拉氏变换及反变换

合集下载

拉氏变换表(包含计算公式)

拉氏变换表(包含计算公式)

拉氏变换及反变换公式3. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

设)(s F 是s 的有理真分式1110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。

按代数定理可将)(s F 展开为部分分式。

分以下两种情况讨论。

① 0)(=s A 无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。

∑=-=-++-++-+-=ni ii n n i i s s c s s c s s c s s c s s c s F 12211)(式中,n s s s ,,,21 是特征方程A(s)=0的根。

i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算:)()(lim s F s s c i s s i i-=→或iss i s A s B c ='=)()(式中,)(s A '为)(s A 对s 的一阶导数。

根据拉氏变换的性质,从式(F-1)可求得原函数[]⎥⎦⎤⎢⎣⎡-==∑=--n i i i s s c L s F L t f 111)()(=ts n i i ie c -=∑1②0)(=s A 有重根设0)(=s A 有r 重根1s ,F(s)可写为())()()()(11n r rs s s s s s s B s F ---=+ =nn i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11111111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:)()(lim 11s F s s c r s s r -=→)]()([lim111s F s s dsdc r s s r -=→- )()(lim !11)()(1s F s s dsd j c r j j s s jr -=→- (F-5))()(lim )!1(11)1()1(11s F s s dsd r c r r r s s --=--→原函数)(t f 为 [])()(1s F Lt f -=⎥⎦⎤⎢⎣⎡-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 111111111)()()( t s nr i i t s r r r r ie c e c t c t r c t r c ∑+=---+⎥⎦⎤⎢⎣⎡+++-+-=1122111)!2()!1( (F-6)。

拉普拉斯变换及反变换

拉普拉斯变换及反变换
0
t
重要性质





( t ) f ( t ) dt f ( 0 )
( t ) dt ( t ) dt 1
0

0


L[ ( t )]



(t ) e
st
0
dt ( t ) e


st
dt 1
第7页
黄河科技学院
(5)指数函数
f (t )
控制工程基础
f (t )
(k =const)
0 2 f ( t ) kt 1( t ) 1 2 kt t 2 2 1
0
t0
t
t0
0
t
F ( s ) L [ f ( t )]
( b)
跃函数
坡 函 kt 斜 2 数
0

1
2
e
st
dt
k s
3
F s

的原函数;L是表示进行拉氏变换的 符号。
第2页
黄河科技学院
控制工程基础
F ( s ) L [ f ( t )]
f ( t ) L [ F ( s )]
拉氏变换是这样一种变换,即在一定的 条件下,它能把一实数域中的实变函数 f t 变换为一个在复数域内与之等价的 复变函数 F s 。
控制工程基础
2)当解出s有重根时,对F(s)作因式分解:
F (s) br ( s p1 )
r

b r 1 ( s p1 )
r 1

b1 ( s p1 )
r

a r 1 ( s p r 1 )

拉氏变换表(包含计算公式)

拉氏变换表(包含计算公式)

拉氏变换及反变换公式3. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

设)(s F 是s 的有理真分式1110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。

按代数定理可将)(s F 展开为部分分式。

分以下两种情况讨论。

① 0)(=s A 无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。

∑=-=-++-++-+-=ni ii n n i i s s c s s c s s c s s c s s c s F 12211)(式中,n s s s ,,,21 是特征方程A(s)=0的根。

i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算:)()(lim s F s s c i s s i i-=→或iss is A s B c ='=)()(式中,)(s A '为)(s A 对s 的一阶导数。

