问的顶点作为下一个顶点。

广度优先搜索采用队列作为数据结构。

本实验的目的是设计一个程序,实现手动或者自动生成一个n×m矩阵的迷宫,寻找一条从入口点到出口点的通路。

具体实验内容如下:选择手动或者自动生成一个n×m的迷宫,将迷宫的左上角作入口,右下角作出口,设“0”为通路,“1”为墙,即无法穿越。

假设一只老鼠从起点出发,目的为右下角终点,可向“上、下、左、右、左上、左下、右上、右下”8个方向行走。

如果迷宫可以走通,则用“■”代表“1”,用“□”代表“0”,用“☆”代表行走迷宫的路径。

输出迷宫原型图、迷宫路线图以及迷宫行走路径。

如果迷宫为死迷宫,则只输出迷宫原型图。

2算法说明迷宫中存在通路和障碍,为了方便迷宫的创建,可用0表示通路,用1表示障碍,这样迷宫就可以用0、1矩阵来描述。

设置迷宫的长为n、宽为m,范围为49×49,用int maze[N+2][M+2]来表示,这样相当于在迷宫外层包了一层1,即防止搜索路径时跳出迷宫。

(1)手动生成迷宫void hand_maze(int m,int n) //手动生成迷宫{int i,j;for(i=0;i<m;i++)for(j=0;j<n;j++){cin>>maze[i][j];}}(2)自动生成迷宫void automatic_maze(int m,int n) //自动生成迷宫{int i,j;for(i=0;i<m;i++)for(j=0;j<n;j++)maze[i][j]=rand()%2; //随机生成0、1maze[0][0]=0; //将开始和结束位置强制为0,保证有可能出来迷宫maze[m-1][n-1]=0;}2、迷宫路径的搜索在生成的0、1矩阵迷宫中,首先从迷宫的入口开始,如果该位置就是迷宫出口,则已经找到了一条路径,搜索工作结束。

否则搜索其北(-1,0),东北(-1,1),东(0,1),东南(1,1),南(1,0),西南(1,-1),西(0,-1),西北(-1,-1)8个方向位,是否是障碍,若不是障碍,就移动到该位置,然后再从该位置开始搜索通往出口的路径;若是障碍就选择另一个相邻的位置,并从它开始搜索路径。

为防止搜索重复出现,则将已搜索过的位置标记为2,同时保留搜索痕迹,在考虑进入下一个位置搜索之前,将当前位置保存在一个队列中,如果所有相邻的非障碍位置均被搜索过,且未找到通往出口的路径,则表明不存在从入口到出口的路径。

这实现的是广度优先遍历的算法,如果找到路径,则为最短路径。

逆序输出路径,将已输出的路径标记为3。

实验数据如下:Name dir Move[dir].vert Move[dir].horiz N 0 -1 0NE 1 -1 1E 2 0 1SE 3 1 1S 4 1 0SW 5 1 -1W 6 0 -1NW 6 0 -13测试结果图1图2图3图4图5图6图74分析与探讨首先明确题目中的已知条件:(1)迷宫是一个8*8大小的矩阵。

(2)从迷宫的左上角进入,右下角为迷宫的终点。

(3)maze[i][j]=0代表第i+1行第j+1列的点是通路;maze[i][j]=1代表该点是墙,无法通行。

(4)迷宫有两种生成方式:手工设定和自动生成。

(5)当老鼠处于迷宫中某一点的位置上,它可以向8个方向前进,分别是:“上、下、左、右、左上、左下、右上、右下”8个方向。

(6)要实现这个程序,首先要考虑如何表示这个迷宫。

在实例程序中使用二维数组maze[N+2][N+2]来表示这个迷宫,其中N为迷宫的行、列数。

当值为“0”时表示该点是通路,当值为“1”时表示该点是墙。

老鼠在迷宫的位置在任何时候都可以由行号row和列号cool表示。

(7)为什么指定: maze[N+2][N+2]来表示迷宫,而不是使用maze[N][N]来表示迷宫?原因是当老鼠跑到了迷宫的边界点时就有可能跳出迷宫,而使用maze[N+2][N+2]就可以把迷宫的外边再包一层“1”,这样就能阻止老鼠走出格。

(8)老鼠在每一点都有8种方向可以走,分别是:North,NorthEast,East,SouthEast,South,SouthWest,West,NorthWest。

