20090307113曹晨《数据挖掘》期末大作业

合集下载

大学数据挖掘期末考试题

大学数据挖掘期末考试题

大学数据挖掘期末考试题学院试题密封期限:学期末本试题共三部分,满分100分,考试时间120分钟。

第一部分:选择题(共40分,每小题2分)1.下列哪个选项是正确的?A.选项AB.选项BC.选项CD.选项D2.下列哪个选项是错误的?A.选项AB.选项BC.选项CD.选项D3.以下哪项描述不正确?A.选项AB.选项BC.选项CD.选项D4.以下哪项描述正确?A.选项AB.选项BC.选项CD.选项D第二部分:填空题(共30分,每小题3分)1.我国现行的宪法于(1)年(2)月(3)日颁布。

2.我国的国家根本大法是(4)。

3.《中华人民共和国宪法》规定:中华人民共和国的一切权力属于(5)。

4.全国人民代表大会是我国的最高国家权力机关,它的最高领导机构是(6)。

5.中华人民共和国主席、副主席由全国人民代表大会选举,任期(7)年。

第三部分:简答题(共30分,每小题10分)1.请简要介绍我国的政治制度。

我国的政治制度是社会主义制度,是以工人阶级为领导的以工农联盟为基础的人民民主专政。

我国最高国家权力机关是全国人民代表大会和它的常委会,国家行政机关是国务院和它的组成部门,最高审判机关是XXX,最高检察机关是XXX。

2.请简要介绍我国的经济发展情况。

我国的经济发展取得了长足的进步,成为世界第二大经济体。

我国实行的是社会主义市场经济,通过改革开放,吸引了大量的外资,推动了经济的快速发展。

我国的GDP连续多年以高速增长,人民生活水平不断提高。

3.请简要介绍我国的文化传统。

我国的文化传统源远流长,拥有悠久的历史和丰富的文化遗产。

我国的文化包括中华文化、儒家文化、道家文化、XXX文化等等。

中华文化是我国的主要文化,它包括了诗、书、画、印、琴、棋、剑等七艺,是我国的传统文化精髓。

儒家文化是我国的传统文化之一,它强调仁爱、诚信、孝道等道德观念。

道家文化是我国的哲学文化,它强调道、德、天、地等观念。

文化是我国的宗教文化,它强调慈悲、般若等观念。

数据挖掘试题参考答案

数据挖掘试题参考答案

大学课程《数据挖掘》试题参考答案范围:∙ 1.什么是数据挖掘?它与传统数据分析有什么区别?定义:数据挖掘(Data Mining,DM)又称数据库中的知识发现(Knowledge Discover in Database,KDD),是目前人工智能和数据库领域研究的热点问题,所谓数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平凡过程。

数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析企业的数据,做出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,做出正确的决策。

区别:(1)数据挖掘的数据源与以前相比有了显著的改变;数据是海量的;数据有噪声;数据可能是非结构化的;(2)传统的数据分析方法一般都是先给出一个假设然后通过数据验证,在一定意义上是假设驱动的;与之相反,数据挖掘在一定意义上是发现驱动的,模式都是通过大量的搜索工作从数据中自动提取出来。