根据拉氏变换的性质,从式(F-1)可求得原函数[]⎥⎦⎤⎢⎣⎡-==∑=--n i i i s s c L s F L t f 111)()(=ts n i i ie c -=∑1②0)(=s A 有重根设0)(=s A 有r 重根1s ,F(s)可写为())()()()(11n r rs s s s s s s B s F ---=+ =nn i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11111111)()()(式中,1s 为F(s)的r 重根,1 r s ,…, n s 为F(s)的n-r 个单根;其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:)()(lim 11s F s s c r s s r -=→)]()([lim111s F s s dsdc r s s r -=→-)()(lim !11)()(1s F s s dsd j c r j j s s jr -=→- (F-5))()(lim )!1(11)1()1(11s F s s dsd r c r r r s s --=--→原函数)(t f 为 [])()(1s F Lt f -=⎥⎦⎤⎢⎣⎡-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 111111111)()()( t s nr i i t s r r r r ie c e c t c t r c t r c ∑+=---+⎥⎦⎤⎢⎣⎡+++-+-=1122111)!2()!1( (F-6)(注:可编辑下载,若有不当之处,请指正,谢谢!)。

拉氏变换和反变换

拉氏变换和反变换

第十三章拉普拉斯变换(Laplace Transformations)本章介绍拉普拉斯变换的定义、性质和反变换的应用;运算电路图的画法;用拉普拉斯变换分析电路。

§13-1 拉普拉斯变换定义教学目的:拉普拉斯变换的定义。

教学重点:拉普拉斯正变换,拉普拉斯变换存在的条件。

教学难点: 用拉普拉斯变换定义求几个常见函数的拉氏变换。

教学方法:课堂讲授。

教学内容:一、引言拉普拉斯拉斯变换可用于求解常系数线性微分方程,是研究线性系统的一种有效而重要的工具。

拉普拉斯拉斯变换是一种积分变换,它把时域中的常系数线性微分方程变换为复频域中的常系数线性代数方程。

因此,进行计算比较简单,这正是拉普拉斯拉斯变换(简称:拉氏变换)法的优点所在。

二、拉普拉斯拉斯变换的定义一个定义在区间的函数,其拉氏变换定义为:e-st dt式中:s=б+jω为复数,有时称变量S为复频率。

应用拉普拉斯拉斯变换进行电路分析有称为电路的复频域分析,有时称为运算法。

F(s)又称为f(t)的象函数,而f(t)称为F(s)的原函数。

通常用“L[ ]”表示对方括号内的函数作拉氏变换。

三、几个常见函数的拉氏变换1.2.§13-2 拉普拉斯变换的基本性质教学目的:本节将介绍拉氏变换的一些基本性质,利用这些基本性质,可以很容易的求得一些较复杂的原函数的象函数,同时,这些基本性质对于分析线性非时变网络也是非常必要的。

教学重点:拉普拉斯变换的性质。

教学难点: 用拉普拉斯变换的性质求得象函数。

教学方法:课堂讲授。

教学内容:一、唯一性定义在区间的时间函数与其拉氏变换存在一一对应关系。

根据可以唯一的确定其拉氏变换;反之,根据,可以唯一的确定时间函数。

唯一性是拉氏变换非常重要的性质,正是这个性质,才是我们有可能将时域中的问题变换为复频域中的问题进行求解,并使在复频域中求得的结果有可能再返回到时域中去。

唯一性的证明从略。

二、线性性质若和是两个任意的时间函数,其拉氏变换分别为和,和是两个任意常数,则有:[证]:根据拉氏变换的定义可得[例]:求的拉氏变换。

拉氏变换与反变换

拉氏变换与反变换

拉氏变换与反变换机电控制工程所涉及的数学问题较多,经常要解算一些线性微分方程。

按照一般方法解算比较麻烦,如果用拉普拉斯变换求解线性微分方程,可将经典数学中的微积分运算转化为代数运算,又能够单独地表明初始条件的影响,并有变换表可查找,因而是一种较为简便的工程数学方法。

拉普拉斯变换的定义如果有一个以时间 t 为自变量的实变函数 ()t f ,它的定义域是 0≥t ,那么 ()t f 的拉普拉斯变换定义为()()()0e d st F s L f t f t t ∞-=∆⎡⎤⎣⎦⎰式中, s 是复变数, ωσj +=s (σ、ω均为实数), ⎰∞-0e st称为拉普拉斯积分; )(s F 是函数 )(t f 的拉普拉斯变换,它是一个复变函数,通常也称 )(s F 为 )(t f 的象函数,而称 )(t f 为 )(s F 的原函数;L 是表示进行拉普拉斯变换的符号。

