华师大版 福建省泉州市七中2017-2018学年初二(下)期末数学试卷
福建省泉州市八年级下学期期末考试数学试题

福建省泉州市八年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)如图,在平面直角坐标系中,若△ABC与△A1B1C1关于E点成中心对称,则对称中心E点的坐标是().A . (0,0)B . (1,-1)C . (2,-1)D . (3,-1)2. (2分)在-3,-1,0,2这四个数中,最小的数是().A . -3B . -1C . 0D . 23. (2分)若分式有意义,则x的取值范围是()A . x≠5B . x≠-5C . x>5D . x>-54. (2分)若a+=2,则a2+的值为()A . 2B . 4C . 0D . -45. (2分)正八边形的中心角是()A . 45°B . 135°C . 360°D . 1080°6. (2分)数轴上的点并不都表示有理数,如图中数轴上的点P所表示的数是,这种说明问题的方式体现的数学思想方法叫做()A . 代入法B . 换元法C . 数形结合D . 分类讨论7. (2分)(2012·贺州) 分式方程的解是()A . 3B . ﹣3C . ±3D . 无解8. (2分) (2018九下·扬州模拟) 如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列不符合题意的是()A .B .C .D .9. (2分)如图,D、E分别是AB、AC的中点,则S△ADE:S△ABC=()A . 1∶2B . 1∶3C . 1∶4D . 2∶310. (2分)如图,已知直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b≤kx ﹣1的解集在数轴上表示正确的是()A .B .C .D .二、填空题 (共9题;共10分)11. (1分)(2017·河池) 分解因式:x2﹣9=________.12. (1分) (2018八下·深圳期中) 已知关于x的不等式组有且只有三个整数解,则a 的取值范围是________13. (2分) (2017八下·仁寿期中) 若方程有增根,则它的增根是________,m=________;14. (1分)如图,折叠长方形的一边AD,点D落在BC边的点F处,已知:AB=8cm,BC=10cm,则△EFC的周长=________cm.15. (1分)(2018·达州) 已知:m2﹣2m﹣1=0,n2+2n﹣1=0且mn≠1,则的值为________.16. (1分)在一个不透明的盒子里装有白球和红球共14个,其中红球比白球多4个,所有球除颜色不同外,其它方面均相同,摇匀后,从中摸出一个球为红球的概率为________.17. (1分) (2018八上·双城期末) 当m=________时,方程的解为1.18. (1分) (2018八上·苏州期末) 如图,△ABC中,AB=17,BC=10,CA=21,AM平分∠BAC,点D、E分别为AM、AB上的动点,则BD+DE的最小值是________.19. (1分)若∠A是锐角,cosA>,则∠A的取值范围是________ .三、解答题 (共9题;共93分)20. (10分)解方程(1)(2)3x2+4x=5.21. (10分)解方程:(1)x2﹣5x﹣6=0(2)=0.22. (10分)如图,将平行四边形ABCD沿对角线BD进行折叠,折叠后点C落在点F处,DF交AB于点E.(1)求证:三角形DEB是等腰三角形;(2)判断AF与BD是否平行,并说明理由.23. (11分)如图,把△ABC平移得到△DEF,使点A(-4,1)与点D(1,-2)对应。
2017-2018学年第二学期期末八年级数学试题(含答案)

2017—2018学年度第二学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.若x 是任意实数,下列各式中一定有意义的是 A.x B.2x C. 2x - D .12-x2.有下列二次根式:(1)12;(2)5.1;(3)23;(4)32.其中能与6合并的是 A .(1)和(2) B .(2)和(3) C .(1)和(3) D .(2)和(4)3.下列各组数中不能作为直角三角形的三边长的是A.5 ,5,10B. 9,12,17C. 7,24,25D. 0.6,0.8,14.在下列命题中,该命题的逆命题成立的是A .线段垂直平分线上的点到这条线段两个端点的距离相等B. 等边三角形是锐角三角形C. 如果两个角是直角,那么它们相等D. 如果两个实数相等,那么它们的平方相等5.顺次连接四边形各边中点得到的四边形一定是A.平行四边形B. 矩形C.菱形D.正方形 6.在□ABCD 中,AB =3,BC =4,当□ABCD 的面积最大时,下列结论中正确的有①AC =5; ②∠A +∠C =180°; ③AC ⊥BD ; ④AC =B D .A. ①②③B. ①②④C. ②③④D. ①③④7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若BE ∶EC =2∶1,则线段CH 的长是 A.3C.5D.6 8.下列式子中表示y 是x 的正比例函数的是A. 2x y = B. 22y x =C.2y x = D.22y x = 9.某油箱容量为60 L 的汽车,加满汽油后行驶了100 km 时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x km ,油箱中剩油量为y L ,那么y 与x 之间的函数解析式和自变量的取值范围分别是A. y =0.12x ,x >0B. y =60-0.12x ,x >0C. y =0.12x ,0≤x ≤500D. y =60-0.12x ,0≤x ≤50010.下列关于函数32y x =-+的表述中错误的是A. 函数32y x =-+的图象是一条经过点(0,2)的直线B. 函数32y x =-+的图象经过第一、二、四象限C. 函数32y x =-+的y 随x 的增大而增大D. 函数32y x =-+的图象可以由直线3y x =-向上平移2个单位长度而得到11.在期末考试中,某班的数学平均成绩为85分,方差为13.2,如果每名学生都多考5分,下列说法正确的是A.平均分不变,方差不变B. 平均分变大,方差不变C.平均分不变,方差变大D. 平均分变大,方差变大12.若一组数据1x ,2x ,…,n x 的方差是0,则 A.这组数据的中位数为0 B. 1x =2x =…=n x =0 C. 1x =2x =…=n x D. x =0第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.如果a 是7的小数部分,那么代数式542++a a 的值是 .14.已知一个等边三角形的边长是6,则这个三角形的面积是 .15.晨光中学规定学生的学期体育成绩满分为100,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次是95,90,85.则小桐这学期的体育成绩是 .16.一组数据7,4,x ,8的平均数为5,则这组数据的中位数是 .17.已知直线6y x =-交x 轴于点A ,与直线y kx =(k>0)交于点B ,若以坐标原点O 及 点A 、B 为顶点的三角形的面积是12,则k = .18.直线3y kx =+经过点A (2,1),则不等式3kx +≥0的解集是 .19.以方程236x y -=的解为坐标(x ,y )的所有点组成的图形是函数 的图象.20.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,OE ⊥BC ,垂足为点E ,若菱形ABCD 的面积是24,则OE = ___. 21.如图,在正方形ABCD 的外侧,作等边三角形DCE ,则∠AEB = .22.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为 .三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程.23.计算:(1)23)6229(27168÷---; (2))2520)(5052()52(2-+--.24.要从甲、乙两名射击运动员中挑选一人参加全国比赛,在最近的5次选拔赛中,他们的成绩如下(单位:环):甲:7 , 8 , 6 , 8 , 9 ; 乙:9 , 7 , 5 , 8 , 6.(1)求甲运动员这5次选拔赛成绩的中位数和众数分别是多少?(2)求乙运动员这5次选拔赛成绩的平均数和方差;(3)若已知甲运动员的选拔赛成绩的方差为 1.04,为了保证稳定发挥,应选哪位运动员参加比赛?25.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E .(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.A C D EB O (第20题图) (第21题图) ACDE B (第22题图)F A C D E B PN A C D E B M (第25题图) (第26题图)26.有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 米,A 、C 两点之间的距离是 米;若线段FG ∥x 轴,则此段时间中甲机器人的速度为 米/分;(2)若前3分钟甲机器人的速度保持不变,求线段EF 所在直线的函数解析式.27.如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,并且△ACB 的顶点B 在△ECD 的斜边DE 上,连接AE .(1)求证:AE =BD ;(2)若BD =3,BE =15,求BC 的长.28.如图,将矩形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,点D 的坐标是(-3,0),点B 的坐标是(1,2),过点A 作直线AE ∥OB 交y 轴于点E .(1)求直线AE 的函数解析式;(2)现将直线AE 沿射线AD 的方向以每秒1个单位长度的速度平移,设平移t 秒时该直线能被矩形ABCD 的边截出线段,则t 的取值范围是 ;(3)在(2)的条件下,求t 取何值时,该线段与矩形的边及线段OB 所围成的四边形恰为菱形?并说明理由.(第28题图) A E xO D C B y A C D E B (第27题图)2017—2018学年第二学期八年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.8 ; 14. 15.88.5 ; 16.5.5; 17.2;18.x ≤3; 19.223y x =-; 20. 2.4 ; 21.30°; 22三、解答题:(共74分)23. (1)23)6229(27168÷---=(3- ………………………………………………4分=3; ………………………………………………5分(2))2520)(5052()52(2-+--=72050--() ………………………………………………9分=37-. ………………………………………………10分4分6分 7分9分 10分11分12分∴∠CAD =12CAB ∠, ………………………………………………2分 ∵AN 是△ABC 外角∠CAM 的平分线,∴∠CAE =12CAM ∠, ………………………………………………3分∴∠DAE =∠CAD +∠CAE =12×180°=90°, ……………………5分 又∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =∠DAE =90°, …………………………………6分 ∴四边形ADCE 为矩形. ………………………………………7分(2)当△ABC 满足∠BAC =90°时,四边形ADCE 是正方形. …………9分 证明:∵AB =AC ,AD ⊥BC ,∴DC =BD , ………………………………………10分又∠BAC =90°∴DC =AD . (11)分由(1)知四边形ADCE 为矩形,∴矩形ADCE 是正方形. ………………………………………12分26. 