《函数的图像第1课时》示范教学设计

合集下载

北师大版数学八年级上册第四章《一次函数》第3节《一次函数的图像》第一课时

北师大版数学八年级上册第四章《一次函数》第3节《一次函数的图像》第一课时

教学设计4.3 一次函数的图象(第1课时)教材的地位和作用《一次函数的图象》是义务教育课程标准北师大版八年级(上)第四章《一次函数》的第三节.在学习本节课之前,学生已学习了平面直角坐标系、变量与函数、以及一次函数与正比例函数的概念等相关的知识。

学生能在平面直角坐标系中熟练的表示一个点,为画图像做好的充分铺垫作用。

本节课也是后续学习反比例函数、二次函数图像和性质的重要基础。

数形结合的思想是本节课的主要数学思想。

教学目标知识与技能:了解正比例函数的图象是一条直线,能熟练画出正比例函数的图像。

理解正比例函数表达式与图象之间的一一对应关系。

过程与方法:经历正比例函数图像画法的探索过程,体会“数”“形”结合的数学思想在问题解决中的作用,并能运用图像及数形结合的思想解决相关函数问题。

情感态度与价值观:在动手画图过程中,培养学生的合作意识和大胆猜想、乐于探索的学习意志。

体验“数”与“形”的转化过程,让学生感受函数图像的美妙,激发学生学数学的兴趣。

教学重、难点:重点:初步了解作函数图象的一般步骤:列表、描点、连线.会画出正比例函数的图像,正比例函数的图像是一条直线。

难点:理解一次函数的代数表达式与图象之间的一一对应关系,正比例函数的性质以及|k|的大小对正比例函数的影响。

教学过程:一、温故知新1、一次函数和正比例函数的定义是什么?2、表示函数的方法有哪几种?二、探究新知1、函数的图像(1)用图象表示的函数关系举例:摩天轮上一点的高度h与旋转时间t之间函数关系的图像。

(2)函数的图像定义把一个函数自变量的每一个值与对应的函数值分别作为点的横坐标和纵坐标,在直角坐标系内描出相应的点,所有这些点组成的图形叫做该函数的图象。

(3)举例正比例函数y=2x当自变量x=1时,相应的函数值y=2,我们把1作为点的横坐标,相应y 的值2作为纵坐标,从而得到一个点(1,2)再取一组,当自变量x=2时,相应的函数值y=4,我们把2作为点的横坐标,相应y的值4作为纵坐标,从而得到另一个点(2,4)……这样我们能得到很多的点,所有这些点组成的图形就叫做该函数的图象。

《10[1].1 函数的图象》教案

《10[1].1 函数的图象》教案

第10章:一次函数10.1 函数的图象(1课时)教学目标:1、能从图象中获取变量之间相依关系的信息,并能用语言进行描述,通过具体实例认识函数的图象。

2、了解表示函数关系的图像法,能结合图象对简单实际问题中的函数关系进行分析,感悟数形结合的思想。

教学过程一:复习回顾(一)1.汽车以60千米/时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时,则s与t的函数关系式是__________ ;2.下表是我国人口统计表,人口数y是年份x的函数吗?3.如图是体检时的心电图,其中横坐标x表示时间,纵坐标y表示心脏部位的生物电流,y是关于x的函数吗?以上3个小题用了函数的哪几种表示方法?(二)知识链接:1.在某一问题中,保持-------------- 的量叫常量,可以取---------------的量,叫做变量.2.函数:在同一变化过程中,有两个变量x和y,如果对于x的每—个值,y都有______________与之对应,我们就把y叫做x的函数,其中x叫做自变量.如果自变量x取a时,y的值是b,就把b叫做x=a时的函数值3.平面直角坐标系:在平面内画两条互相垂直而且有公共原点的数轴,水平的一条叫做x轴或横轴,习惯上取向----------- 的方向为正方向,----------- 的一条叫做-------或-----------,取向上的方向为正方向,这就组成了平面直角坐标系.二:合作探究:1、出示教材132页实验与探究,投影出示图10—1每四位同学一组,分别负责看秒表、控制铁夹、观察水面高度、记录数据。