即数据挖掘是要发现那些不能靠直觉发现的信息或知识,甚至是违背直觉的信息或知识,挖掘出的信息越是出乎意料,就可能越有价值。

在缺乏强有力的数据分析工具而不能分析这些资源的情况下,历史数据库也就变成了“数据坟墓”-里面的数据几乎不再被访问。

也就是说,极有价值的信息被“淹没”在海量数据堆中,领导者决策时还只能凭自己的经验和直觉。

因此改进原有的数据分析方法,使之能够智能地处理海量数据,即演化为数据挖掘。

∙ 2.请根据CRISP-DM(Cross Industry Standard Process for Data Mining)模型,描述数据挖掘包含哪些步骤?CRISP-DM 模型为一个KDD工程提供了一个完整的过程描述.该模型将一个KDD工程分为6个不同的,但顺序并非完全不变的阶段.1: business understanding: 即商业理解. 在第一个阶段我们必须从商业的角度上面了解项目的要求和最终目的是什么. 并将这些目的与数据挖掘的定义以及结果结合起来.2.data understanding: 数据的理解以及收集,对可用的数据进行评估.3: data preparation: 数据的准备,对可用的原始数据进行一系列的组织以及清洗,使之达到建模需求.4:modeling: 即应用数据挖掘工具建立模型.5:evaluation: 对建立的模型进行评估,重点具体考虑得出的结果是否符合第一步的商业目的.6: deployment: 部署,即将其发现的结果以及过程组织成为可读文本形式.(数据挖掘报告)∙ 3.请描述未来多媒体挖掘的趋势随着多媒体技术的发展,人们接触的数据形式不断地丰富,多媒体数据库的日益增多,原有的数据库技术已满足不了应用的需要,人们希望从这些媒体数据中得到一些高层的概念和模式,找出蕴涵于其中的有价值的知识。

《数据挖掘》试题与答案

《数据挖掘》试题与答案

一、解答题(满分30分,每小题5分)1. 怎样理解数据挖掘和知识发现的关系?请详细阐述之首先从数据源中抽取感兴趣的数据,并把它组织成适合挖掘的数据组织形式;然后,调用相应的算法生成所需的知识;最后对生成的知识模式进行评估,并把有价值的知识集成到企业的智能系统中。

知识发现是一个指出数据中有效、崭新、潜在的、有价值的、一个不可忽视的流程,其最终目标是掌握数据的模式。

流程步骤:先理解要应用的领域、熟悉相关知识,接着建立目标数据集,并专注所选择的数据子集;再作数据预处理,剔除错误或不一致的数据;然后进行数据简化与转换工作;再通过数据挖掘的技术程序成为模式、做回归分析或找出分类模型;最后经过解释和评价成为有用的信息。

2. 时间序列数据挖掘的方法有哪些,请详细阐述之时间序列数据挖掘的方法有:1)、确定性时间序列预测方法:对于平稳变化特征的时间序列来说,假设未来行为与现在的行为有关,利用属性现在的值预测将来的值是可行的。

例如,要预测下周某种商品的销售额,可以用最近一段时间的实际销售量来建立预测模型。

2)、随机时间序列预测方法:通过建立随机模型,对随机时间序列进行分析,可以预测未来值。

若时间序列是平稳的,可以用自回归(Auto Regressive,简称AR)模型、移动回归模型(Moving Average,简称MA)或自回归移动平均(Auto Regressive Moving Average,简称ARMA)模型进行分析预测。

3)、其他方法:可用于时间序列预测的方法很多,其中比较成功的是神经网络。

由于大量的时间序列是非平稳的,因此特征参数和数据分布随着时间的推移而变化。

假如通过对某段历史数据的训练,通过数学统计模型估计神经网络的各层权重参数初值,就可能建立神经网络预测模型,用于时间序列的预测。

3. 数据挖掘的分类方法有哪些,请详细阐述之分类方法归结为四种类型:1)、基于距离的分类方法:距离的计算方法有多种,最常用的是通过计算每个类的中心来完成,在实际的计算中往往用距离来表征,距离越近,相似性越大,距离越远,相似性越小。

期末大作业

期末大作业

期末大作业数据挖掘和基于数据的决策是目前非常重要的研究领域,是从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的特殊过程。

在商业上,数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析技术,可用于分析企业数据,做出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,做出正确的决策。

本次作业要求完成一个相亲配对程序,让相亲者更容易找到自己的意中人。

查阅相关文献,以python为工具实现K-近邻算法,从而完成一个基本版的相亲配对系统,在此基础上深入研究聚类算法(K-近邻算法为其中一种),讨论各种聚类思路及算法优劣,完成相应的研究论文。

基本的设计思路提示如下:利用附件datingTestSet.txt文档中提供的三种属性(前三列,其中第1列为对方每年出差/旅行的公里数,第2列为对方玩游戏消耗时间的百分比,第3列为对方每周消费的冷饮公升数)作为测度是否和对方匹配的标准。

附件文件第4列表示了你遇到此类人产生的好恶情感,其中largeDoses表示对你极有吸引力,smallDoses表示对你吸引力一般,didntLike 表示是你不喜欢的类型。

利用此文件提供的数据,以K-近邻算法为工具,进行数据挖掘,发现你的喜好标准,对新的未标定的待匹配方(即只有前三行数据)给出第4行的好恶情感标签(即largeDoses、smallDoses或didntLike)。