解:(1)70;490;60; ………………………………………6分(2)由图象可知,前3分钟甲机器人的速度为60+70÷2=95(米/分) ………………………………………7分 ∵(3-2)×(95﹣60)=35,∴点F 的坐标为(3,35), ………………………………………9分 又点E 的坐标为(2,0),设线段EF 所在直线的函数解析式为y =kx +b ,则335,20,k b k b +=⎧⎨+=⎩………………………………………11分 解得 35,70.k b =⎧⎨=-⎩………………………………………12分 ∴线段EF 所在直线的函数解析式为y =35x ﹣70. …………………………13分27. (1)证明:∵∠BCA =∠DCE =90°,∴∠BCA -∠BCE =∠DCE -∠BCE ,即∠ACE =∠DCB , …………………………………2分 又CA =CB ,CE =CD ,∴△ACE ≌△BCD , …………………………………4分 ∴AE =BD ; …………………………………5分(2)∵△ECD 都是等腰直角三角形,∴∠CE D =∠D =45°, …………………………………6分 ∵△ACE ≌△BCD ,∴∠CEA =∠D =45°,8分 ∴∠BEA =∠CED +∠CEA =90°, …………………………………9分又∴22231518AB AE BE =+=+=, …………………………………11分 ∵△ACB 是等腰直角三角形,CA =CB ,∴22222AB AC BC BC =+=, …………………………………12分∴2218BC =, ∴BC =3. …………………………………13分28.解:(1)∵点B 的坐标是(1,2),∴OA =1,AB =2,点A 的坐标是(1,0), …………………………………3分 ∵由题意知,AB ∥OE ,AE ∥OB ,∴四边形ABOE 是平行四边形, …………………………………4分 ∴OE =AB =2,∴点E 的坐标是(0,-2), …………………………………5分 设直线AE 的函数解析式为y =kx +b ,则 0,2,k b b +=⎧⎨=-⎩ ………………………………………6分 解得 2,2.k b =⎧⎨=-⎩ ………………………………………7分∴线段AE所在直线的函数解析式为y=2x﹣2. ………………………………8分(2)0<t <5;………………………………………10分(3)当t 1时,所围成的四边形恰为菱形.…………………………12分理由:∵∠OAB=90°,OA=1,AB=2,∴13分设t 与AD、BC分别交于点E、F,根据题意可知,此时OE OB,且OB∥EF,OE∥BF,∴四边形FBOE是菱形,即t OB所围成的四边形恰为菱形.…………………………14分。
2017-2018学年福建省泉州市南安市八年级(下)期末数学试卷(解析版)

2017-2018学年福建省泉州市南安市八年级(下)期末数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)下列各式中,计算正确的是()A.(﹣2018)0=0B.(﹣3)﹣1=3C.(﹣3)2=﹣6D.10﹣2=2.(4分)某种流感病毒的直径是0.000000085米,这个数据用科学记数法表示为()A.0.85×10﹣7B.85×10﹣7C.8.5×10﹣8D.8.5×1083.(4分)在平面直角坐标系中,点P(﹣1,3)关于y轴对称点的坐标是()A.(1,3)B.(1,﹣3)C.(﹣1,﹣3)D.(﹣1,3)4.(4分)在函数中,自变量x的取值范围是()A.x≠﹣2B.x>﹣2C.x≠0D.x≠25.(4分)在一次期末考试中,某一小组的5名同学的数学成绩(单位:分)分别是130,100,108,110,120,则这组数据的中位数是()A.100B.108C.110D.1206.(4分)下列选项中,平行四边形不一定具有的性质是()A.两组对边分别平行B.两组对边分别相等C.对角线互相平分D.对角线相等7.(4分)已知反比例函数y=,当x>0时,y随x的增大而增大,则m的值可能是()A.1B.2C.3D.48.(4分)如图,已知四边形ABCD为菱形,AD=5cm,BD=6cm,则此菱形的面积为()A.12cm2B.24cm2C.48cm2D.96cm29.(4分)如图,矩形ABCD中,对角线AC、BD交于点O.若∠AOB=60°,BD=10,则AB的长为()A.5B.5C.4D.310.(4分)如下图,平行四边形ABCD的周长为40,△BOC的周长比△AOB的周长多10,则AB长为()A.20B.15C.10D.5二、填空题:本题共6小题,每小题4分,共24分.11.(4分)当x=时,分式的值为零.12.(4分)一次函数y=2x+3的图象不经过第象限.13.(4分)已知函数y=﹣2x+6,当x=时,函数的值为0.14.(4分)甲、乙两人各进行10次射击比赛,平均成绩均为9环,方差分别是:S甲2=2,S乙2=4,则射击成绩较稳定的是(选填“甲”或“乙”).15.(4分)如图,四边形ABCD是正方形,以AB为一边在正方形外部作等边三角形ABE,连结DE,则∠BED=°.16.(4分)如图,▱ABCD中,AE⊥BC于E,AF⊥DC于F,BC=5,AB=4,AE=3,则AF的长为.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)先化简,再求值:﹣,其中x=5.18.(8分)自1996年起,我国确定每年3月份最后一周的星期一,为全国中小学生“安全教育日”.2018年3月26日是第二十三个全国中小学生安全教育日.某中学八年级开展了交通安全为主题的演讲比赛.其中两名参赛选手的各项得分如表:如果规定:演讲内容、演讲技巧、仪表形象按6:3:1计算成绩,那么甲、乙两人的成绩谁更高?19.(8分)为宣传社会主义核心价值观,某学校计划制作一些宣传栏,已知制作一个乙宣传栏的费用是制作一个甲宣传栏费用的1.5倍,学校计划用2000元制作若干个甲宣传栏,用1500元制作若干个乙宣传栏,那么制作的甲宣传栏比乙宣传栏多2个,求制作一个甲宣传栏的费用是多少元?20.(8分)已知,AD是△ABC的角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F.求证:四边形AEDF是菱形.21.(8分)求证:对角线相等的平行四边形是矩形.(要求:画出图形,写出已知和求证,并给予证明)22.(10分)如图,在平面直角坐标系中,O为坐标原点,▱AOBC的顶点A、C的坐标分别为A(﹣2,0)、C(0,3),反比例函数的图象经过点B.(1)求反比例函数的表达式;(2)这个反比例函数的图象与一个一次函数的图象交于点B、D(m,1),根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.23.(10分)甲、乙两人参加从A地到B地的长跑比赛,两人在比赛时所跑的路程y(米)与时间x(分钟)之间的函数关系如图所示,请你根据图象,回答下列问题:(1)(填“甲”或“乙”)先到达终点;甲的速度是米/分钟;(2)求:甲与乙相遇时,他们离A地多少米?24.(12分)如图,矩形ABCD中,点E、F、G、H分别AB、BC、CD、DA边上的动点,且AE=BF=CG=DH.(1)求证:四边形EFGH是平行四边形;(2)在点E、F、G、H运动过程中,判断直线GE是否经过某一定点,如果是,请证明你的结论;如果不是,请说明理由.25.(14分)如图,在平面直角坐标系中,O为坐标原点,矩形OABC的顶点A(12,0)、C(0,9),将矩形OABC的一个角沿直线BD折叠,使得点A落在对角线OB上的点E 处,折痕与x轴交于点D.(1)线段OB的长度为;(2)求直线BD所对应的函数表达式;(3)若点Q在线段BD上,在线段BC上是否存在点P,使以D,E,P,Q为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由.2017-2018学年福建省泉州市南安市八年级(下)期末数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:A、(﹣2018)0=1,故此选项错误;B、(﹣3)﹣1=﹣,故此选项错误;C、(﹣3)2=9,故此选项错误;D、10﹣2=,正确.故选:D.2.【解答】解:0.000000085米,这个数据用科学记数法表示为8.5×10﹣8.故选:C.3.【解答】解:点P(﹣1,3)关于y轴对称点的坐标是(1,3).故选:A.4.【解答】解:根据题意可得x+2≠0;解得x≠﹣2.故选:A.5.【解答】解:将这组数据按从小到大的顺序排列为:100,108,110,120,130,处于中间位置的那个数是110,由中位数的定义可知,这组数据的中位数是110.故选:C.6.【解答】解:A、两组对边分别平行,平行四边形一定具有的性质,故此选项错误;B、两组对边分别相等,平行四边形一定具有的性质,故此选项错误;C、对角线互相平分,平行四边形一定具有的性质,故此选项错误;D、对角线相等,平行四边形不具有的性质,故此选项正确;故选:D.7.【解答】解:∵反比例函数y=,当x>0时,y随x的增大而增大,∴3﹣m<0,∴m>3,∴m可以取4,故选:D.8.【解答】解:设AC交BD于O.∵四边形ABCD是菱形,∴AC⊥BD,∵AD=5cm,OD=OB=BD=3cm,∴OA==4,∴AC=2OA=8,∴S菱形ABCD=×AC×BD=24,故选:B.9.【解答】解:∵四边形ABCD是矩形,∴AC=BD,AO=BO=CO=DO,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=BD=5.故选:B.10.【解答】解:∵△AOB的周长比△BOC的周长少10cm 即BC﹣AB=10cm,∵周长是40cm,即BC+AB=20cm,∴AB=5cm.故选:D.二、填空题:本题共6小题,每小题4分,共24分.11.【解答】解:由分子x2﹣4=0⇒x=±2;而x=2时,分母x+2=2+2=4≠0,x=﹣2时分母x+2=0,分式没有意义.所以x=2.故答案为:2.12.【解答】解:∵一次函数y=2x+3的k=2>0,b=3>0,∴图象过1,2,3象限,∴一次函数y=2x+3的图象不经过第四象限.13.【解答】解:令y=0得:﹣2x+6=0,解得:x=3,故答案为:3.14.【解答】解:因为甲的方差最小,所以射击成绩较稳定的是甲;故答案为:甲15.【解答】解:∵四边形ABCD是正方形,△AEB为等边三角形,∴∠AD=AE,∠DAB=90°,∠BAE=∠AEB=60°,∴∠DAE=150°,∴∠AED=×(180°﹣150°)=15°,∴∠BED=∠AEB﹣∠AED=60°﹣15°=45°.故答案为:45°.16.【解答】解:连接AC,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,在△ABC和△CDA中,,∴△ABC≌△CDA(SSS),∴S△ABC=S△CDA,即BC•AE=CD•AF,∵CD=AB=4,∴AF=.故答案为:.