可以用数组move[8]来表示每一个方向上的横纵坐标的偏移量,见表3.1。

根据这个数组,就很容易计算出沿某个方向行走后的下一个点的坐标。

方向move的偏移量迷宫问题可以用深度优先搜索方法实现。

当老鼠在迷宫中移动的时候,可能会有许多种移动选择方向。

程序需要记录并用栈来保存当前点的坐标,然后任意选择一个方向进行移动。

由于应用栈保存了当前通道上各点的坐标,所以当在当前各方向上都走不通时可以返回上一个点,然后选择另一个方向前进。

可定义element结构用于存储每一步的横纵坐标和方向。

typedef struct{short int row;short int col;short int dir;}element;Element stack[MAX _STACK_SIZE];根据表3.1可推算出每次移动后的坐标。

设当前的坐标是(row,col),移动的方向是dir,移动后的点是next,则有next_row=row+move[dir].vert;next_col=col+move[dir].horiz;可用另一个二维数组mark[N+2]来记录哪些点已经被访问过。

当经过点maze[row][col]时,相应地将mark[row][col]的值从0置为1。

本程序支持自动生成迷宫。

利用random(2)函数可随机产生0或1,来支持迷宫的自动生成。

注意maze[N][N]和maze[1][1]一定要等于0,因为他们分别是起点和终点。

如果找到了一条走出迷宫的路径,则需要在屏幕中打印出如图3.5所示格式的信息。

这里要用到graphics.h即TC中的图形库(注意:本程序是TC上的实现,而VC++有自己的图形库,所以使用VC++编译提示错误)。

针对图3.5,可使用circle ()函数画圆,outtexttxy()函数标记文字,并用line()函数来划线。

程序的主要函数如下:●函数void add(int*top,element item),将当前步的信息item压入到作为全局变量的栈stack(栈顶为top)中。

●函数element delete(int * top),返回stack中栈顶的元素。

●函数void path(void),采用深度优先搜索算法,首先取出栈顶元素作为当前点选择一个方向前进到下一个点(如果能走得话);然后,将下一个点压入栈,并将二维数组mark中对应的值改为1,表示该点已经走到了。

反复执行上面两步,当走到一个点不能再走下去了(已经尝试了各个方向并失败),并且这个点不是终点,则这个点的上一个点会从栈中被跑抛出,从而“回朔”到上一点;当遇到终点时,程序结束,找到一条路径;当在程序循环过程中遇到栈为空,则说明该迷宫根本无法走到终点。

5小结为期一个星期的数据结构课程设计快结束了,这使我对深度和广度优先搜索有了更加深刻的理解和认识。

我们团队负责的迷宫问题的课程设计就是充分的利用深度和广度优先搜索的有关知识,主要运用的是广度优先搜索遍历。

(1)深度优先搜索遍历:深度优先搜索是一个递归过程。

首先访问一个顶点Vi并将其标记为已访问过,然后从Vi的任意一个未被访问的邻接点出发进行深度优先搜索遍历。

如此执行,当Vi的所有邻接点均被访问过时,则退回到上一个顶点Vk,从Vk的另一未被访问过的邻接点出发进行深度优先搜索遍历。

如此执行,直到退回到初始点并且没有未被访问过的邻接点为止。

(2)广度优先搜索遍历:广度优先搜索过程为:首先访问初始点Vi,并将其标记为已访问过,接着访问Vi的所有未被访问过的邻接点,其访问顺序可以任意,假定依次为Vi1、Vi2,…Vin,并标记为已访问过,然后按照Vi1、Vi2,…Vin的次序访问每一个顶点的所有未被访问过的邻接点,并均标记为已访问过,依次类推,直到图中所有和初始点Vi有路径相通的顶点都被访问过为止。

在设计迷宫问题时要考虑使用二维数组,在数组中我们选择maze[N+2][N+2]来表示迷宫,而不是用maze[N][N]来表示,这样就可以避免老鼠走迷宫会出格。

通过这一个星期的学习实践,我更加深层次的了解了关于数据结构的相关知识,也越来越发现自己对数据结构方面知识的欠缺,使我对自己所学得的知识有了一个深刻的理解,对于这方面的知识,我还缺少很多,纸上得来终觉浅,再强大的理论也要通过实践来证明。