具体要求如下:1.查找文献,理解完整的K-近邻算法;2.使用python语言编程实现K-近邻算法,解决相亲配对这一明确的应用问题;3.撰写的研究论文要有关于聚类算法的详细叙述,论文中的算法应该与程序实现的算法相印证。

大作业要求:1.自己设计解决方案,简易的解决方案得分较低,完整的解决方案,即使部分完成,得分也会较高;2.作业上交形式为电子版文件。

所有文件打包为一个文件,以“学号+姓名”的方式命名;3.算法的python源程序(py文件);4.对此问题进行研究得到的研究性论文,论文包括前言(简介),算法部分(算法流程图为核心),程序设计部分(程序流程图为核心),实验结果和分析,小结等内容(doc文件);5.论文必须有规范的发表论文格式,包括题目、作者、单位、摘要、关键字、正文及参考文献;6.附有少量参考资料。

《数据挖掘》课程大作业

《数据挖掘》课程大作业

《数据挖掘》课程大作业网络教育学院《数据挖掘》课程大作业题目:姓名:报名编号:学习中心:层次:专升本专业:计算机科学与技术第一大题:讲述自己在完成大作业过程中遇到的困难,解决问题的思路,以及相关感想,或者对这个项目的认识,或者对Python与数据挖掘的认识等等,300-500字。

数据挖掘是一门重要的专业课。

数据挖掘引起了信息产业界的极大关注,其主要原因是存在大量数据,可以广泛使用,并且迫切需要将这些数据转换成有用的信息和知识。

数据挖掘就是从大量的数据中,抽取出潜在的、有价值的知识、模型或规则的过程。

作为一类深层次的数据分析方法,它利用了数据库、人工智能和数理统计等多方面的技术。

要将庞大的数据转换成为有用的信息,必须先有效率地收集信息。

随着科技的进步,功能完善的数据库系统就成了最好的收集数据的工具。

数据仓库,简单地说,就是搜集来自其它系统的有用数据,存放在一整合的储存区内。

所以其实就是一个经过处理整合,且容量特别大的关系型数据库,用以储存决策支持系统所需的数据,供决策支持或数据分析使用。

数据挖掘的研究领域非常广泛,主要包括数据库系统、基于知识的系统、人工智能、机器学习、知识获取、统计学、空间数据库和数据可视化等领域。

主要是可以做以下几件事:分类、估计、预测、关联分析、聚类分析、描述和可视化、复杂数据类型挖掘。

第二大题:完成下面一项大作业题目。

2019秋《数据挖掘》课程大作业题目一:Knn算法原理以及python实现要求:文档用使用word撰写即可。

主要内容必须包括:(1)算法介绍。

(2)算法流程。

(3)python实现算法以及预测。

(4)整个word文件名为 [姓名奥鹏卡号学习中心](如戴卫东101410013979浙江台州奥鹏学习中心[1]VIP )答:一、knn算法介绍1. 介绍邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。

数据挖掘作业集答案

数据挖掘作业集答案

数据挖掘作业集答案《数据挖掘》作业集答案第一章引言一、填空题(1)数据清理,数据集成,数据选择,数据变换,数据挖掘,模式评估,知识表示(2)算法的效率、可扩展性和并行处理(3)统计学、数据库技术和机器学习(4)WEB挖掘(5)一些与数据的一般行为或模型不一致的孤立数据二、单选题(1)B;(2)D;(3)D;(4)B;(5)A;(6)B;(7)C;(8)E;三、简答题(1)什么是数据挖掘?答:数据挖掘指的是从大量的数据中挖掘出那些令人感兴趣的、有用的、隐含的、先前未知的和可能有用的模式或知识。

(2)一个典型的数据挖掘系统应该包括哪些组成部分?答:一个典型的数据挖掘系统应该包括以下部分:数据库、数据仓库或其他信息库数据库或数据仓库服务器知识库数据挖掘引擎模式评估模块图形用户界面(3)请简述不同历史时代数据库技术的演化。