打开铁夹,使水由塑料管流入水杯,分别记下从放水开始到10秒、20秒、30秒、⋯、100秒时,瓶内水面下降的高度L.将表中每对t和L的数据作为点的坐标,在以t为横轴、L为纵轴的直角坐标系中描出各点,并将描出的点用平滑的曲线一次连接起来. 观察这条曲线,思考下列问题:(1)从放水开始到放水10s时,饮料瓶内水面下降的高度是多少?从放水后10s到放水后20s呢?(2)随着放水时间t的逐渐增大,饮料瓶内水面下降的高度L的变化趋势是怎样的?(3)t每增大10s,L的变化情况相同吗?(4)估计当t=55s,L的值是多少?你是怎样估计的?(5)你发现在水面下降高度L和放水时间t的变化过程中,L是t的函数吗?哪一个变量是自变量?它们之间的函数关系是如何表达的?学生回答后得出:像这样用图象表示变量之间函数关系的方法叫做图像法(6)通过上面的问题,你体会用图象表示函数关系有什么优点?学生交流得出:用图象可以直观、形象地刻画变量之间的函数关系和变化趋。

数学北师大版九年级下册二次函数的图像与性质第一课时的教学设计

数学北师大版九年级下册二次函数的图像与性质第一课时的教学设计

第二章二次函数《二次函数的图象与性质(第1课时)》教学设计说明—、学生知识状况分析[来源:学。

科。

网ZX. X.K]学生的知识技能基础:学生在前面已经学习过一次函数、反比例函数,经历过探索、分析和建立两个变量之间的一次函数、反比例函数关系的过程,并学会了用描点法画函数图象的方法.在本章第一节课中,又学习了二次函数的概念,经历了探索和表示二次函数关系的过程,获得了用二次函数表示变量之间关系的体验•学生活动经验基础:在学习一次函数、反比例函数过程中,学会了用描点法画函数图象的方法,学生已具备了一定的作图能力,并经历了利用一次函数、反比例函数图象探索函数性质的活动,解决了一些简单的现实问题,感受到了数形结合的必要性和重要性,获得了一些探究函数图象和性质的数学活动经验基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力二、教学任务分析教科书基于学生对二次函数的概念认识,提出了本课的具体学习任务:能利用描点法画函数y=「x2的图象,并能根据图象认识和理解二次函数y=「x2的性质.为此,本节课的教学目标是:知识与技能1 •能够利用描点法画函数y二x2的图象,能根据图象认识和理解二次函数y = x2的性质.2•猜想并能作出y=「x2的图象,能比较它与y=x2的图象的异同.过程与方法1 •经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验.2•由函数y=x2的图象及性质,对比地学习y = -x2的图象及性质,并能比较出它们的异同点,培养学生的类比学习能力和发展学生的求同求异思维.情感与态度1•通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解.2•在利用图象讨论二次函数的性质时,让学生尽可能多地合作交流,以便使学生能够从多个角度看问题,进而比较准确地理解二次函数的性质.教学重点:作出函数一x2的图象,并根据图象认识和理解二次函数y二_x2的性质•教学难点:由y = x2的图象及性质对比地学习科」的图象及性质,并能比较出它们的异同点.三、教学过程分析(一)创设问题情境,弓I入新课[师]我们在学习了正比例函数,一次函数与反比例函数的定义后,研究了它们各自的图象特征.知道正比例函数的图象是过原点的一条直线.一般地一次函数的图象是不过原点的一条直线,反比例函数的图象是双曲线.上节课我们学习了二次函数的一般形式为y二ax2,bx(其中a、b、c均为常数且a = 0).那么它的图象是否也为直线或双曲线呢?本节课我们将一起来研究有关问题.(二)新课讲解1、作函数y=x2的图象…。

一次函数的图像和性质(第1课时)

一次函数的图像和性质(第1课时)