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.【解答】解:原式=•﹣=﹣=﹣=,=,当x=5时,原式===﹣.18.【解答】解:甲的得分为=92.5(分),乙的得分为=91.5(分),∵92.5>91.5,∴甲的成绩更高.19.【解答】解:设制作一个甲宣传栏的费用是x元,则制作一个乙宣传栏的费用是1.5x元,根据题意得:﹣=2,解得:x=500,经检验,x=500是原方程的解.答:制作一个甲宣传栏的费用是500元.20.【解答】证明:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∠EDA=∠F AD,∵AD是△ABC的角平分线,∴∠EAD=∠F AD,∴∠EAD=∠EDA,∴EA=ED,∴四边形AEDF为菱形.21.【解答】已知:如图,在▱ABCD中,AC=BD.求证:▱ABCD是矩形,证明:方法一:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AC=BD,BC=BC,∴△ABC≌△DCB.∴∠ABC=∠DCB,∵AB∥CD,∴∠ABC+∠DCB=180°.∴∠ABC=°=90°,∴▱ABCD是矩形,方法二:设AC,BD交于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AC=BD,∴OA=OC=OB.∴∠1=∠3,∠2=∠4,∴∠ABC=∠1+∠2=°=90°,∴▱ABCD是矩形.22.【解答】解:(1)∵四边形ABCD是平行四边形,∴OA=BC,OA∥BC,而A(﹣2,0)、C(0,3),∴B(2,3);设所求反比例函数的表达式为y=(k≠0),把B(2,3)代入得k=2×3=6,∴反比例函数解析式为y=;(2)把D(m,1)代入y=得m=6,则D(6,1),∴当0<x<2或x>6时,反比例函数的值大于一次函数的值.23.【解答】解:(1)由函数图象可知甲跑完全程需要20分钟,乙跑完全程需要16分钟,所以乙先到达终点;甲的速度==250 米/分钟.故答案为:乙;250.(2)设甲跑的路程y(米)与时间x(分钟)之间的函数关系式为y=kx,根据图象,可得y=x=250x.设甲乙相遇后(即10<x<16 ),乙跑的路程y(米)与时间x(分钟)之间的函数关系式为:y=kx+b.根据图象,可得解得所以,y=500x﹣3000.由,解得.答:甲与乙相遇时,他们离A地3000米.24.【解答】解:(1)证明:∵四边形ABCD为矩形,∴BC=AD,∠A=∠C=90°,∵BF=DH,∴BC﹣BF=AD﹣DH,即CF=AH,又AE=CG,∴△HAE≌△FCG,∴HE=FG,同理可证:HG=FE,∴四边形EFGH是平行四边形.(2)直线GE经过一个定点,这个定点为矩形的对角线AC、BD的交点.理由如下:如图,连结AC、AG、CE,设AC、EG的交点为M.∵AE∥CG,AE=CG,∴四边形AECG是平行四边形,∴MA=MG,MG=ME,即点M为AC的中点,又矩形ABCD的对角线互相平分∴点M为矩形对角线ACBD的交点,∴直线GE总过AC、BD的交点M.25.【解答】解:(1)在Rt△ABC中,∵OA=12,AB=9,∴OB===15.故答案为15.(2)如图,设AD=x,则OD=OA=AD=12﹣x,根据轴对称的性质,DE=x,BE=AB=9,又OB=15,∴OE=OB﹣BE=15﹣9=6,在Rt△OED中,OE2+DE2=OD2,即62+x2=(12﹣x)2,解得x=,∴OD=OA﹣AD=12﹣=,∴点D(,0),设直线BD所对应的函数表达式为:y=kx+b(k≠0)则,解得,∴直线BD所对应的函数表达式为:y=2x﹣15.(3)过点E作EP∥BD交BC于点P,过点P作PQ∥DE交BD于点Q,则四边形DEPQ 是平行四边形,再过点E作EF⊥OD于点F,由•OE•DE=•DO•EF,得EF==,即点E的纵坐标为,又点E在直线OB:y=x上,∴=x,解得x=,∴E(,),由于PE∥BD,所以可设直线PE:y=2x+n,∵E(,),在直线EP上∴=2×+n,解得n=﹣6,∴直线EP:y=2x﹣6,令y=9,则9=2x﹣6,解得x=,∴P(,9).。
2017-2018学年福建省泉州市泉港区八年级(下)期末数学试卷

2017-2018学年福建省泉州市泉港区八年级(下)期末数学试卷一、选择题(每小题4分,共40分)1.点(﹣5,1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.宇宙船使用的陀螺仪直径要求误差不能超过0.00000012米.用科学记数法表示为()A.1.2×10﹣7米 B.1.2×107米C.1.2×10﹣6米 D.1.2×106米3.方程的解是()A.x=3 B.x=2 C.x=1 D.x=﹣14.下列四组条件中,不能判定四边形ABCD是平行四边形的是()A.AB∥DC,AD=BC B.AB∥DC,AB=DC C.AB∥DC,AD∥BC D.AB=DC,AD=BC5.正方形、菱形、矩形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直 D.对角线平分一组对角6.已知一组数据2、x、7、3、5、3、2的众数是2,则这组数据的中位数是()A.2 B.2.5 C.3 D.57.某中学制作了108件艺术品,现用A、B两种不同的包装箱进行包装,已知每个B型包装箱比A型包装箱多装5件艺术品,单独使用B型包装箱比单独使用A型包装箱可少用2个.设B型包装箱每个可以装x件艺术品,根据题意列方程为()A.B.C.D.8.已知四边形ABCD是平行四边形,则下列结论中正确的是()A.当AB⊥BD时,它是菱形B.当AC=BD时,它是正方形C.当∠ABC=90°时,它是矩形D.当AB=BC时,它是矩形9.某校有15名同学参加区数学竞赛.已知有8名同学获奖,他们的竞赛得分均不相同.若知道某位同学的得分.要判断他能否获奖,在下列15名同学成绩的统计量中,只需知道()A.方差B.平均数C.众数D.中位数10.已知函数y1=和y2=ax+5的图象相交于A(1,n),B(n,1)两点.当y1>y2时,x的取值范围是()A.x≠1 B.0<x<1 C.1<x<4 D.0<x<1或x>4二、填空题(每题4分,共24分)11.函数y=的自变量x的取值范围为.12.已知A(﹣2,3)与点B关于x轴对称,则点B的坐标是.13.甲、乙两人进行射击测试,每人射击10次.射击成绩的平均数相同,射击成绩的方差分别为S甲2=5,S乙2=3.5,则射击成绩比较稳定的是(填“甲”或“乙“).14.在菱形ABCD中,AC=30,BD=60,则菱形ABCD的面积为.15.(4.00分)将直线y=ax+5的图象向下平移2个单位后,经过点A(2,1),则平移后的直线解析式为.16.如图,EF⊥AD,将平行四边形ABCD沿着EF对折.设∠1的度数为n°,则∠C=.(用含有n的代数式表示)三、解答题(共86分).17.(8分)计算:18.(8分)先化简,再求值:,其中x=﹣5.19.(8分)如图,在平行四边形ABCD中,E、F分别是AD、BC的中点,连结BE、DF.求证:BE=DF.20.(8.00分)九年一班竞选班长时,规定:思想表现、学习成绩、工作能力三个方面的重要性之比为3:3:4.请根据下表信息,确定谁会被聘选为班长:21.(8分)反比例函数y=的图象经过A(﹣2,1)、B(1,m)、C(2,n)两点,试比较m、n大小.22.(10分)如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若点E到CD的距离为2,CD=3,试求出矩形ABCD的面积.23.(10分)已知:直线y=2x+6、直线y=﹣2x﹣4与y轴的交点分别为A点、B 点.(2)若两直线相交于点C,试求△ABC的面积.24.(13分)如图,在△ABC中,CE平分∠ACB交AB于E点,DE∥BC,DF∥AB.(1)若∠BCE=25°,请求出∠ADE的度数;(2)已知:BF=2BE,DF交CE于P点,连结BP,AB⊥BP.①猜想:△CDF的边DF与CD的数量关系,并说明理由;②取DE的中点N,连结NP.求证:∠ENP=3∠DPN.25.(13分)如图,在平面直角坐标系中,点D是正方形OABC的边AB上的动点,OC=6.以AD为一边在AB的右侧作正方形ADEF,连结BF交DE于P点.(2)在点D的运动过程中,OD与BF是否存在特殊的位置关系?若存在,试写出OD与BF的位置关系,并证明;若不存在,请说明理由.(3)当P点为线段DE的三等分点时,试求出AF的长度.2017-2018学年福建省泉州市泉港区八年级(下)期末数学试卷答案一、选择题(每小题4分,共40分)1.【解答】解:点(﹣5,1)在第二象限.故选:B.2.【解答】解:0.00000012米=1.2×10﹣7米,故选:A.3.【解答】解:去分母得:2x=x﹣1,解得:x=﹣1,经检验x=﹣1是分式方程的解,故选:D.4.【解答】解:A、∵AB∥CD,AD=BC,∴四边形ABCD可能是平行四边形,有可能是等腰梯形.故选项A不可以判断四边形ABCD是平行四边形B、根据平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形,故选项B可以判断四边形ABCD是平行四边形;C、根据平行四边形的判定定理:两组对边分别平行的四边形是平行四边形,故选项C可以判断四边形ABCD是平行四边形;D、根据平行四边形的判定定理:两组对边分别相等的四边形是平行四边形,故选项D可以判断四边形ABCD是平行四边形;故选:A.5.【解答】解:∵正方形的对角线互相平分,互相垂直,相等且平分一组对角,菱形的对角线互相平分,互相垂直且平分一组对角,矩形的对角线互相平分且相等,∴正方形、菱形、矩形都具有的性质是:对角线互相平分.故选:B.6.【解答】解:数据2,x,7,3,5,3,2的众数是2,说明2出现的次数最多,x是未知数时2,3,均出现两次,∴x=2.这组数据从小到大排列:2,2,2,3,3,5,7.处于中间位置的数是3,因而的中位数是3.故选:C.7.【解答】解:根据题意,得:,故选:B.8.【解答】解:A、当AB⊥BD时,∠ABD=90°,则∠ABC>90°,当AC⊥BD,四边形ABCD是菱形,故A错误;B、由四边形ABCD是平行四边形,AC=BD,则四边形ABCD为矩形,故B错误;C、当∠ABC=90°时,四边形ABCD是矩形,故C正确;D、由四边形ABCD是平行四边形,AB=BC,则四边形ABCD为菱形,故D错误.故选:C.9.【解答】解:由于总共有15个人,且他们的分数互不相同,第8名的成绩是中位数,要判断是否得奖,故应知道自已的成绩和中位数.故选:D.10.【解答】解:∵A、B关于直线y=x对称,∴AB⊥直线y=x,∴直线AB的解析式为y=﹣x+5,∴A(1,4),B(4,1),∴当y1>y2时,x的取值范围是0<x<1或x>4,故选:D.二、填空题(每题4分,共24分)11.【解答】解:由题意,得x﹣5≠0,解得x≠5,故答案为:x≠5.12.【解答】解:∵A(﹣2,3)与点B关于x轴对称,∴对称点B的坐标是(﹣2,﹣3).故答案为:(﹣2,﹣3).13.【解答】解:因为乙的方差最小,所以射击成绩比较稳定的是乙,故答案为:乙.14.【解答】解:∵菱形ABCD的对角线AC=30,BD=60,∴菱形ABCD的面积为:AC•BD=×30×60=900.故答案为:900.15.【解答】解:直线y=ax+5的图象向下平移2个单位后得y=ax+3,∵经过点(2,1),∴1=2a+3,解得:a=﹣1,平移后的直线的解析式为y=﹣x+3,故答案为:y=﹣x+3.16.