在今后的学习中我要多练习,做一个专业的计算机学生。

参考文献[1] 刘振安,刘燕君.C程序设计课程设计[M].[北京]机械工业出版社,2004年9月[2] 谭浩强.C程序设计(第三版).清华大学出版社,2005年7月[3] 严蔚敏,吴伟民.数据结构(C语言版).清华大学出版社,1997年4月[4] 李志球《实用C语言程序设计教程》北京:电子工业出版社,1999[5] 王立柱:C/C++与数据结构北京:清华大学出版社,2002[6] 吴文虎《程序设计基础》北京:清华大学出版社,2003[7] 郭福顺,王晓芬,李莲治《数据结构》(修订本),大连理工大学出版社,1997[8] 潘道才,陈一华《数据结构》,电子科技大学出版社,1994附录附录1 源程序清单#include<stdlib.h> //库中包含system("pause")和rand()函数#include<stdio.h> //c语言里的库#include<iostream>using namespace std;#define N 49 //定义为全局变量,这是迷宫数组的上线,可以自行修改#define M 49int X;int maze[N+2][M+2];int head=0,tail=0; //队列的头尾指针,初始值设为0struct point //存放迷宫访问到点的队列结构体,包含列,行,序号{int row,col,predecessor;}queue[1200];void hand_maze(int m,int n) //手动生成迷宫{int i,j;cout<<endl;cout<<"请按行输入迷宫,0表示通路,1表示障碍:"<<endl;for(i=0;i<m;i++)for(j=0;j<n;j++){cin>>maze[i][j];}}void automatic_maze(int m,int n) //自动生成迷宫{int i,j;cout<<"\n迷宫生成中……\n\n";system("pause");for(i=0;i<m;i++)for(j=0;j<n;j++)maze[i][j]=rand()%2; //随机生成0、1maze[0][0]=0; //将开始和结束位置强制为0,保证有可能出来迷宫maze[m-1][n-1]=0;}void data(int m,int n){ //当用户输入的不是规整的m行n列的迷宫,用来生成规则的数字迷宫int i,j;cout<<endl;cout<<"根据您先前设定的迷宫范围"<<endl;cout<<endl;cout<<" 我们将取所输入的前"<<m*n<<"个数生成迷宫"<<endl;cout<<"\n数字迷宫生成结果如下:\n\n";cout<<"迷宫入口\n";cout<<"↓";for(i=0;i<m;i++){cout<<"\n";for(j=0;j<n;j++){if(maze[i][j]==0)cout<<" 0";if(maze[i][j]==1)cout<<" 1";}}cout<<"→迷宫出口\n";}void print_maze(int m,int n){ //打印迷宫外壳int i,j,k;cout<<"\n字符迷宫生成结果如下:\n\n";cout<<"迷宫入口\n";cout<<" ↓";cout<<endl;cout<<"▲"; //生成上外壳for(k=0;k<n;k++){cout<<"▲"; //这两个黑三角用来生成顶部外壳}for(i=0;i<m;i++){cout<<"\n"; //生成左外壳cout<<"▲";for(j=0;j<n;j++){if(maze[i][j]==0) printf("□");if(maze[i][j]==1) printf("■");}cout<<"▲"; //生成右外壳}cout<<endl;for(k=0;k<n;k++){cout<<"▲";}cout<<" ▲\n"; //生成底部外壳for(i=0;i<n;i++){ cout<<" ";}cout<<"↓\n";for(i=0;i<n;i++){ cout<<" ";}cout<<"迷宫出口\n";}void result_maze(int m,int n) //这个是打印输出迷宫的星号路径{int i,j;cout<<"迷宫通路(用☆表示)如下所示:\n\t";for(i=0;i<m;i++){cout<<"\n";for(j=0;j<n;j++){if(maze[i][j]==0||maze[i][j]==2) //2是队列中访问过的点cout<<"□";if(maze[i][j]==1)cout<<"■";if(maze[i][j]==3) //3是标记的可以走通的路径cout<<"☆";}}}void enqueue(struct point p) //迷宫中队列入队操作{queue[tail]=p;tail++; //先用再加,队列尾部加1}struct point dequeue() //迷宫中队列出队操作,不需要形参,因此用结构体定义{head++;return queue[head-1];}int is_empty() //判断队列是否为空{return head==tail;}void visit(int row,int col,int maze[51][51]) //访问迷宫矩阵中的节点{struct point visit_point={row,col,head-1}; //head-1的作用是正在访问的这个点的序号为之前的点序号maze[row][col]=2; //将访问过的点位标记为2 enqueue(visit_point);//入队}int path(int maze[51][51],int m,int n) //路径求解{X=1; //初始值定为1struct point p={0,0,-1}; //定义入口节点if(maze[p.row][p.col]==1) //入口为1时,迷宫不可解{cout<<"\n===============================================\n";cout<<"此迷宫无解\n\n";X=0;return 