一次函数的图像和性质(第1课时)教学设计说明:本节课的设计力求体现使学生“学会学习,为学生终身学习做准备”的理念,努力实现学生的主体地位,使数学教学成为一种过程教学,并注意教师角色的转变,为学生创造一种宽松和谐、适合发展的学习环境,创设一种有利于思考、讨论、探索的学习氛围,根据学生的实际水平,选择恰当的教学起点和教学方法。

由此我采用“问题——猜想——探究——应用”的学科教学模式,把主动权充分的还给学生,让学生在自己已有经验的基础上提出问题,明确学习任务,教师引导学生观察、发现、猜想、操作、动手实践、自主探索、合作交流,寻找解决的办法并最终探求到真正的结果,从而体会到数学的奥妙与成功的快乐。

整堂课以问题思维为主线,巧妙地把数学实验引进了数学课堂,让学生充分参与数学预习,获得广泛的数学经验,整堂课融基础性、灵活性、实践性、开放性于一体。

这样既注重知识的发生、发展、形成的过程,解题思路的探索过程,解题方法和规律的概括过程,又使学习者积极主动地将知识融入已构建的结构,而不是被动的接受并积累知识,从而“构建自己的知识体系”。

并通过探索过程,不断丰富学生解决问题的策略,提高解决问题的能力,渗透数学的思想方法,发展数学思维。

教学目标:知识技能:1.会用两点法画出正比例函数和一次函数的图像2. 能结合图像说出正比例函数和一次函数的性质3.经历正比例函数与一次函数图象画法与性质的探索过程,体会“数”“形”结合的数学思想情感态度1.在动手操作过程中,培养学生的合作意识和大胆猜想、乐于探究的良好品质。

2.体验“数”与“形”的转化过程,感受函数图象的简洁美。

激发学生学数学的兴趣教学重点:正比例函数和一次函数的图像和性质教学难点:结合图像理解正比例函数和一次函数的性质的过程教学方法:自主探究、合作交流教学模式:问题——猜想——探究——应用教学过程:[活动1] (学生分组讨论,教师对存在的问题进行辅导)教师活动:1.教师出示问题,引导学生动手操作, 动脑思考,总结规律.2.学生猜想出结论:一次函数的图像是一条直线.3.教师为了进一步验证学生猜想的结论的正确性.学生活动:问题1:1.已知函数12)2(+--=m x m y .(设计意图:使学生联想直线的公理:两点确定一条直线.由此探究得出正比例函数的图像可以由两点法画出. )(1).当m 取何值时,该函数是一次函数.(2).当m 取何值时,该函数是正比例函数.2. 正比例函数和一次函数有何区别与联系?(设计意图:巩固两点法画直线的方法.学生通过画图、观察、探究、总结,发现正比例函数的性质.)3.在同一坐标系中描出以下6个函数的图像y=2x y=2x-1 y=-2x y=-2x+1 xy 6= 2x y = 观察你所画的图像的形状能否发现一些规律(或共同点)?[活动2]教师活动:1. 教师引导学生分析:(1)一条直线最少可以有几个点确定?(2)可以取直线上的哪两个最简单、易取的点?(3)学生总结出选取(0,0),(1,k )两点.(其他的点也可以,但这两点最简单)2.教师巡视,适时点拨,演示正比例函数的图像: k 任取不同的数值,观察图像的位置, 给出图像上任意一点测量出此点的坐标,拖动此点变换它的位置。

冀教版八年级下册21.2一次函数的图像和性质(第一课时)课程教学设计

冀教版八年级下册21.2一次函数的图像和性质(第一课时)课程教学设计

邢台县马河中学冀教版八年级数学下册21.2一次函数的图像和性质(第一课时)教学设计邢台县马河中学王昕一、学生起点分析在学习本节课之前,学生已学习了变量与函数、平面直角坐标系、以及一次函数的概念等有关的知识,对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,但对函数与图象的联系还比较陌生,因此需要教师在教学中引导学生重点突破函数与图象的对应关系。

二、教学任务分析《一次函数的图象和性质》是冀教版八年级(下)第二十一章《一次函数》的第二节.本节内容安排了2个课时,第1课时是让学生了解函数与图象的对应关系,以及作函数图象的步骤和方法,明确一次函数的图象是一条直线,能熟练地利用“两点法”作出一次函数的图象。