答:1960年代和以前:研究文件系统。

1970年代:出现层次数据库和网状数据库。

1980年代早期:关系数据模型, 关系数据库管理系统(RDBMS)的实现1980年代后期:出现各种高级数据库系统(如:扩展的关系数据库、面向对象数据库等等)以及面向应用的数据库系统(空间数据库,时序数据库,多媒体数据库等等。

1990年代:研究的重点转移到数据挖掘, 数据仓库, 多媒体数据库和网络数据库。

2000年代:人们专注于研究流数据管理和挖掘、基于各种应用的数据挖掘、XML 数据库和整合的信息系统。

(4)请列举数据挖掘应用常见的数据源。

(或者说,我们都在什么样的数据上进行数据挖掘)答:常见的数据源包括关系数据库、数据仓库、事务数据库和高级数据库系统和信息库。

其中高级数据库系统和信息库包括:空间数据库、时间数据库和时间序列数据库、流数据、多媒体数据库、面向对象数据库和对象-关系数据库、异种数据库和遗产(legacy)数据库、文本数据库和万维网(WWW)等。

(5)什么是模式兴趣度的客观度量和主观度量?答:客观度量指的是基于所发现模式的结构和关于它们的统计来衡量模式的兴趣度,比如:支持度、置信度等等;主观度量基于用户对数据的判断来衡量模式的兴趣度,比如:出乎意料的、新颖的、可行动的等等。

数据挖掘期末大作业

数据挖掘期末大作业

数据挖掘期末大作业1.数据挖掘的发展趋势是什么?大数据环境下如何进行数据挖掘。

对于数据挖掘的发展趋势,可以从以下几个方面进行阐述:(1)数据挖掘语言的标准化描述:标准的数据挖掘语言将有助于数据挖掘的系统化开发。

改进多个数据挖掘系统和功能间的互操作,促进其在企业和社会中的使用。

(2)寻求数据挖掘过程中的可视化方法:可视化要求已经成为数据挖掘系统中必不可少的技术。

可以在发现知识的过程中进行很好的人机交互。

数据的可视化起到了推动人们主动进行知识发现的作用。

(3)与特定数据存储类型的适应问题:根据不同的数据存储类型的特点,进行针对性的研究是目前流行以及将来一段时间必须面对的问题。

(4)网络与分布式环境下的KDD问题:随着Internet的不断发展,网络资源日渐丰富,这就需要分散的技术人员各自独立地处理分离数据库的工作方式应是可协作的。

因此,考虑适应分布式与网络环境的工具、技术及系统将是数据挖掘中一个最为重要和繁荣的子领域。

(5)应用的探索:随着数据挖掘的日益普遍,其应用范围也日益扩大,如生物医学、电信业、零售业等领域。

由于数据挖掘在处理特定应用问题时存在局限性,因此,目前的研究趋势是开发针对于特定应用的数据挖掘系统。

(6)数据挖掘与数据库系统和Web数据库系统的集成:数据库系统和Web数据库已经成为信息处理系统的主流。

2. 从一个3输入、2输出的系统中获取了10条历史数据,另外,最后条数据是系统的输入,不知道其对应的输出。

请使用SQL SERVER 2005的神经网络功能预测最后两条数据的输出。

首先,打开SQL SERVER 2005数据库软件,然后在界面上右键单击树形图中的“数据库”标签,在弹出的快捷菜单中选择“新建数据库”命令,并命名数据库的名称为YxqDatabase,单击确定,如下图所示。

然后,在新建的数据库YxqDatabas中,根据题目要求新建表,相应的表属性见下图所示。

在新建的表完成之后,默认的数据表名称为Table_1,并打开表,根据题目提供的数据在表中输入相应的数据如下图所示。

数据挖掘大作业(打印) 2

数据挖掘大作业(打印) 2

数据挖掘在客户关系管理中的应用一、数据挖掘技术在客户关系管理中的主要应用领域1、客户关系管理中常用的数据挖掘方法常用的数据挖掘方法主要包括:分类、聚类、关联规则、统计回归、偏差分析等等。