0;}maze[p.row][p.col]=2; //标记为已访问enqueue(p); //将p入队列while(!is_empty()){p=dequeue();if((p.row==m-1)&&(p.col==n-1)) //当行和列为出口时跳出break;//定义8个走位方向if((((p.row-1)>=0)&&((p.row-1)<m)&&((p.col+0)<n))&&(maze[p.row-1][p.col+0]==0))visit(p.row-1,p.col+0,maze); //北if((((p.row-1)>=0)&&((p.row-1)<m)&&((p.col+1)<n))&&(maze[p.row-1][p.col+1]==0))visit(p.row-1,p.col+1,maze); //东北if((((p.row+0)<m)&&((p.col+1)<n))&&(maze[p.row+0][p.col+1]==0))visit(p.row+0,p.col+1,maze); //东if((((p.row+1)<m)&&((p.col+1)<n))&&(maze[p.row+1][p.col+1]==0))visit(p.row+1,p.col+1,maze); //东南if((((p.row+1)<m)&&((p.col+0)<n))&&(maze[p.row+1][p.col+0]==0))visit(p.row+1,p.col+0,maze); //南if((((p.row+1)<m)&&((p.col-1)<n)&&((p.col-1)>=0))&&(maze[p.row+1][p.col-1]==0))visit(p.row+1,p.col-1,maze); //西南if((((p.row+0)<m)&&((p.col-1)<n)&&((p.col-1)>=0))&&(maze[p.row+0][p.col-1]==0))visit(p.row+0,p.col-1,maze); //西if((((p.row-1)>=0)&&((p.row-1)<m)&&((p.col-1)<n)&&((p.col-1)>=0))&&(maze[p.row-1][p.col-1]==0))visit(p.row-1,p.col-1,maze); //西北}if(p.row==m-1&&p.col==n-1) //如果当前矩阵点是出口点,输出路径{cout<<"\n=================================================== ===============\n";cout<<"迷宫路径为:\n";cout<<"出口"<<endl;cout<<" "<<"↑"<<endl;printf("(%d,%d)\n",p.row+1,p.col+1);cout<<" "<<"↑"<<endl;maze[p.row][p.col]=3; //逆序将路径标记为3while(p.predecessor!=-1){p=queue[p.predecessor];printf("(%d,%d)\n",p.row+1,p.col+1);cout<<" "<<"↑"<<endl;maze[p.row][p.col]=3;}cout<<"入口"<<endl;}else{cout<<"\n====================================================== =======\n";cout<<"此迷宫无解!\n\n";X=0;}return 0;}void main(){int i,m,n,cycle=0;while(cycle!=(-1)){cout<<"********************************************************************************\n";cout<<" 欢迎进入迷宫求解系统\n";cout<<endl;cout<<" 设计者:李柏(B计算机115班)\n";cout<<"********************************************************************************\n";cout<<" ☆手动生成迷宫请按:1\n";cout<<" ☆自动生成迷宫请按:2\n";cout<<" ☆退出请按:3\n\n";cout<<"********************************************************************************\n";cout<<"\n";cout<<"请选择你的操作:\n";cin>>i;switch(i){case 1:cout<<"\n请输入行数:";cin>>m;cout<<"\n";cout<<"请输入列数:";cin>>n;while((m<0||m>49)||(n<0||n>49)){cout<<"\n抱歉,你输入的行列数超出预设范围(0-49,0-49),请重新输入:\n\n";cout<<"\n请输入行数:";cin>>m;cout<<"\n";cout<<"请输入列数:";cin>>n;}hand_maze(m,n);data(m,n);print_maze(m,n);path(maze,m,n);if(X!=0) result_maze(m,n); //当X不为0时,有解,调用输出路径函数cout<<"\n\nPress Enter Contiue!\n";getchar();while(getchar()!='\n'); //接受一个输入,当为回车时执行break跳出,否则一直执行接受数据break;case 2:cout<<"\n请输入行数:";cin>>m;cout<<"\n";cout<<"请输入列数:";cin>>n;while((m<0||m>49)||(n<0||n>49)){cout<<"\n抱歉,你输入的行列数超出预设范围(0-49,0-49),请重新输入:\n\n";cout<<"\n请输入行数:";cin>>m;cout<<"\n";cout<<"请输入列数:";cin>>n;}automatic_maze(m,n);data(m,n);print_maze(m,n);path(maze,m,n);if(X!=0) result_maze(m,n);cout<<"\n\nPress Enter Contiue!\n";getchar();while(getchar()!='\n');break;case 3:cycle=(-1);break;default:cout<<"\n";cout<<"你的输入有误!\n";cout<<"\nPress Enter Contiue!\n";getchar();while(getchar()!='\n');break;}}}。

相关文档
最新文档