第2课时是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质。

本课时是第一课时,教材注重学生在探索过程的体验,注重对函数与图象对应关系的认识。

三、教学目标分析(一)知识与技能目标1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象。

2.理解一次函数的代数表达式与图象之间的对应关系。

(二)过程与方法目标1.经历函数图象的作图过程,初步了解作函数图象的一般步骤。

2.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力。

(三)情感、态度与价值观目标1.经历作图过程,归纳总结作函数图象的一般步骤,发展学生的总结概括能力.2.在探究活动中发展学生的合作意识和探究能力.(四)教学重点1.掌握函数图象的一般步骤:列表、描点、连线。

2.熟练地作一次函数的图象。

3.理解一次函数的代数表达式与图象之间的一一对应关系。

(五)教学难点理解一次函数的代数表达式与图象之间的一一对应关系.四、教法学法(一)教学方法应着重采用数形结合的教学方法,以及由特殊到一般的方法、类比法,还有多媒体课件应用于课堂,增强知识的直观性,增加课堂内容。

(二)学习方法:培养思维能力,主要是学会根据概念的直观表象,归纳得出概念的性质,由特殊到一般,由简单到复杂,运用类比、归纳、数形结合等方法,培养学生分析问题、解决问题的能力。

高中数学_函数Y=Asin(ωx+φ)的图像(第一课时)教学设计学情分析教材分析课后反思

高中数学_函数Y=Asin(ωx+φ)的图像(第一课时)教学设计学情分析教材分析课后反思

函数sin()(0,0)y A x A ωϕω=+>>的图象(一)一、教材分析本节是人教A 版数学第一册第5章第6节的内容,前一节“正弦函数的性质和图象”主要讲述了正弦函数图象的画法(五点法)、性质及应用。

本节课的主要内容是结合实例,了解)sin(φω+=x A y 的实际意义,会用五点法画出函数的图象,揭示参数φω,,A 变化时对函数)sin(φω+=x A y 图象的形状,位置的影响,讨论函数)sin(φω+=x A y 的图象与正弦函数的关系;通过引导学生对函数图象规律性的探索,让学生体会到从简单到复杂,从特殊到一般的化归思想;通过对参数的分类讨论,让学生深刻认识到图象变换与函数解析式变换的内在联系。

二、教学目标:1. 分别通过对三角函数图像的各种变换的探究和动态演示让学生了解三角函数图像各种变换的实质和内在规律。

2. 通过对函数sin()(0,0)y A x A ωϕω=+>>图象的探讨,让学生进一步掌握三角函数图像各种变换的内在联系。

3. 培养学生观察问题和探索问题的能力。

三、教学重、难点:教学重点:函数sin()(0,0)y A x A ωϕω=+>>的图像的画法和图像与函数y=sinx 图像的关系,以及对各种变换内在联系的揭示。