(1)分类:分类在数据挖掘中是一项非常重要的任务。

分类的目的是通过统计方法、机器学习方法(包括决策树法和规则归纳法)、神经网络方法等构造一个分类模型,然后把数据库中的数据映射到给定类别中的某一个。

(2)聚类:聚类是把一组个体按照相似性归成若干类别。

即“物以类聚”。

它的目的是使同一类别之内的相似性尽可能大,而类别之间的相似性尽可能小。

这种方法可以用来对客户进行细分,根据客户的特征和属性把客户分成不同客户群,根据其不同需求,制订针对不同客户群的营销策略。

(3)关联规则:它是描述数据库中数据项之间存在关联的规则,即根据一个事物中某些项的出现可导出另一项在同一事物中也出现,即隐藏在数据间的关联或相互关系。

在客户关系管理中,通过对企业客户数据库里大量数据进行挖掘,可以从中发现有趣的关联关系。

(4)回归分析:回归分析反映的是事务数据库中属性值在时间上的特征.主要用于预测,即利用历史数据自动推出对给定数据的推广描述.从而对未来数据进行预测。

它可应用于商品销售趋势预测、客户赢利能力分析和预测等。

(50偏差分析:偏差分析侧重于发现不规则和异常变化,即与通常不同的事件。

在相类似的客户中,对客户的异常变化要给予密切关注。

例如某客户购买行为发生较大变化,购买量较以前大大减少,就要对客户的这种原因进行调查,避免客户流失。

2、数据挖掘在客户关系管理中的具体运用由于零售业采用P O S机和C R M。

使得顾客的资料及购买信息得以贮存。

在这些海量的数据中存在着许多能对商品决策提供真正有价值的决策信息。

商家面临以下问题是:真正有价值的信息是哪些。

这些信息有哪些关联等等。

因此,需要从大量的数据中, 经过深层分析,从而获得有利商业运作提高企业争力的信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据挖掘原理、算法及应用学号:学生所在学院:信息工程学院学生姓名:颜伟泰任课教师:汤亮教师所在学院:信息工程学院2015年12月12年级决策树分类算法颜伟泰12软件(1)班一、摘要(一)、决策树算法简介:决策树算法是一种归纳分类算法,它通过对训练集的学习,挖掘出有用的规则,用于对新集进行预测。

决策树算法可设计成具有良好可伸缩性的算法,能够很好地与超大型数据库结合,处理相关的多种数据类型,并且,其运算结果容易被人理解,其分类模式容易转化成分类规则。

(二)、算法思想:该算法的基本思想是:首先找出所有的频集,这些项集出现的频繁性至少和预定义的最小支持度一样。

然后由频集产生强关联规则,这些规则必须满足最小支持度和最小可信度。

然后使用第1步找到的频集产生期望的规则,产生只包含集合的项的所有规则,其中每一条规则的右部只有一项,这里采用的是中规则的定义。

一旦这些规则被生成,那么只有那些大于用户给定的最小可信度的规则才被留下来。

为了生成所有频集,使用了递归的方法。

(三)、算法运用领域:(1)Apriori算法广泛应用于商业中,应用于消费市场价格分析中,它能够很快的求出各种产品之间的价格关系和它们之间的影响。

通过数据挖掘,市场商人可以瞄准目标客户,采用个人股票行市、最新信息、特殊的市场推广活动或其他一些特殊的信息手段,从而极大地减少广告预算和增加收入。

百货商场、超市和一些老字型大小的零售店也在进行数据挖掘,以便猜测这些年来顾客的消费习惯。

(2)Apriori算法应用于网络安全领域,比如时候入侵检测技术中。

早期中大型的电脑系统中都收集审计信息来建立跟踪档,这些审计跟踪的目的多是为了性能测试或计费,因此对攻击检测提供的有用信息比较少。

它通过模式的学习和训练可以发现网络用户的异常行为模式。

采用作用度的Apriori算法削弱了Apriori算法的挖掘结果规则,是网络入侵检测系统可以快速的发现用户的行为模式,能够快速的锁定攻击者,提高了基于关联规则的入侵检测系统的检测性。

(3)Apriori算法应用于高校管理中。

随着高校贫困生人数的不断增加,学校管理部门资助工作难度也越加增大。

针对这一现象,提出一种基于数据挖掘算法的解决方法。

将关联规则的Apriori算法应用到贫困助学体系中,并且针对经典Apriori挖掘算法存在的不足进行改进,先将事务数据库映射为一个布尔矩阵,用一种逐层递增的思想来动态的分配内存进行存储,再利用向量求"与"运算,寻找频繁项集。