【解答】解:∵四边形ABCD是平行四边形,∴∠B=180°﹣∠C,由折叠的性质可知,∠GHC=∠C,∴∠GHB=180°﹣∠C,由三角形的外角的性质可知,∠1=∠GHB+∠B=360°﹣2∠C,∴360°﹣2∠C=n°,解得,∠C=180°﹣n°,故答案为:180°﹣n°.三、解答题(共86分).17.【解答】解:原式=7﹣1﹣8=﹣2.18.【解答】解:原式=•=x+2,当x=﹣5时,原式=﹣5+2=﹣3.19.【解答】解:证明:∵四边形ABCD是平行四边形,∴AD=BCAD∥BC,∵E、F分别是AD、BC的中点,∴DE=AD,BF=BC,∴DE=BF,DE∥BF,∴四边形BFDE是平行四边形,∴BE=DF.20.【解答】解:小明的成绩=94×0.3+96×0.3+98×0.4=96.2(分);小英的成绩=98×0.3+96×0.3+94×0.4=95.8(分);∵96.2>95.8,∴小明会被聘选为班长.21.【解答】解:∵反比例函数y=,它的图象经过A(﹣2,1),1=,k=﹣2∴y=,将B,C两点代入反比例函数得,m==﹣2,n==﹣1,∴m<n故答案为:m<n22.【解答】证明:(1)∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是矩形,∴AC=BD,OD=BD,OC=AC,∴OC=OD,∴▱OCED是菱形;(2)∵点E到CD的距离为2,CD=3,∴△DEC的面积=,∴矩形ABCD的面积=4×3=12.23.【解答】解:(1)令x=0,则y=6、y=﹣4则点A的坐标为(0,6)、B的坐标(0,﹣4);(2)联立方程组可得,解得,故△ABC的面积为(6+4)×2.5÷2=12.5.24.【解答】解:(1)∵CE平分∠ACB交AB于E点,∴∠ACB=2∠BCE,∵∠BCE=25°,∴∠ACB=50°,∵DE∥BC,∴∠ADE=∠ACB=50°;(2)①∵DE∥BC,DF∥AB,∴四边形BEDF是平行四边形,∴DE=BF,DF=BE,∵BF=2BE,∴DE=2DF,∵CE平分∠ACB交AB于E点,∴∠BCE=∠ACE,∵DE∥BC,∴∠DEC=∠BCE,∴∠DEC=∠DCE,∴CD=DE,∵DE=2DF,∴CD=2DF;(3)如图,延长PN交AB于G,∵DF∥AB,∴∠EGN=∠DPN,∵∠ENG=∠DNP,∵点N是DE中点,∴EN=DN,∴△ENG≌△DNP(AAS),∴∠EGN=∠DPN,GN=PN,∵AB⊥BP,∴∠ABP=90°,∴BN=GN,∴∠EGN=∠EBN,∵DE=2EN,DE=2BE,∴EN=BE,∴∠ENB=∠EBN=∠EGN=∠DPN,过点N作NH∥BE交BC于H,∵BE∥DF,∴NH∥DF,∴∠PNH=∠DPN,∵EN∥BH,NH∥BE,∴四边形BENH是平行四边形,∵BE=EN,∴▱BENH是菱形,∵BE是菱形对角线,∴∠BNH=∠BNE=DPN,∴∠ENP=∠BNE+∠BNH+∠PNH=∠DPN+∠DPN+∠DPN=3∠DPN.25.【解答】解:(1)∵四边形OABC是正方形,∴BC⊥OC,AB⊥OA,OB=AB=BC=OC,∵OC=6,∴BC=AB=6,∴A(6,0),B(6,6);(2)OD⊥BF,理由:如图,延长OD交BF于G,∵四边形ADEF是正方形,∴AD=AF,∠BAF=∠OAD,在△AOD和△BAF中,,∴△AOD≌△BAF(SAS),∴∠AOD=∠BAF,∴∠BAF+∠AFB=90°,∴∠AOD+AFB=90°,∴∠OGF=90°,∴OD⊥BF;(3)设正方形ADEF的边长为x,∴AF=AD=DE=x,∴BD=AB﹣AD=6﹣x,∵点P是DE的三等分点,∴DP=AF=x或DP=AF=x∵DE∥AF,∴△BDP∽△BAF,∴,∴或=,∴x=4或x=2,当P点为线段DE的三等分点时,AF的长度为2或4.。
2017-2018学年八年级(下)期末数学试卷(含答案)

2017-2018学年八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.若分式的值为零,则x等于()A.﹣l B.1 C.D.02.下列根式中,与是同类二次根式的是()A.B.C.D.3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.4.已知1<x≤2,则|x﹣3|+的值为()A.2x﹣5 B.﹣2 C.5﹣2x D.25.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.6.在函数(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y27.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是()A. B. C. D.8.反比例函数的图象如图所示,则这个反比例函数的解析式可能是()A.B.C.D.9.如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是()A.△AED≌△BFA B.DE﹣BF=EF C.△BGF∽△DAE D.DE﹣BG=FG 10.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=2,FD=4,则BC的长为()A.6B.2C.4D.4二、填空题(本大题共8小题,每小题3分,共24分,请把答案直接填写在答卷纸相应位置上)11.在函数y=中,自变量x的取值范围是.12.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD 的长为.13.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是.14.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD=.15.代数式a+2﹣+3的值等于.16.已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于.17.如图,直线与双曲线(k>0)在第一象限内的交点为R,与x 轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于.18.如图所示,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=.三、解答题(本大题共9小题,共56分,请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)﹣()2﹣+|﹣2|(2)(﹣)÷.20.解分式方程:(1)=(2)=﹣1.21.先化简,再求值:(1﹣)÷,其中a=﹣1.22.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.23.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.24.如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′(),B′(),C′();(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为().25.如图在平面直角坐标系xOy中,反比例函数y1=(x>0)的图象与一次函数y2=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图象,直接写出使y1≥y2的x的取值范围;(3)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,请写出点P的坐标.26.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.27.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C 的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,若P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,若△APQ与△ADB相似,求出m的值.参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.若分式的值为零,则x等于()A.﹣l B.1 C.D.0【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得x+1=0,且3x﹣2≠0,再解即可.【解答】解:由题意得:x+1=0,且3x﹣2≠0,解得:x=﹣1,故选:A.2.下列根式中,与是同类二次根式的是()A.B.C.D.【考点】同类二次根式.【分析】运用化简根式的方法化简每个选项.【解答】解:A、=2,故A选项不是;B、=2,故B选项是;C、=,故C选项不是;D、=3,故D选项不是.故选:B.3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义和图形的特点即可求解.【解答】解:由中心对称图形的定义知,绕一个点旋转180°后能与原图重合,只有选项B是中心对称图形.故选:B.4.已知1<x≤2,则|x﹣3|+的值为()A.2x﹣5 B.﹣2 C.5﹣2x D.2【考点】二次根式的性质与化简.【分析】首先根据x的范围确定x﹣3与x﹣2的符号,然后即可化简二次根式,然后合并同类项即可.【解答】解:∵1<x≤2,∴x﹣3<0,x﹣2≤0,∴原式=3﹣x+(2﹣x)=5﹣2x.故选C.5.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.【考点】概率公式.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:∵小明的讲义夹里放了大小相同的试卷共12页,数学2页,∴他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为=.故选C.6.在函数(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y2【考点】反比例函数图象上点的坐标特征.【分析】先判断出﹣k2﹣2<0的符号,再根据反比例函数的性质进行比较.【解答】解:∵﹣k2﹣2<0,∴函数图象位于二、四象限,∵(﹣2,y1),(﹣1,y2)位于第二象限,﹣2<﹣1,∴y2>y1>0;又∵(,y3)位于第四象限,∴y3<0,∴y2>y1>y3.故选B.7.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是()A. B. C. D.【考点】相似三角形的判定.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,AC=,BC=2,∴AC:BC:AB=:2:=1::,A、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;B、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选C.8.反比例函数的图象如图所示,则这个反比例函数的解析式可能是()A.B.C.D.【考点】反比例函数的图象.【分析】首先设出函数关系式,根据图象可以计算出k的取值范围,再根据k的取值范围选出答案即可.【解答】解:设函数关系式为y=(k≠0),当函数图象经过A(1,2)时,k=1×2=2,当函数图象经过B(﹣2,﹣2)时,k=(﹣2)×(﹣2)=4,由图象可知要求的函数解析式的k的取值范围必是:2<k<4,故选:C.9.