教学难点:各种变换内在联系的揭示。

四、教法学法采取各个击破,归纳整合为主线,自主探索、合作学习为主导,教师总结点评为辅助,充分发挥学生的动手能力的教学方法;多媒体辅助教学。

五、教学过程:(一)、新课引入:那么怎么画函数12sin()34y x π=-的图象? (二)、尝试探究探究(一):对 sin()y x ϕϕ=+对的图象的影响问题1:sin()3y x π=+函数周期是多少?你有什么办法画出该函数在一个周期内的图象?学生:用“五点法”作出函数 问题2:比较函数 sin()3y x π=+与sin y x = 的图象的形状和位置,你有什么发现?学生:函数sin()3y x π=+的图象,可以看作是把曲线sin y x =上所有的点向左平移3π个单位长度而得到的. 那么函数sin()3y x π=-的图象?学生:函数sin()3y x π=-的图象,可以看作是把曲线sin y x =上所有的点向右平移3π个单位长度而得到的.问题3:一般地,对任意的 (0)ϕϕ≠,函数 sin()y x ϕ=+ 的图象是由函数 sin y x = 的图象经过怎样的变换而得到的? 归纳:函数sin()y x ϕ=+的图象,可以看作是把曲线sin y x =上所有的点向左(0ϕ>时)或向右0ϕ<(时)平移ϕ个单位长度而得到的.上述变换称为平移变换探究(二):(0)sin y x ωωω>=对的图象的影响问题1:函数sin 2y x =周期是多少?如何用“五点法”画出该函数在一个周期内的图象?问题2:比较函数 sin 2y x =与sin y x = 的图象的形状和位置,你有什么发现?学生:函数 sin 2y x =的图象,可以看作是把sin y x =的图象上所有的点横坐标缩短到原来的12倍(纵坐标不变)而得到的. 那么函数1sin()2y x =的图象?学生:函数 1sin()2y x =的图象,可以看作是把sin y x =的图象上所有的点横坐标伸长到原来的 2 倍(纵坐标不变)而得到的.问题3:一般地,对任意的 (0)ωω>,函数 sin y x ω=的图象是由函数sin y x =的图象经过怎样的变换而得到的?归纳:函数sin (0)y x ωω=>的图像可由函数y =sinx 的图像沿x 轴伸长(w<1)或缩短(w>1)到原来的ω1倍(纵坐标不变).......而得到的,称为周期变换。

《一次函数的图象》第1课时示范课教学设计【数学八年级上册北师大】

《一次函数的图象》第1课时示范课教学设计【数学八年级上册北师大】

第四章一次函数3 一次函数的图象第1课时一、教学目标1.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线,能熟练画出正比例函数的图象.2.能根据正比例函数的图象和表达式y=kx(k≠0)理解k>0和k<0时,函数的图象特征与增减性,培养学生数形结合的意识和能力.3.理解一次函数的代数表达式与图象之间的一一对应关系.4.掌握正比例函数的性质,并能灵活运用解答有关问题.二、教学重难点重点:能熟练画出正比例函数的图象.难点:理解函数的图象特征与增减性,掌握正比例函数的性质.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计(1)y =2πx ; (2)y =2x -5; (3)147y x =+; (4)y =8x ; (5)y =5x 2-4x +1. (6)y =(x +1)2 预设答案:(1)(2)(4)是一次函数.(1)(4)是正比例函数.问题3:若函数y =(6-3m )x +4n -4是一次函数,则m ,n 满足什么条件?若是正比例函数,则m ,n 应满足什么条件?预设答案:解:根据y =(6-3m )x +4n -4是一次函数得:6-3m ≠0,则m ≠2,n 取任何实数;若是正比例函数,得6-3m ≠0且4n -4=0, 则m ≠2,n =1. 