实验结果表明,改进后的Apriori算法在运行效率上有了很大的提升,挖掘出的规则也可以有效地辅助学校管理部门有针对性的开展贫困助学工作。

(4)Apriori算法被广泛应用于移动通信领域。

移动增值业务逐渐成为移动通信市场上最有活力、最具潜力、最受瞩目的业务。

随着产业的复苏,越来越多的增值业务表现出强劲的发展势头,呈现出应用多元化、营销品牌化、管理集中化、合作纵深化的特点。

针对这种趋势,在关联规则数据挖掘中广泛应用的Apriori算法被很多公司应用。

依托某电信运营商正在建设的增值业务Web数据仓库平台,对来自移动增值业务方面的调查数据进行了相关的挖掘处理,从而获得了关于用户行为特征和需求的间接反映市场动态的有用信息,这些信息在指导运营商的业务运营和辅助业务提供商的决策制定等方面具有十分重要的参考价值。

二、算法步骤Apriori算法过程分为两个步骤:第一步通过迭代,检索出事务数据库中的所有频繁项集,即支持度不低于用户设定的阈值的项集;第二步利用频繁项集构造出满足用户最小信任度的规则。

具体做法就是:首先找出频繁1-项集,记为L 1 ;然后利用L 1 来产生候选项集C 2 ,对C 2 中的项进行判定挖掘出L 2 ,即频繁2-项集;不断如此循环下去直到无法发现更多的频繁k-项集为止。

每挖掘一层L k 就需要扫描整个数据库一遍。

算法利用了一个性质:Apriori 性质:任一频繁项集的所有非空子集也必须是频繁的。

意思就是说,生成一个k-itemset的候选项时,如果这个候选项有子集不在(k-1)-itemset(已经确定是frequent的)中时,那么这个候选项就不用拿去和支持度判断了,直接删除。

具体而言:1)连接步为找出L k (所有的频繁k项集的集合),通过将L k-1 (所有的频繁k-1项集的集合)与自身连接产生候选k项集的集合。

候选集合记作C k 。

设l 1 和l 2 是L k-1 中的成员。

记l i [j]表示l i 中的第j项。

假设Apriori算法对事务或项集中的项按字典次序排序,即对于(k-1)项集l i ,l i [1]<l i [2]<……….<l i [k-1]。

将L k-1 与自身连接,如果(l 1 [1]=l 2[1])&&( l 1 [2]=l 2 [2])&&……..&&(l 1 [k-2]=l 2 [k-2])&&(l 1 [k-1]<l 2 [k-1]),那认为l 1 和l2 是可连接。

连接l 1 和l 2 产生的结果是{l 1 [1],l 1 [2],……,l 1 [k-1],l 2 [k-1]}。

2)剪枝步C K 是L K 的超集,也就是说,C K 的成员可能是也可能不是频繁的。

通过扫描所有的事务(交易),确定C K 中每个候选的计数,判断是否小于最小支持度计数,如果不是,则认为该候选是频繁的。

为了压缩C k ,可以利用Apriori性质:任一频繁项集的所有非空子集也必须是频繁的,反之,如果某个候选的非空子集不是频繁的,那么该候选肯定不是频繁的,从而可以将其从C K 中删除。

三、Apriori算法实例:实例一:下面以图例的方式说明该算法的运行过程:假设有一个数据库D,其中有4个事务记录,分别表示为:这里预定最小支持度minSupport=2,下面用图例说明算法运行的过程:1、扫描D,对每个候选项进行支持度计数得到表C1:2、比较候选项支持度计数与最小支持度minSupport,产生1维最大项目集L1:3、由L1产生候选项集C2:4、扫描D,对每个候选项集进行支持度计数:5、比较候选项支持度计数与最小支持度minSupport,产生2维最大项目集L2:6、由L2产生候选项集C3:7、比较候选项支持度计数与最小支持度minSupport,产生3维最大项目集L3:算法终止。