如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是()A.△AED≌△BFA B.DE﹣BF=EF C.△BGF∽△DAE D.DE﹣BG=FG【考点】相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.【分析】由四边形ABCD是正方形,可得AB=AD,由DE⊥AG,BF∥DE,易证得BF⊥AG,又由同角的余角相等,可证得∠BAF=∠ADE,则可利用AAS判定△AED ≌△BFA;由全等三角形的对应边相等,易证得DE﹣BF=EF;有两角对应相等的三角形相似,可证得△BGF∽△DAE;利用排除法即可求得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,AD∥BC,∵DE⊥AG,BF∥DE,∴BF⊥AG,∴∠AED=∠DEF=∠BFE=90°,∵∠BAF+∠DAE=90°,∠DAE+∠ADE=90°,∴∠BAF=∠ADE,∴△AED≌△BFA(AAS);故A正确;∴DE=AF,AE=BF,∴DE﹣BF=AF﹣AE=EF,故B正确;∵AD∥BC,∴∠DAE=∠BGF,∵DE⊥AG,BF⊥AG,∴∠AED=∠GFB=90°,∴△BGF∽△DAE,故C正确;∵DE,BG,FG没有等量关系,故不能判定DE﹣BG=FG正确.故选D.10.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=2,FD=4,则BC的长为()A.6B.2C.4D.4【考点】翻折变换(折叠问题);矩形的性质.【分析】首先过点E作EM⊥BC于M,交BF于N,易证得△ENG≌△BNM(AAS),MN是△BCF的中位线,根据全等三角形的性质,即可求得GN=MN,由折叠的性质,可得BG=6,继而求得BF的值,又由勾股定理,即可求得BC的长.【解答】解:过点E作EM⊥BC于M,交BF于N,∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD=BC,∵∠EMB=90°,∴四边形ABME是矩形,∴AE=BM,由折叠的性质得:AE=GE,∠EGN=∠A=90°,∴EG=BM,在△ENG与△BNM中,,∴△ENG≌△BNM(AAS),∴NG=NM,∴CM=DE,∵E是AD的中点,∴AE=ED=BM=CM,∵EM∥CD,∴BN:NF=BM:CM,∴BN=NF,∴NM=CF=1,∴NG=1,∵BG=AB=CD=CF+DF=6,∴BN=BG﹣NG=6﹣1=5,∴BF=2BN=10,∴BC===4.故选D.二、填空题(本大题共8小题,每小题3分,共24分,请把答案直接填写在答卷纸相应位置上)11.在函数y=中,自变量x的取值范围是x≥1.【考点】函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣1≥0,解不等式可求x的范围.【解答】解:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.12.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD 的长为4.【考点】射影定理.【分析】根据射影定理得到:CD2=AD•BD,把相关线段的长度代入计算即可.【解答】解:∵在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,∴CD2=AD•BD=8×2,则CD=4.故答案是:4.13.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是【考点】频数(率)分布直方图.【分析】由每一组内的频数总和等于总数据个数得到学生总数,再由频率=频数÷数据总和计算出成绩在90.5~95.5这一分数段的频率.【解答】解:读图可知:共有(1+4+10+15+20)=50人,其中在90.5~95.5这一分数段有20人,则成绩在90.5~95.5这一分数段的频率是=0.4.故本题答案为:0.4.14.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD= 2.【考点】三角形中位线定理.【分析】由题意可知EF是△ADC的中位线,由此可求出AD的长,再根据中线的定义即可求出BD的长.【解答】解:∵点E、F分别是AC、DC的中点,∴EF是△ADC的中位线,∴EF=AD,∵EF=1,∵CD是△ABC的中线,∴BD=AD=2,故答案为:2.15.代数式a+2﹣+3的值等于4.【考点】二次根式有意义的条件.【分析】根据二次根式的意义先求出a的值,再对式子化简.【解答】解:根据二次根式的意义,可知,解得a=1,∴a+2﹣+3=1+3=4.16.已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于﹣3.【考点】分式的化简求值.【分析】将a2+3ab+b2=0转化为a2+b2=﹣3ab,原式化为=,约分即可.【解答】解:∵a2+3ab+b2=0,∴a2+b2=﹣3ab,∴原式===﹣3.故答案为:﹣3.17.如图,直线与双曲线(k>0)在第一象限内的交点为R,与x 轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于.【考点】反比例函数综合题.【分析】先求出Q的坐标为(0,﹣2),P点坐标为(,0),易证Rt△OQP ∽Rt△MRP,根据三角形相似的性质得到==,分别求出PM、RM,得到OM的长,从而确定R点坐标,然后代入(k>0)求出k的值.【解答】解:对于y=x﹣2,令x=0,则y=﹣2,∴Q的坐标为(0,﹣2),即OQ=2;令y=0,则x=,∴P点坐标为(,0),即OP=;∵Rt△OQP∽Rt△MRP,而△OPQ与△PRM的面积是4:1,∴==,∴PM=OP=,RM=OQ=1,∴OM=OP+PM=,∴R点的坐标为(,1),∴k=×1=.故答案为.18.如图所示,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ=CE 时,EP+BP=8.【考点】相似三角形的判定与性质.【分析】如图,延长EF交BQ的延长线于G.首先证明PB=PG,EP+PB=EG,由EG∥BC,推出==2,即可求出EG解决问题.【解答】解:如图,延长EF交BQ的延长线于G.∵EG∥BC,∴∠G=∠GBC,∵∠GBC=∠GBP,∴∠G=∠PBG,∴PB=PG,∴PE+PB=PE+PG=EG,∵CQ=EC,∴EQ=2CQ,∵EG∥BC,∴==2,∵BC=4,∴EG=8,∴EP+PB=EG=8,故答案为8三、解答题(本大题共9小题,共56分,请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)﹣()2﹣+|﹣2|(2)(﹣)÷.【考点】二次根式的混合运算;分式的混合运算.【分析】(1))原式各项化为﹣3﹣3+2﹣,合并同类二次根式即可得到结果.(2)先计算括号里面的分式的减法,再分式的除法的方法计算.【解答】(1)解:(1)原式=﹣3﹣3+2﹣=﹣1﹣3;(2)原式=﹣=.20.解分式方程:(1)=(2)=﹣1.【考点】解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母,得x+2=3,解得:x=1经检验,x=1是增根,原方程无解;(2)去分母,得3(5x﹣4)=﹣(4x+10)﹣3(x﹣2),解得:x=,经检验,x=是原方程的解.21.先化简,再求值:(1﹣)÷,其中a=﹣1.【考点】分式的化简求值.【分析】先根据整式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式=÷=×=a+1.当a=﹣1时,原式=﹣1+1=.22.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.【考点】平行四边形的判定;全等三角形的判定与性质.【分析】(1)根据全等三角形的判定定理ASA证得△AFD≌△CEB;(2)利用(1)中的全等三角形的对应边相等得到AD=CB,则由“有一组对边相等且平行的四边形是平行四边形”证得结论.【解答】证明:(1)如图,∵AD∥BC,DF∥BE,∴∠1=∠2,∠3=∠4.又AE=CF,∴AE+EF=CF+EF,即AF=CE.在△AFD与△CEB中,,∴△AFD≌△CEB(ASA);(2)由(1)知,△AFD≌△CEB,则AD=CB.又∵AD∥BC,∴四边形ABCD是平行四边形.23.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.【考点】条形统计图;用样本估计总体;扇形统计图;概率公式.【分析】(1)根据良的天数除以良的天数所占的百分比,可得样本容量,根据样本容量乘以轻微污染所占的百分比求出轻微污染的天数,可得答案;(2)根据一年的时间乘以优良所占的百分比,可得答案;(3)根据根据一年中优的天数比上一年的天数,可得答案.【解答】解:(1)样本容量3÷5%=60,60﹣12﹣36﹣3﹣2﹣1=6,条形统计图如图:(2)这一年空气质量达到“优”和“良”的总天数为:365×=292;(3)随机选取这一年内某一天,空气质量是“优”的概率为:=.24.如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′(3,5),B′(5,5),C′(7,3);(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为(2a﹣1,2b﹣1).【考点】作图﹣位似变换.【分析】(1)利用位似图形的性质得出变化后图形即可;(2)利用已知图形得出对应点坐标;(3)利用各点变化规律,进而得出答案.【解答】解:(1)如图所示:四边形TA′B′C′即为所求;(2)A′(3,5),B′(5,5),C′(7,3);故答案为:(3,5),(5,5),(7,3);(3)在(1)中,∵A(2,3),B(3,3),C(4,2),A′(2×2﹣1=3,2×3﹣1=5),B′(2×3﹣1=5,2×3﹣1=5),C′(2×4﹣1=7,2×2﹣1=3);∴D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为(2a﹣1,2b﹣1).故答案为:(2a﹣1,2b﹣1).25.如图在平面直角坐标系xOy中,反比例函数y1=(x>0)的图象与一次函数y2=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图象,直接写出使y1≥y2的x的取值范围;(3)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,请写出点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)将A点坐标代入代入y=(x>0),求出m的值为2,再将(2,2)代入y=kx﹣k,求出k的值,即可得到一次函数的解析式;(2)根据图象即可求得;(3)将三角形以x轴为分界线,分为两个三角形计算,再把它们相加.【解答】解:(1)将A(m,2)代入y=(x>0)得,m=2,则A点坐标为A(2,2),将A(2,2)代入y=kx﹣k得,2k﹣k=2,解得k=2,则一次函数解析式为y=2x﹣2;(2)∵A(2,2),∴当0<x≤2时,y1≥y2;(3)∵一次函数y=2x﹣2与x轴的交点为C(1,0),与y轴的交点为B(0,﹣2),S△ABP=S△ACP+S△BPC,∴×2CP+×2CP=4,解得CP=2,则P点坐标为(3,0),(﹣1,0).26.