【思考】把摩天轮上一点的高度h (m )与旋转时间t (min )之间的函数关系通过下列图形表示:教师活动:如何定义这种图形?【探究】把一个函数自变量的每一个值与对应的函数值分别作为点的横坐标和纵坐标,在直角坐标系内描出相应的点,所有这些点组成的图形叫做该函数的图象.教师活动:这是摩天轮上一点的高度h 与旋转时间t之间函数关系的图象.【例1】画出正比例函数y=2x的图象.解:列表:描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.连线:把这些点依次连接起来,得到y=2x的图象,它是一条直线.画函数图象的步骤可以概况为三步:教师活动:这种画函数图象的方法叫做描点法.【做一做】画出正比例函数y=-3x的图象.列表:描点:连线:在所画的图象上任意取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系y=-3x.教师活动:通过两个点(-1.5,4.5),(0.5,-1.5)得出结论:它们都满足关系y=-3x.正比例函数的表达式与图象是一一对应的.【议一议】(1) 满足关系式y=-3x的x,y所对应的点(x,y)都在正比例函数y=-3x的图象上吗?预设答案:都在正比例函数y=-3x的图象上.(2) 正比例函数y=-3x的图象上的点(x,y)都满足关系式y=-3x吗?预设答案:都满足.(3) 正比例函数y=kx的图象有何特点?你是怎样理解的?预设答案:都经过原点.【探究】观察上述两组正比例函数图象,说一说正比例函数y=kx的图象有何特征?特征:正比例函数y=kx的图象是一条经过原点(0,0)的直线.因此,画正比例函数图象时,只要再确定一个点,过这点与原点画直线就可以了.不同点:函数y=2x的比例系数k>0,图象经过第一、三象限;函数y=-3x的比例系数k<0,图象经过第二、四象限.【归纳】教师活动:由于两点确定一条直线,画正比例函数图象时我们只需描点(0,0)和点(1,k),连线即可.【做一做】在同一直角坐标系内画出正比例函数y=x,y=3x,12y x=-和y=-4x的图象.教师活动:这四个函数中,随着x的增大,y 的值分别如何变化?相应图象上的点的变化趋势如何?当k>0时,x增大时,y的值也增大;y随x的增大而增大.当k<0时,x增大时,y的值反而减小;y随x的增大而减小.【归纳】在正比例函数y=kx中:1. 当k>0时,y的值随着x值的增大而增大,相应图象上的点从左往右呈上升趋势;2. 当k<0时,y的值随着x值的增大而减小,相应图象上的点从左往右呈下降趋势.【想一想】正比例函数y=x和y=3x中,随着x值的增【典型例题】教师活动:教师提出问题,学生先独立思考,然后再小组交流探讨.教师板书一道例题书写过程,其余题目可由学生代表板书完成,最终教师展示答题过程.【例2】 在同一直角坐标系内画出正比例函数12y x =与13y x =-的图象,并指出随着x 值的增大,y 的值分别如何变化?解:画图:对于函数12y x =,y 的值随着x 值的增大而 增大;对于函数13y x =-,y 的值随着x 值的增大而减小.所以-6=4k,解得32k=-,所以32y x=-.当x=-4时,y=6,所以点(-4,6)在此正比例函数图象上.故选B.4.在正比例函数y=-3mx中,y随x的增大而增大,则点P(m,5)在()A.第一象限B.第二象限C.第三象限D.第四象限答案:B.解析:因为y随x的增大而增大,所以-3m>0,所以m<0,所以点P(m,5)在第二象限.故选B.5.画出函数y=-2x的图象.解:列表,描点、连线,得到y=-2x的图象如图所示:6.已知正比例函数y=mx的图象经过点(m,9),且y的值随着x值的增大而减小,求m的值.解:因为正比例函数y=mx的图象经过点(m,9)所以9=m∙m,解得m=±3.又因为y的值随着x值的增大而减小,所以m<0,故m=-3.。