式()表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域内与之等价的复变函数)(s F 。

几种典型函数的拉氏变换1.单位阶跃函数 )(1t 的拉氏变换单位阶跃函数是机电控制中最常用的典型输入信号之一,常以它作为评价系统性能的标准输入,这一函数定义为⎩⎨⎧≥<∆)0(1)0(0)(1t t t单位阶跃函数如图所示,它表示在 0=t 时刻突然作用于系统一个幅值为1的不变量。

单位阶跃函数的拉氏变换式为0e 1d e )(1)](1[)(0∞-===-∞-⎰stst st t t L s F 当 0)Re(>s ,则 0e lim →-∞→st t 。

所以[]s s s t L st 1)1(00e 1)(1=⎥⎦⎤⎢⎣⎡--=∞-=-()图 单位阶跃函数 2.指数函数的拉氏变换指数函数也是控制理论中经常用到的函数,其中 是常数。

令则与求单位阶跃函数同理,就可求得()3.正弦函数与余弦函数的拉氏变换 设,,则由欧拉公式,有所以⎥⎦⎤⎢⎣⎡-=-∞--∞⎰⎰t t s F st t stt d e e d e e j 21)(0j 0j 1ωω ⎥⎦⎤⎢⎣⎡-=-∞+-∞--⎰⎰t t stt s t s d e e d e j 210)j (0)j (ωω⎥⎥⎦⎤⎢⎢⎣⎡∞+-∞--=+---0e j 10e j 1j21)j ()j (t s t s s s ωωωω22j 1j 1j 21ωωωω+=⎪⎪⎭⎫ ⎝⎛+--=s s s) 同理)4.单位脉冲函数 δ(t ) 的拉氏变换单位脉冲函数是在持续时间期间幅值为的矩形波。

拉氏变化及反变换

拉氏变化及反变换
0
t 0
1
2 单位阶跃函数
f (t )
1
0, t 0 1(t ) 1, t 0
0
t
L[1(t )]

0
1 st 1 1(t )e dt e 0 s s
st
3 单位斜坡函数
f (t )
f (t )
0, t 0 f (t ) t, t 0
1 1 1(t ) 1(t T ) T T
L[ f (t )]
1 1 sT 1 e (1 e sT ) Ts Ts Ts
T T f (t ) f1 (t ) f1 (t ) f1 (t ) f1 (t T ) 2 2 4 4 T 4 T 4 2 t 2 (t ) 2 (t ) 2 (t T ) T T 2 T 2 T
1 jt sin t (e e jt ) 2j
st
Hale Waihona Puke e j cos j sin e j cos j sin
L[sin t ] sin t e dt
0
0
1 jt jt st e e e dt 2j
10.像函数的微分性质
设L[ f (t )] F (s)
dF ( s) Ltf (t ) ds
11.像函数的积分性质
设L[ f (t )] F (s)
1 L f (t ) F ( s)ds t s
例 求图示方波和三角波的拉氏变换
方波: f (t ) f1 (t ) f1 (t T )