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.【考点】分式方程的应用.【分析】(1)设每本软面笔记本x元,则每本硬面笔记本(x+1.2)元,根据小明和小丽能买到相同数量的笔记本建立方程求出其解就可以得出结论;(2)设每本软面笔记本m元(1≤m≤12的整数),则每本硬面笔记本(m+a)元,根据小明和小丽能买到相同数量的笔记本建立方程就可以得出m与a的关系,就可以求出结论.【解答】解:(1))设每本软面笔记本x元,则每本硬面笔记本(x+1.2)元,由题意,得,解得:x=1.6.此时=7.5(不符合题意),所以,小明和小丽不能买到相同数量的笔记本;(2)设每本软面笔记本m元(1≤m≤12的整数),则每本硬面笔记本(m+a)元,由题意,得,解得:a=m,∵a为正整数,∴m=4,8,12.∴a=3,6,9.当时,(不符合题意)∴a的值为3或9.27.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C 的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,若P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,若△APQ与△ADB相似,求出m的值.【考点】相似形综合题.【分析】(1)根据点A、C的坐标求出AC的长,根据题意求出点B的坐标,利用待定系数法求出过点A,B的直线的函数表达式;(2)过点B作BD⊥AB,交x轴于点D,根据相似三角形的性质列出比例式,计算即可;(3)分PQ∥BD时和PQ⊥AD时两种情况,根据相似三角形的性质列出比例式,计算即可.【解答】解:(1)∵点A(﹣3,0),C(1,0),∴AC=4,又BC=AC,∴BC=3,∴B点坐标为(1,3),设过点A,B的直线的函数表达式为:y=kx+b,则,解得,,∴直线AB的函数表达式为:y=x+;(2)如图1,过点B作BD⊥AB,交x轴于点D,∵∠A=∠A,∠ABD=∠ACB,∴△ADB∽△ABC,∴D点为所求,∵△ADB∽△ABC,∴,即=,解得,CD=,∴,∴点D的坐标为(,0);(3)在Rt△ABC中,由勾股定理得AB==5,如图2,当PQ∥BD时,△APQ∽△ABD,则=,解得,m=,如图3,当PQ⊥AD时,△APQ∽△ADB,则=,解得,m=,所以若△APQ与△ADB相似时,m=或.。
2017-2018学年福建省泉州市洛江区八年级(下)期末数学试卷(解析版)

2017-2018学年福建省泉州市洛江区八年级(下)期末数学试卷一、选择题(每小题4分,共40分).在答题卡上相应题目的答题区域内作答.1.(4分)在平面直角坐标系中,A,B,C,D,M,N的位置如图所示,若点M的坐标为(﹣2,0),N的坐标为(2,0),则在第二象限内的点是()A.A点B.B点C.C点D.D点2.(4分)若分式的值为0,则x的值是()A.±3B.﹣3C.3D.03.(4分)去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是()A.最低温度是32℃B.众数是35℃C.中位数是34℃D.平均数是33℃4.(4分)在同一直角坐标系中,若直线y=kx+3与直线y=﹣2x+b平行,则()A.k=﹣2,b≠3B.k=﹣2,b=3C.k≠﹣2,b≠3D.k≠﹣2,b=3 5.(4分)在平行四边形ABCD中,∠A+∠C=160°,则∠B的度数是()A.130°B.120°C.100°D.90°6.(4分)某服装加工厂加工校服960套的订单,原计划每天做48套.正好按时完成.后因学校要求提前5天交货,为按时完成订单,设每天就多做x套,则x应满足的方程为()A.B.C.D.7.(4分)下列命题正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形8.(4分)若点(x1,y1)、(x2,y2)、(x3,y3)都是反比例函数y=的图象上的点,并且x1<0<x2<x3,则下列各式中正确的是()A.y1<y3<y2B.y2<y3<y1C.y3<y2<y1D.y1<y2<y3 9.(4分)如图,矩形ABCD中,AC与BD交于点O,若∠AOB=60°,AB=5,则对角线AC的长为()A.5B.7.5C.10D.1510.(4分)如图,平面直角坐标系中,△ABC的顶点坐标分别是A(1,1),B(3,1),C (2,2),当直线与△ABC有交点时,b的取值范围是()A.﹣1≤b≤1B.﹣≤b≤1C.﹣≤b≤D.﹣1≤b≤二、填空题(每小题4分,共24分)在答题卡上相应题目的答题区域内作答.11.(4分)计算:=.12.(4分)一粒某种植物花粉的质量约为0.000037毫克,那么0.000037毫克用科学记数法表示为克.13.(4分)小丽计算数据方差时,使用公式S2=[(5﹣)2+(8﹣)2+(13﹣)2)2+(15﹣)2],则公式中=.14.(4分)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H,则DH=.15.(4分)如图矩形ABCD的边AB与y轴平行,顶点A的坐标为(1,2),点B和点D在反比例函数的图象上,则矩形ABCD的面积为.16.(4分)如图,小明用三个等腰三角形(图中①②③)拼成了一个平行四边形ABCD,且∠D>90°>∠C,则∠C=度.三、.解答题(9小题,共86分.解答应写出文字说明,证明过程或演算步骤)在答题卡上相应题目的答题区域内作答.17.(8分)计算:(﹣1)0+|﹣2|﹣()﹣2.18.(8分)先化简再求值:÷(﹣1),其中x=.19.(8分)甲、乙两名学生练习计算机打字,甲打一篇1000字的文章与乙打一篇900字的文章所用的时间相同.已知甲每分钟比乙每分钟多打5个字,问:甲、乙两人每分钟各打多少个字?20.(8分)求证:两组对边分别相等的四边形是平行四边形.(要求:画出图形,写出已知,求证和证明过程)21.(8分)为宣传节约用水,小强随机调查了某小区部分家庭3月份的用水情况,并将收集的数据整理成如下统计图.(1)小强一共调查了户家庭;(2)求所调查家庭3月份用水量的众数为吨,平均数为吨;(3)若该小区有800户居民,则该小区3月份的总用水量估计有吨.22.(10分)如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.23.(10分)如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.24.(13分)甲、乙两车分别从A地将一批物品运往B地,再返回A地,图中表示两车离A 地的距离s(千米)随时间t(小时)变化的图象,已知乙车到达B地后以30千米/小时的速度返回.请根据图象中的数据回答:(1)乙车出发多长时间后追上甲车?(2)甲车与乙车在距离A地多远处迎面相遇?(3)甲车从B地返回的速度多大时,才能比乙车先回到A地?25.(13分)如图,直线y=﹣2x+7与x轴、y轴分别相交于点C、B,与直线y=x相交于点A.(1)求A点坐标;(2)如果在y轴上存在一点P,使△OAP是以OA为底边的等腰三角形,则P点坐标是;(3)在直线y=﹣2x+7上是否存在点Q,使△OAQ的面积等于6?若存在,请求出Q点的坐标,若不存在,请说明理由.2017-2018学年福建省泉州市洛江区八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题4分,共40分).在答题卡上相应题目的答题区域内作答.1.【解答】解:MN所在的直线是x轴,MN的垂直平分线是y轴,A在x轴的上方,y轴的左边,A点在第二象限内,故选:A.2.【解答】解:依题意,得x2﹣9=0且x+3≠0,解得,x=3.故选:C.3.【解答】解:由折线统计图知这7天的气温从低到高排列为:31、32、33、33、33、34、35,所以最低气温为31℃,众数为33℃,中位数为33℃,平均数是=33℃,故选:D.4.【解答】解:∵直线y=kx+3与直线y=﹣2x+b平行,∴k=﹣2,b≠3.故选:A.5.【解答】解:如图所示:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=160°,∴∠A=∠C=80°,∴∠B的度数是:100°.故选:C.6.【解答】解:原来所用的时间为:,实际所用的时间为:,所列方程为:﹣=5.故选:D.7.【解答】解:A、一组对边平行,另一组对边相等的四边形有可能是等腰梯形,故A选项错误;B、对角线互相垂直的四边形也可能是一般四边形,故B选项错误;C、对角线相等的四边形有可能是等腰梯形,故C选项错误.D、一组邻边相等的矩形是正方形,故D选项正确.故选:D.8.【解答】解:∵﹣a2﹣1<0,∴反比例函数图象位于二、四象限,如图在每个象限内,y随x的增大而增大,∵x1<0<x2<x3,∴y2<y3<y1.故选:B.9.【解答】解:∵四边形ABCD是矩形,∴AC=BD,∵AO=AC,BO=BD,∴AO=BO,又∵∠AOB=60°,∴△AOB是等边三角形,∴AO=AB=5,∴AC=2AO=10.故选:C.10.【解答】解:直线y=x+b经过点B时,将B(3,1)代入直线中,可得+b=1,解得b=﹣;直线y=x+b经过点A时:将A(1,1)代入直线中,可得+b=1,解得b=;直线y=x+b经过点C时:将C(2,2)代入直线中,可得1+b=2,解得b=1.故b的取值范围是﹣≤b≤1.故选:B.二、填空题(每小题4分,共24分)在答题卡上相应题目的答题区域内作答.11.【解答】解:原式==a+b,故答案是a+b.12.【解答】解:0.000 037毫克=0.00 000 0037克=3.7×10﹣8克,故答案为:3.7×10﹣8.13.【解答】解:∵S2=[(5﹣)2+(8﹣)2+(13﹣)2)2+(15﹣)2],∴=11,故答案为:11.14.【解答】解:∵四边形ABCD是菱形,∴OA=OC=4,OB=OD=3,AC⊥BD,在Rt△AOB中,AB==5,∵S菱形ABCD=•AC•BD,S菱形ABCD=DH•AB,∴DH•5=•6•8,∴DH=.故答案为.15.【解答】解:∵四边形ABCD是矩形,顶点A的坐标为(1,2),∴设B、D两点的坐标分别为(1,y)、(x,2),∵点B与点D在反比例函数的图象上,∴y=6,x=3,∴AB=4,AD=2,∴矩形ABCD的面积为AB•AD=4×2=8.故答案是:8.16.【解答】解:由题意可知:AD=DE,∴∠DAE=∠DEA,设∠DAE=∠DEA=x,∵四边形ABCD是平行四边形,∴CD∥AB,∠C=∠DAB,∴∠DEA=∠EAB=x,∴∠C=∠DAB=2x,①AE=AB时,若BE=BC,则有∠BEC=∠C,即(180°﹣x)=2x,解得x=36°,∴∠C=72°,若EC=EB,则有∠EBC=∠C=2x,∵∠DAB+∠ABC=180°,∴4x+(180°﹣x)=180°,解得x=,∴∠C=,②EA=EB时,同法可得∠C=72°,综上所述,∠C=72°或.故答案为72°或.三、.解答题(9小题,共86分.解答应写出文字说明,证明过程或演算步骤)在答题卡上相应题目的答题区域内作答.17.【解答】解:(﹣1)0+|﹣2|﹣()﹣2=1+2﹣4=﹣118.【解答】解:原式=÷=•=﹣(x﹣1)=1﹣x,当x=时,原式=.19.【解答】解:设乙每分钟打x个字,则甲每分钟打(x+5)个字,根据题意得:=,解得:x=45,经检验,x=45是原方程的解,且符合题意,∴x+5=50.答:甲每分钟打50个字,乙每分钟打45个字.20.【解答】已知:如图,在四边形ABCD中,AB=CD,AD=BC,求证:四边形ABCD是平行四边形.证明:连结BD.