实例二:下图从整体同样的能说明此过程:此例的分析如下:1 . 连接:C3=L2 L2 ={{A,C},{B,C},{B,E}{C,E}} {{A,C},{B,C},{B,E}{C,E}} ={{A,B,C},{A,C,E},{B,C,E}}2.使用Apriori性质剪枝:频繁项集的所有子集必须是频繁的,对候选项 C 3 ,我们可以删除其子集为非频繁的选项:{A,B,C} 的 2 项子集是{A,B},{A,C},{B,C} ,其中{A,B} 不是L2 的元素,所以删除这个选项;{A,C,E} 的 2 项子集是{A,C},{A,E},{C,E} ,其中{A,E} 不是L2 的元素,所以删除这个选项;{B,C,E} 的 2 项子集是{B,C},{B,E},{C,E} ,它的所有 2 -项子集都是L2 的元素,因此保留这个选项。

3.这样,剪枝后得到C3={{B,C,E}}四、综合分析(一)、从算法的运行过程,我们可以看出该Apriori算法的优点:简单、易理解、数据要求低(二)、我们也可以看到Apriori算法的缺点:(1)在每一步产生侯选项目集时循环产生的组合过多,没有排除不应该参与组合的元素;(2)每次计算项集的支持度时,都对数据库D中的全部记录进行了一遍扫描比较,如果是一个大型的数据库的话,这种扫描比较会大大增加计算机系统的I/O开销。

而这种代价是随着数据库的记录的增加呈现出几何级数的增加。

因此人们开始寻求更好性能的算法。

改进Apriori算法的方法方法1:基于hash表的项集计数将每个项集通过相应的hash函数映射到hash表中的不同的桶中,这样可以通过将桶中的项集技术跟最小支持计数相比较先淘汰一部分项集。

方法2:事务压缩(压缩进一步迭代的事务数)不包含任何k-项集的事务不可能包含任何(k+1)-项集,这种事务在下一步的计算中可以加上标记或删除方法3:划分挖掘频繁项集只需要两次数据扫描D中的任何频繁项集必须作为局部频繁项集至少出现在一个部分中。

第一次扫描:将数据划分为多个部分并找到局部频繁项集第二次扫描:评估每个候选项集的实际支持度,以确定全局频繁项集。

方法4:选样(在给定数据的一个子集挖掘)基本思想:选择原始数据的一个样本,在这个样本上用Apriori算法挖掘频繁模式通过牺牲精确度来减少算法开销,为了提高效率,样本大小应该以可以放在内存中为宜,可以适当降低最小支持度来减少遗漏的频繁模式可以通过一次全局扫描来验证从样本中发现的模式可以通过第二此全局扫描来找到遗漏的模式方法5:动态项集计数在扫描的不同点添加候选项集,这样,如果一个候选项集已经满足最少支持度,则在可以直接将它添加到频繁项集,而不必在这次扫描的以后对比中继续计算。

Apriori算法的优化思路1、在逐层搜索循环过程的第k步中,根据k-1步生成的k-1维频繁项目集来产生k维候选项目集,由于在产生k-1维频繁项目集时,我们可以实现对该集中出现元素的个数进行计数处理,因此对某元素而言,若它的计数个数不到k-1的话,可以事先删除该元素,从而排除由该元素将引起的大规格所有组合。

这是因为对某一个元素要成为K维项目集的一元素的话,该元素在k-1阶频繁项目集中的计数次数必须达到K-1个,否则不可能生成K维项目集(性质3)。

2、根据以上思路得到了这个候选项目集后,可以对数据库D的每一个事务进行扫描,若该事务中至少含有候选项目集Ck中的一员则保留该项事务,否则把该事物记录与数据库末端没有作删除标记的事务记录对换,并对移到数据库末端的事务记录作删除标一记,整个数据库扫描完毕后为新的事务数据库D’ 中。

因此随着K 的增大,D’中事务记录量大大地减少,对于下一次事务扫描可以大大节约I/0 开销。

由于顾客一般可能一次只购买几件商品,因此这种虚拟删除的方法可以实现大量的交易记录在以后的挖掘中被剔除出来,在所剩余的不多的记录中再作更高维的数据挖掘是可以大大地节约时间的。

参考文献[1] 专(译)著:李爱国、厍(shè)向阳.《数据挖掘原理、算法及应用》.西安电子科技大学:2012年1月第1版,29-41页[2] 百度百科:Apriori算法[3] CSDN博客:lizhengnanhua。

相关文档
最新文档