教案数学高中函数图像

教案数学高中函数图像

教案数学高中函数图像
教学重点和难点:函数的图像概念和性质;绘制一元二次函数、绝对值函数、指数函数、对数函数的图像。

教学准备:黑板、彩色粉笔、教材、教学PPT。

教学过程:
一、导入
教师通过引导学生回顾函数的概念和性质,引出本节课的主题——函数的图像。

二、讲解
1. 函数的图像概念和性质:函数的图像是由函数的自变量和因变量按照一定规律对应所得到的图形。

图像的性质包括对称性、增减性、奇偶性等。

2. 绘制一元二次函数的图像:通过讲解一元二次函数的一般式和顶点式,并结合实例进行绘图。

3. 绘制绝对值函数、指数函数、对数函数的图像:讲解这些特殊函数的性质和图像特点,引导学生绘制图像。

三、练习
老师布置练习题,让学生通过计算和绘图来加深对函数图像的理解和掌握。

四、拓展
引导学生思考如何利用函数图像解决实际问题,例如通过函数图像分析函数的性质、求解方程等。

五、总结
总结本节课的重点内容,强调函数图像的重要性和应用价值。

六、作业
布置作业:练习册上的相关题目,让学生巩固和深化所学内容。

教学反思
通过本节课的教学,学生能够掌握函数图像的基本原理和方法,并能够独立绘制一些常见函数的图像。

同时,通过练习和实例分析,学生能够运用函数图像解决实际问题,提高了他们的数学建模能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《函数的图像》教学设计
第1课时
一、教学目标
1.了解函数图像的意义,从图像中获取相关信息.
2.能用描点法画出函数图像.
二、教学重点及难点
重点:函数图像的意义,从图像中获取相关信息及用描点法画函数图像.
难点:对函数图像概念的理解,运用数形结合的思想分析函数图像中的信息.
三、教学用具
电脑、多媒体、课件
四、相关资源
微课、知识卡片
五、教学过程
(一)情境导入
我们已经学习了用列表法和解析式法表示变量间的单值对应关系,有些问题中的函数关系很难列式子表示,但是可以用图像来直观地反映,如心电图表示心脏部位的生物电流与时间的关系.即使能列式表示的函数关系,如果也能画图像表示,那么会使函数关系更直观.如下图是自动测温仪记录的图像,它反映了北京的春季某天气温T随时间t变化而变化的规律.你从图像中得到了哪些信息?
(1)最低、最高温度分别是多少?(温度最高为8 ℃,最低为-3 ℃)
(2)哪些时段温度呈下降状态?上升状态呢?(下降:0~4时和14~24时;上升:4~14时)
(3)我们可以从图像中看出这一天中任一时刻的气温大约是多少吗?(可以)
(4)如果长期观察这样的气温图像,我们能总结出气温的变化规律吗?(能)
设计意图:引导学生从两个变量的对应关系上认识函数,体会函数,为下面函数图像的概念埋下伏笔,并从中感受图像的直观性.
(二)探究新知
本图片是微课的首页截图,本微课资源讲解了函数的图象及画法,并通过讲解实例巩固所学的知识点,有利于启发教师教学或学生预习或复习使用.若需使用,请插入微课【知识点解析】函数的图象.
1.请画出下面问题中能直观地反映函数变化规律的图形:
正方形面积S与边长x之间的函数解析式为2