在△ABFD和△CDB中,∴△ABD≌△CDB,∴∠ABD=∠CDB,∠ADC=∠CBD,∴AB∥CD,AD∥BC,∴四边形ABCD是平行四边形.21.【解答】解:(1)根据题意得:1+1+3+6+4+2+2+1=20(户),则小强一共调查了20户家庭;故答案为:20;(2)根据统计图得:3月份用水量的众数为4吨;平均数为(1+2+3×3+4×6+5×4+6×2+7×2+8)÷20=4.5(吨),则所调查家庭3月份用水量的众数为4吨、平均数为4.5吨;故答案为:4,4.5;(3)根据题意得:800×4.5=3600(吨),则该小区3月份的总用水量估计有3600吨.故答案为3600.22.【解答】证明:∵∠BAD=∠CAE,∴∠BAD﹣∠BAC=∠CAE﹣∠BAC,∴∠BAE=∠CAD,∵在△BAE和△CAD中∴△BAE≌△CAD(SAS),∴∠BEA=∠CDA,BE=CD,∵DE=CB,∴四边形BCDE是平行四边形,∴BE∥CD,∵AE=AD,∴∠AED=∠ADE,∵∠BEA=∠CDA,∴∠BED=∠CDE,∵BE∥CD,∴∠CDE+∠BED=180°,∴∠BED=∠CDE=90°,∴四边形BCDE是矩形.23.【解答】解:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,∴Rt△ABD中,DE=AB=AE,Rt△ACD中,DF=AC=AF,又∵AB=AC,点E、F分别是AB、AC的中点,∴AE=AF,∴AE=AF=DE=DF,∴四边形AEDF是菱形;(2)如图,∵菱形AEDF的周长为12,∴AE=3,设EF=x,AD=y,则x+y=7,∴x2+2xy+y2=49,①∵AD⊥EF于O,∴Rt△AOE中,AO2+EO2=AE2,∴(y)2+(x)2=32,即x2+y2=36,②把②代入①,可得2xy=13,∴xy=,∴菱形AEDF的面积S=xy=.24.【解答】解:(1)由图知,可设甲车由A地前往B地的函数解析式为s=kt,将(2,60)代入,解得k=30,所以s=30t.由图可知,在距A地30千米处,乙车追上甲车,所以当s=30千米时,t===1(小时0).1﹣0.5=0.5(小时)即乙车出发0.5小时后追上甲车.(2)由图知,可设乙车由A地前往B地函数的解析式为s=pt+m,将(0.5,0)和(1,30)代入,得,解得,所以s=60t﹣30.当乙车到达B地时,s=60千米.代入s=60t﹣30,得t=1.5小时,又设乙车由B地返回A地的函数的解析式为s=﹣30t+n,将(1.5,60)代入,得60=﹣30×1.5+n,解得n=105,所以s=﹣30t+105,当甲车与乙车迎面相遇时,有﹣30t+105=30t,解得t=1.75小时代入s=30t,得s=52.5千米,即甲车与乙车在距离A地52.5千米处迎面相遇;(3)当乙车返回到A地时,有﹣30t+105=0,解得t=3.5小时,甲车要比乙车先回到A地,速度应大于=40(千米/小时).25.【解答】解:(1)解方程组:得:∴A点坐标是(2,3);(2)设P点坐标是(0,y),∵△OAP是以OA为底边的等腰三角形,∴OP=P A,∴22+(3﹣y)2=y2,解得y=,∴P点坐标是(0,),故答案为(0,);(3)存在;由直线y=﹣2x+7可知B(0,7),C(,0),∵S△AOC=××3=<6,S△AOB=×7×2=7>6,∴Q点有两个位置:Q在线段AB上和AC的延长线上,设点Q的坐标是(x,y),当Q点在线段AB上:作QD⊥y轴于点D,如图①,则QD=x,∴S△OBQ=S△OAB﹣S△OAQ=7﹣6=1,∴OB•QD=1,即×7x=1,∴x=,把x=代入y=﹣2x+7,得y=,∴Q的坐标是(,),当Q点在AC的延长线上时,作QD⊥x轴于点D,如图②则QD=﹣y,∴S△OCQ=S△OAQ﹣S△OAC=6﹣=,∴OC•QD=,即××(﹣y)=,∴y=﹣,把y=﹣代入y=﹣2x+7,解得x=,∴Q的坐标是(,﹣),综上所述:点Q是坐标是(,)或(,﹣).。
福建省泉州市八年级下学期数学期末考试试卷
福建省泉州市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)把多项式4a2b+4ab2+b3因式分解,正确的是()A . a(2a+6)2B . b(2a+b)2C . b(a+2b)2D . 4b(a+b)22. (2分) (2018九上·岐山期中) 顺次连接对角线相等的四边形各边中点所得四边形是()A . 矩形B . 平行四边形C . 菱形D . 任意四边形3. (2分)(2017·隆回模拟) 函数y= 的自变量x的取值范围是()A . x≠2B . x<2C . x≥2D . x>24. (2分) (2019八下·顺德月考) 不等式-3x+6>0的正整数解有()A . 1个B . 2个C . 3个D . 无数多个5. (2分)(2017·嘉祥模拟) 如图,在▱ABCD中,AB>AD,按以下步骤作图:以点A为圆心,小于AD的长为半径画弧,分别交AB、AD于点E、F;再分别以点E、F为圆心,大于 EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论中不能由条件推理得出的是()A . AG平分∠DABB . AD=DH6. (2分) (2016八上·宁阳期中) 下列等式中,不成立的是()A . =x﹣yB . =x﹣yC .D .7. (2分)以下各命题中,正确的命题是()(1)等腰三角形的一边长4 cm,一边长9 cm,则它的周长为17 cm或22 cm;(2)三角形的一个外角,等于两个内角的和;(3)有两边和一角对应相等的两个三角形全等;(4)等边三角形是轴对称图形;(5)三角形的一个外角平分线平行于三角形的一边,那么这个三角形是等腰三角形.A . (1)(2)(3)B . (1)(3)(5)C . (2)(4)(5)D . (4)(5)8. (2分) (2019八下·东莞月考) 如图,△ABC是边长为20的等边三角形,点D是BC边上任意一点,DE⊥AB 于点E,DF⊥AC于点F,则BE+CF=()A . 5B . 10C . 15D . 209. (2分) (2020八下·富平期末) 关于x的分式方程的解为正实数,则实数m的取值范围是()C . 且D . 且10. (2分)如图,AC与BD互相平分于点O,则△AOB至少绕点O旋转多少度才可与△COD重合()A . 60°B . 30°C . 180°D . 不确定二、填空题 (共5题;共5分)11. (1分) (2017八上·官渡期末) 如果一个多边形的内角和是1800°,那么这个多边形的边数是________.12. (1分) (2017八上·新会期末) 若分式的值为0,则实数x的值为________.13. (1分)如图,在△ABC中,AB=AC=27,D在AC上,且BD=BC=18,DE∥BC交AB于E,则DE=________ .14. (1分)已知,且﹣1<x﹣y<0,则k的取值范围为________ .15. (1分) (2018九上·桥东期中) 如图,在等腰中,,点在以斜边为直径的半圆上,为的中点.当点沿半圆从点运动至点时,点运动的路径长是________.三、解答题 (共8题;共66分)16. (15分) (2020九下·台州月考) 已知抛物线y=ax2+bx﹣a+b(a,b为常数,且α≠0).(1)当a=﹣1,b=1时,求顶点坐标;(2)求证:无论a,b取任意实数,此抛物线必经过一个定点,并求出此定点;(3)若a<0,当抛物线的顶点在最低位置时:①求a与b满足的关系式;②抛物线上有两点(2,s),(m,t),当s<t时,求m的取值范围.17. (5分)当n为整数时,(n+1)2﹣(n﹣1)2的值一定是4的倍数吗?18. (5分)(2018·马边模拟) 先化简,再求值:,其中.19. (6分) (2015八下·沛县期中) 方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)试作出△ABC以C为旋转中心,沿顺时针方向旋转90°后的图形△A1B1C;(2)以原点O为对称中心,再画出与△ABC关于原点O对称的△A2B2C2 ,并写出点C2的坐标________.20. (10分) (2019八上·成都开学考)(1)如图,在中,已知,,与的平分线交于点,求证:是等腰三角形.(2) .阅读下列文字:我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如由图1可以得到.请解答下列问题:①.写出图2中所表示的数学等式;②.利用(1)中所得到的结论,解决下面的问题:已知,,求的值;21. (10分)(2019·泰安模拟) 某服装商预测一种应季衬衫能畅销市场,用8000元购进一批此种衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价为100元,最后10件按8折销售,很快售完.(1)两批进货的单价各是多少元?(2)在这两笔生意中,商家共盈利多少元?22. (5分) (2019八上·融安期中) 一个多边形的内角和是1260°,求这个多边形的边数。
福建省泉州市2018学年八年级数学下学期期末教学质量检测义务教育试题华东师大版 精品
福建省泉州市泉港三川中学2018-2018学年八年级下学期期末教学质量检测义务教育数学试题(无答案)华东师大版一、填空题:(请将正确答案填入题后表格内)1、 1的平方根是( )A: 1 B: -1 C 0 D : ±12、下列计算中,不正确的是( )A aB aCD a3、下面( )组数不能作为直角三角形的边长。
A 36;15;39B 8;15;17C 9;12;15D 12;35;364、已知的值是( ) A 1 B 7 C 9 D 115、如图,△ACD ≌△ECB ,A,C,B 在一条直线上,且A 和E是一对对应顶点,如果∠BCE =1300,那么将⊿ACD 围绕C 点顺时针旋转( )与⊿ECB 重合。
A 1500B 1300C 1000D 5006、在-3,, ,,0.323232……,0这几个数中,无理数个数为( )A 1B 2C 3D 47.如图,E 是平行四边形内任一点,若=8,则图中阴影部分的面积是( )A .3B .4C .5D .68.在学习“四边形”的知识时,小明的书上有一个图因不小心被滴上了墨水(如图),请问被墨迹遮盖了的文字是( )A 、四边形B 、等腰梯形C 、等边三角形D 、菱形9、若x 2+kx-24=(x+12)(x-2),则k 的值是( )A 10B -10C ±10D -1410、某校计划修建一座既是中心对称图像又是轴对称图形的花坛学生中征集到的设计方案有平行四边形、等边三角形、等腰梯形、矩形四种方案,你认为符合条件的是( )A 平行四边形B 等边三角形C 等腰梯形D 矩形11、如图,一圆柱高8cm 底面半径2cm ,一只蚂蚁从点A 爬到点B 吃食,要爬行的最短路程(π取3) 是()A 20cm B 10cm C 14cm D 无法确定12、如图是一个旋转对称图形,要使它旋转后与自身重合,至少应将它绕中心逆时针方向旋转的度数是()A 300 B 600 C 1200 D 180013、满足-的整数x的个数是()A 4个 B 3个 C 2个 D 5个14、矩形具有而棱形不具有的性质是()A 四边相等 B 四角相等 C 对角线互相垂直 D 每一条对角线平分一组对角15、将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是() A 矩形 B 三角形 C 梯形 D 棱形16、平行四边形两条对角线为6和10,则其中一边x的取值范围是()A 4<X<6 B 2<X<8 C 0<X<10 D 0<X<6 二、填空题:17、计算:(-9x2+3x)÷(-3x)= 18、若有,则xy= 19、若一个正数的平方根是2a-1和-a+2,则a= 20、立方根与平方根相等的数为21、若正方形的一条对角线为10,则这个正方形的面积为22、若 x2-y2=48,x+y=6,则3x-3y=23、矩形的一个角的平分线分矩形一边长为1cm和3cm两部分,则这个矩形的面积为 cm2 24平行四边形两邻角的平分线相交成的角为度。