1 1 1 s 2 2 s j s j s 2

拉普拉斯变换及反变换1

拉普拉斯变换及反变换1
方法一: 方法一:利用拉氏反变换定义求
——不常用解
方法二: 方法二:查拉氏变换表求解 ——对简单的象函数适用 方法三: 方法三:部分分式法——象函数为有理分式函数时适用
第21页 页
黄河科技学院
控制工程基础
应用部分分式展开式计算拉氏逆变换的 一般步骤 : 的极点; (1)计算有理分式函数F(s)的极点; (2)根据极点把F(s)的分母多项式进行因 式分解、 展开成部分分式; 式分解、并进一步把F(s)展开成部分分式; (3)对F(s)的部分分式展开式两边同时进 行拉氏逆变换。 行拉氏逆变换。
(11)卷积定理 11)
f (t ) * g (t ) = ∫
+∞
−∞
f (τ ) g (t − τ )dτ
= ∫ f (τ ) g (t − τ )dτ
0
t
L[ f (t ) * g (t )] = F ( s ) ⋅ G ( s ) = G ( s ) F ( s )
第19页 页
黄河科技学院
控制工程基础
s +1 c2 = ( s + 3) ( s + 2)( s + 3)
s = −3
(2)对F(s)的分母多项式进行因式分解、并把 (s)展开 ) ( )的分母多项式进行因式分解、并把F( ) 成部分分式
=2
第24页 页
黄河科技学院
控制工程基础
s +1 1 2 F ( s) = 2 =− + s + 5s + 6 s+2 s+3
− st
单位阶跃函数,记作 单位阶跃函数,记作1( t )
t<0 t≥0
1 L[1(t )] = s

拉氏变换与反变换

拉氏变换与反变换

机电控制工程所涉及的数学问题较多,经常要解算一些线性微分方程。

按照一般方法解算比较麻烦,如果用拉普拉斯变换求解线性微分方程,可将经典数学中的微积分运算转化为代数运算,又能够单独地表明初始条件的影响,并有变换表可查找,因而是一种较为简便的工程数学方法。

拉普拉斯变换的定义如果有一个以时间为自变量的实变函数,它的定义域是,那么的拉普拉斯变换定义为式中,是复变数,(σ、ω均为实数),称为拉普拉斯积分;是函数的拉普拉斯变换,它是一个复变函数,通常也称为的象函数,而称为的原函数;L是表示进行拉普拉斯变换的符号。

式()表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域内与之等价的复变函数。

几种典型函数的拉氏变换1.单位阶跃函数的拉氏变换单位阶跃函数是机电控制中最常用的典型输入信号之一,常以它作为评价系统性能的标准输入,这一函数定义为单位阶跃函数如图所示,它表示在时刻突然作用于系统一个幅值为1的不变量。

单位阶跃函数的拉氏变换式为当,则。

所以()图单位阶跃函数2.指数函数的拉氏变换指数函数也是控制理论中经常用到的函数,其中是常数。

令则与求单位阶跃函数同理,就可求得()3.正弦函数与余弦函数的拉氏变换设,,则由欧拉公式,有所以)同理)4.单位脉冲函数δ(t)的拉氏变换单位脉冲函数是在持续时间期间幅值为的矩形波。

其幅值和作用时间的乘积等于1,即。

如图所示。

图单位脉冲函数单位脉冲函数的数学表达式为其拉氏变换式为此处因为时,,故积分限变为。

5.单位速度函数的拉氏变换单位速度函数,又称单位斜坡函数,其数学表达式为见图所示。

图单位速度函数单位速度函数的拉氏变换式为利用分部积分法令则所以当时,,则()6.单位加速度函数的拉氏变换单位加速度函数的数学表达式为如图所示图单位加速度函数其拉氏变换式为()拉氏变换的主要定理根据拉氏变换定义或查表能对一些标准的函数进行拉氏变换和反变换,但利用以下的定理,则对一般的函数可以使运算简化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拉氏变换是一种重要的数学工具,用于将实函数f(t)转换为复平面上的函数F(s)。在文档中,我们详细阐述了拉氏变换的基本定义,其中函数f(t)需满足一定条件,且F(s)称为f(t)的拉氏变换或象函数。此外,文档还列出了常见时间函数如单位脉冲函数、单位阶跃函数等的拉氏变换表,方便读者查阅。除了基本定义和常见函数变换,我们还深入探讨了拉氏变换的运算定理,包括线性定理、换作为拉氏变换的逆过程,其定义和方法也在文档中得到了详细阐述,并通过具体示例加以说明。值得一提的是,拉氏变换在求解线性微分方程方面具有显著优势,能够将微分方程转化为代数方程进行求解,从而大大简化了计算过程。总之,本文档旨在为读者提供拉氏变换及反变换的全面介绍,帮助读者深入理解和掌握这一重要数学工具。
相关文档
最新文档