S x
(1)这个函数自变量的取值范围是什么?(x>0)
(2)怎样获得组成曲线的点?(先确定点的坐标)
(3)怎样确定满足函数关系的点的坐标?(取一些自变量的值,计算出相应的函数值)(4)自变量x的一个确定的值与它所对应的唯一的函数值S,是否唯一确定了一个点(x,S)呢?(是)
(5)填写下表:
(6)在直角坐标系中,描出这些点,然后连接这些点.
注意:表示x 与S 的对应关系的点有无数个.但是实际上我们只能描出其中有限个点,同时想象出其他点的位置.
2.总结归纳函数图像的概念:
一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图像.如上图中的曲线就叫函数2S x (x >0)的图像.
设计意图:让学生经历列表、描点、连线等绘制函数图像的具体过程,总结归纳出函数图像的概念.
(三)例题解析
例1 下列式子中,对于x 的每一个确定的值,y 有唯一的对应值,即y 是x 的函数.画出这些函数的图像:
(1)0.5y x =+; (2)6y x
=(x >0); 解:(1)从式子0.5y x =+可以看出,x 取任意实数时这个式子都有意义,所以x 的取值范围是全体实数.
列表:
根据表中数值描点(x ,y ),并用平滑曲线连接这些点.
图像由左向右上升,即当x 由小变大时,0.5y x =+随之增大.
让学生仿照函数0.5y x =+的图像的画法画函数6y x
=(x >0)的图像. 列表:
根据表中数值描点(x ,y ),并用平滑曲线连接这些点.
图像由左向右下降,即当x 由小变大时,6y x
=(x >0)随之减小. 归纳描点法画函数图像的一般步骤:
(1)列表(表中给出一些自变量的值及其对应的函数值);
(2)描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);
(3)连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来).
例2 如下左图,小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家.下右图反映了这个过程中,小明离他家的距离y 与时间x 之间的对应关系.
根据图像回答下列问题:
(1)食堂离小明家多远?小明从家到食堂用了多少时间?
(2)小明吃早餐用了多少时间?
(3)食堂离图书馆多远?小明从食堂到图书馆用了多少时间?
(4)小明读报用了多少时间?
(5)图书馆离小明家多远?小明从图书馆回家的平均速度是多少?
教师引导学生独立思考后,再让学生在小组内充分交流、讨论,得出结果.
解:(1)由纵坐标看出,食堂离小明家0.6km;由横坐标看出,小明从家到食堂用了8min.
(2)由横坐标看出,25-8=17,小明吃早餐用了17min.
(3)由纵坐标看出,0.8-0.6=0.2,即食堂离图书馆0.2km;由横坐标看出,28-25=3,小明从食堂到图书馆用了3min.
(4)由横坐标看出,58-28=30,小明读报用了30min.
(5)由纵坐标看出,图书馆离小明家0.8km;由横坐标看出,68-58=10,小明从图书馆回家用了10min,由此算出平均速度为0.08km/min.
规律总结:读取图像所表达的信息应注意:
(1)弄清横、纵坐标轴所表示的意义;
(2)抓住图像上特殊点的实际意义;
(3)上升(下降)线表示函数值随自变量的增大而增大(减小),水平线表示函数值不随自变量的变化而变化.
设计意图:结合具体问题的实际背景加深对图像意义的了解,体会用函数图像建立数形联系的关键是分别用点的横、纵坐标表示自变量和对应的函数值.
(四)课堂练习
1.下列四个图像中,不表示某一函数图像的是().
设计意图:考查函数的概念.
2.A、B两人在一次百米赛跑中的路程s(米)与赛跑的时间t(秒)的关系如图所示,则下列说法正确的是().
A.A比B先出发B.A、B两人的速度相同
C.A先到达终点D.B比A跑的路程多
设计意图:考查如何根据函数图像中获得的信息来研究实际问题.
3.某人早上进行登山活动,从山脚到山顶休息一会儿又沿原路返回,若用横轴表示时间t,纵轴表示与山脚距离h,那么下列四个图中反映全程h与t的关系图是().
设计意图:考查如何利用函数图像表现函数的增减性以及变化规律.
4.八(5)班从学校出发去某景点旅游,全班分成甲、乙两组.甲组乘坐大客车,乙组乘坐小轿车.已知甲组比乙组先出发,汽车行驶的路程s(单位:km)和行驶时间t(单位:min)之间的函数关系如图所示:
给出下列说法:(1)学校到景点的路程为55km;
(2)甲组在途中停留了5min;
(3)甲、乙两组同时到达景点;
(4)相遇后,乙组的速度小于甲组的速度.
根据图像信息,以上说法正确的有.
设计意图:进一步了解函数图像的意义,加强学生观察函数图像获取信息的能力和根据图像初步分析函数的对应关系和变化规律的能力.
2.小强骑自行车去郊游,下图是表示他离家的距离y(km)与所用的时间t(h)之间关系的函数图像.小明9点离开家,15点回家.根据这个图像,请你回答下列问题:(1)小强到离家最远的地方需几小时?此时离家多远?
(2)何时开始第一次休息?休息时间多长?
(3)小强何时距家21km?
设计意图:考查如何根据函数图像中获得的信息来研究实际问题.
答案:1.D2.C3.D4.(1)(2)正确.
5.(1)由横坐标看出,小强到离家最远的地方需3小时;由纵坐标看出,此时离家30km.
(2)由横坐标看出,10点半开始第一次休息,休息半小时.
(3)30-15=15(km),15÷(12-11)=15(km/h),21-15=6(km),
6÷15=0.4(h)=24(min);
30÷(15-13)=15(km/h),(30-21)÷15=0.6(h)=36(min).
所以小强11点24分和13点36分距家21km.
(五)课堂小结
(1)函数图像上的点的横、纵坐标分别表示什么?
(2)画函数图像时,怎样体现函数自变量的取值范围?
(3)用描点法画函数图像按照哪些步骤进行?
(4)怎样从图像上看出当自变量增大时,对应的函数值是增大还是减小?
(5)如何根据函数图像中获得的信息来研究实际问题?
设计意图:通过小结,使学生梳理本节所学内容,理解函数图像的意义,掌握画函数图像的步骤,运用数形结合的思想分析函数图像中的信息.
(六)板书设计
19.1.2函数的图像(1)
1.函数的图像
2.描点法画图像的一般步骤
3.根据图像信息研究实际问题。

相关文档
最新文档