2018年福建省泉州八年级下学期期末考试数学试题word版含答案
2018年福建省泉州八年级下学期期末考试数学试题满分:150分;考试时间:120分钟一.选择题(每题3分,共21分)1. 要使分式21-x 有意义,x 必须满足的条件是( )A. 2≠xB. 2>xC. 0≠xD. 2=x 2. 若4-=kx y 的函数值y 随着x 的增大而减小,则k 的值可能是下列的( )A. πB. 21 C. 0 D. 4- 3. 在5月份的地理学科市质检后,叶老师调查了班上某小组10名同学的地理成绩如下:85, 83, 81, 81, 87, 73, 82, 79, 81, 7 9,则这组数据的中位数,众数分别为( )A. 80, 81B. 81, 81C. 81, 89D. 73, 814. 正方形具有而菱形不具有的性质是( )A. 对角线互相平分B.对角线互相垂直C.对角线相等D.对角线平分一组对角5. 如右图,丝带重叠的部分一定是( )A. 正方形B.矩形C.菱形D.都有可能6. 如图,点P 在反比例函数2y x=的图象上,过P 点作PA ⊥x 轴于点A , 作PB ⊥y 轴于B 点,矩形OAPB 的面积为( )A. 1B. 2C. 4D. 87.为了更好保护水资源,造福人类. 某工厂计划建一个容积V (m 3)一定..的污水处理池,池的底面积S (m 2)与其深度h (m)满足关系式:V = Sh (V ≠0),则S 关于h 的函数图象大致是( )二.填空题(每小题4分,共40分)8. 在平面直角坐标系中,点P (1,2-)关于原点的对称点坐标为9. 计算:2111n n n -+++= 10. 计算:2a b b a=⋅ 11. 在ABCD 中,∠A ﹦80°, 则∠B=________ .12. 自2013年2月以来,H7N9禽流感在我国流行。
该病毒的直径是0.00 000 012米,用科学记数法表示为_____________ 米.13. 甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如下表:则这四人中成绩发挥最稳定的是__________选手14. 小王某学期的物理成绩分别为:平时平均成绩得84分,期中考试得90分,期末考试得85 分.若按如图所显示的权重,那么小王该学期的总评成绩应该为 分.15. 函数y kx b =+的图象如图所示,则不等式0≥+b kx 的解集是16. 如图,菱形ABCD 的周长为85,对角线AC 和BD 相交于点O ,2:1:=BD AC ,则菱 形ABCD 的面积S = .17.有一数值转换器,原理如图所示,若开始输入 x 的值是7,可发现第 1 次输出的结果是12,第2次输出 的结果是6,第3次输出的结果是 ,依次继续下去…,第2014次输出的结果是三.解答题(共89分)18.(9分)计算:013(4)|2|164162π--+--⨯+÷19.(9分)先化简,再求值:(,4)212122-÷++-x x x x 其中.2=x20.(9分)某服装制造厂要在开学前赶制3000套校服,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的校服比原计划多20% ,结果提前4天完成任务, 问原计划每天能完成多少套校服?21.(9分)如图:正方形ABCD 的一条对角线AC 的长为4cm ,求它的边长和面积。
泉州七中2017-2018学年八年级上学期数学期末考试
泉州七中2017-2018学年上学期数学期末考试学校: 姓名: 成绩:一、选择题(每题4分,共40分)(2018年七中期末1)9的算术平方根是( )A.3B.-3C.3±D.3(2018年七中期末2)若分式13x -有意义,则x 的取值范围是( ) A.3x > B. 3x < C. 3x ≠ D. 3x =(2018年七中期末3)要记录泉州市一周的天气变化情况,最好选用( )A.条形统计图B.折线统计图C. 扇形统计图D. 统计表(2018年七中期末4)某微生物的直径为0.000 005 035 m ,用科学计数法表示该数为( )A.-65.03510⨯B.-550.3510⨯C. 65.03510⨯D. -55.03510⨯(2018年七中期末5)下列各组数中,是勾股数的是( )A.12,15,18B.12,35,36C.2,3,4D. 5,12,13(2018年七中期末6)下列运算正确的是( )A. 826-=B.36=2÷C. 326()a a -=D.222()=a b a b --(2018年七中期末7)下列命题是假命题的是( )A. 2和3是同类二次根式B.为直观介绍空气各成分的百分比,最适合用的统计图是扇形统计图C.当1x ≠±时,分21(1)x x x -+式的值为0 D.等腰三角形两腰上的高相等(2018年七中期末8)如图所示,点C 的表示的数为2,BC=1,以O 为圆心,OB 为半径画弧,交数轴于点A ,则点A 表示的数是( )A.3B.5C.-3D.-5(2018年七中期末9)若3a b +=,227a b +=,则ab 等于( )A.2B.1C.-2D.5- (2018年七中期末10)如图,把两个大小形状相同的是ABC ∆和A B C '''∆拼在一起,期中点A 与A '重合,点C 落在边AB 上,连接B C ',若90ACB AC B ''∠=∠=︒,AC=BC=3,则B C '的长为( )A.33B.6C.32D.21二、填空题(每题4分,共24分)(2018年七中期末11) 计算:2-=(3)______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泉州七中初中部2017-2018学年下学期初二期末考
数学试题
一.选择题(每小题4分,共40分) 1. 点P (2-,1)所在的象限是( )
A. 第一象限
B.第二象限
C.第三象限
D.第四象限 2. 若y=x+2-b 是正比例函数,则b 的值是( )
A.0
B.2-
C.2
D.5.0-
3. 已知:甲乙两组数据的平均数都是3,甲组数据的方差18.02
=甲S ,甲组数据的方差
23.02
=乙S ,下列结论中正确的是( )
A .甲组数据比乙组数据的波动性大
B .甲组数据的比乙组数据的波动性小
C .甲组数据与乙组数据的波动性一样大
D .甲组数据与乙组数据的波动性无法比较
4. 将直线12+-=x y 向下平移4个单位长度得到直线l ,则直线l 的解析式为( ) A. 16+-=x y B.32--=x y C.52+-=x y D.32-=x y
5. 反比例函数x
k
y =
的图像如图所示,点A 是该函数图像上的一点,AB 垂直于x 轴,垂足为点B ,如果2=∆AOB S ,则k 值为( ) A .1 B .-1 C .2 D 2-
第5题图
6. 中,∠A +∠C =110°,则∠D 的度数是( )
A.35°
B.55°
C.125°
D.135°
7. 关于x 的一元二次方程0132
=-+x x 的根的情况是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.不等确定 8. 中,DE 平分∠ADC ,AD =8,BE =3的周长是( )
A.16
B.14
C.26
D.24
第8题图 第9题图
9.“龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表示了寓言中的龟、兔的路程S 与t 的关系(其中直线段表示乌龟,折线段表示兔子),下列叙述正确的是( )
A .赛跑中,兔子共休息了50分钟
B .乌龟在这次比赛中的平均速度是0.1米/分钟
C .兔子比乌龟早到达终点10分钟
D .乌龟追上兔子用了20分钟
10. 如图,在矩形ABCD 中,AB =24,BC =12,M 、N 两点分别从点B 、C 开始沿边BC 和CD 匀速运动,如果点M 、N 提升出发,它们运动的速度均为每秒2个单位长度,当点M 到达终点C 时,点N 也停止运动,设运动的时间为t (s ).下列说法:①当t =3时,MN ∥BD ;②当t =6时,△AMN 的面积最小;③当t =4时,
S △ABM =S △AND ;④不存在MN 与AN 垂直的时刻,正确的有( )
A. 1个
B.2个
C.3个
D.4个 二、填空题(本大题共6小题,每小题4分,共24分) 11. 函数3--=x y 的自变量x 的取值范围是 .
12. 有一组数据:2,5,4,7,2,这组数据的众数为 . 13. 方程0822
=-x 的解是 .
14. 矩形ABCD 的对角线AC ,BD 相交于点O ,请你添加一个适当的条件 使其成为正方形(只填一个即可).
15. 在;菱形ABCD 中,两条对角线AC 与BD 的和是28,菱形的周长为40,则菱形ABCD 的面积是 .
16.已知实数a ,b 满足2=-b a ,042
<--ab a ,当32≤≤x 时,函数)0(≠=a x
a y 的最大值与最小值之差是2
1,则a 的值为 . 三.解答题(本大题共9小题,共86分.) 17.(本题满分12分)解下列方程
(1)0181222
=+-x x (2)02232
=--x x
18. (本题满分7中,AE =CF ,求证:AF =CE .
19. (本题满分7分)用配方法解方程:02
=++c bx ax ,(0≠a ,042
≥-ac b )
20.(本题满分7分)在一次交通调查中,100辆汽车经过某地时车内人数如下:
(1)x+y= .
(2)若每辆车的平均人数为2.5,则中位数为人.
(3)若x为30,求每辆车的平均人数.
21.(本题满分8中,点O是边BC的中点,连接DO并延长,交AB 的延长线于点E,连接BD,EC.
(1)求证:四边形BECD 是平行四边形; (2)当∠BOD = 时,四边形BECD 是菱形;
(3)当四边形BECD 是矩形时,且∠A =39°,∠BOD 的度数为 .
22. (本题满分9分)如图,已知点A 、P 在反比例函数x
y 4
-=的图像上,点B 、Q 在直线b x y +=的图像上,点A 的横坐标是2-,AB ⊥x 轴,且S △OAB =3,若P 、Q 两点关于y 轴对
称.设点P 的坐标为(m ,n ). (1)求点B 的坐标和b 的值 (2)求2
2
n m +的值
23. (本题满分10分)如图,矩形ABCD 中,对角线AC 的垂直平分线交AD 边于点E ,交
CD边于点F,分别连接AF和CE.
(1)根据题意将图形补画完整(要求尺规作图,保留作图痕迹,不写作法);
(2)试判断四边形AFCE的形状,并证明你的判断.
24.(本题满分12分)在矩形ABCD中,点E是对角线AC上一动点,点F在射线BC上,
且四边形DEFG是矩形.
(1)若AB=6,BC=8,连结DF交AC于点P,DE=CD.
①求证:△DEP≌△DCP
②求DP的长.
(2)若将条件中的“矩形ABCD”改为“正方形ABCD”,连接CG,试探究AE与CG的关系,并说明理由.
25.已知直线y=kx+3与x轴交于点A(3 ,0),与y轴交于点B .
(1)求直线AB的解析式;
(2)若点M是x轴上的一动点,点N是平面内一动点,若以A、B、M、N为顶点的四边形是菱形,求点N的坐标;
(3)P是y轴上一动点,点C(1-,0),连接PC,求PB
PC+
2的最小值
参考答案10:
16:。