概率论基础第一版课后练习题含答案

合集下载

华中师范大学《概率论基础》练习题库及答案

华中师范大学《概率论基础》练习题库及答案

华中师范大学职业与继续教育学院 《概率论基础》练习题库答案填空题(含答案)1.设随机变量ξ的密度函数为p(x), 则 p(x) ≥0;∫∞∞−dx x p )(= 1 ;E ξ=∫∞∞−dx x xp )(。

考查第三章2.设A,B,C 为三个事件,则A,B,C 至少有一个发生可表示为:C B A !!;A,C 发生而B 不发生可表示CB A ;A,B,C 恰有一个发生可表示为:C B A C B A C B A ++。

考查第一章3.设随机变量)1,0(~N ξ,其概率密度函数为)(0x ϕ,分布函数为)(0x Φ,则)0(0ϕ等于π21,)0(0Φ等于 0.5 。

考查第三章 4.设随机变量ξ具有分布P{ξ=k}=51,k=1,2,3,4,5,则E ξ= 3 ,D ξ= 2 。

考查第五章5.已知随机变量X,Y 的相关系数为XY r ,若U=aX+b,V=cY+d, 其中ac>0. 则U,V 的相关系数等于 XY r 。

考查第五章6.设),(~2σµN X,用车贝晓夫不等式估计:≥<−)|(|σµk X P 211k−考查第五章7.设随机变量ξ的概率函数为P{ξ=i x }=i p,...,2,1=i 则 i p ≥ 0 ;∑∞=1i i p =1 ;E ξ=∑∞=1i iip x 。

考查第一章8.设A,B,C 为三个事件,则A,B,C 都发生可表示为:ABC ;A 发生而B,C 不发生可表示为:C B A ;A,B,C 恰有一个发生可表示为:C B A C B A C B A ++。

考查第一章9.)4,5(~N X ,)()(c X P c X P <=>,则=c 5 。

考查第三章10.设随机变量ξ在[1,6]上服从均匀分布,则方程012=++x x ξ有实根的概率为45。

考查第三章 较难 11.若随机变量X,Y 的相关系数为XY r ,U=2X+1,V=5Y+10 则U,V 的相关系数=XY r 。

概率论课后习题

概率论课后习题

第一章 概率论的基本概念(一)1、多选题:⑴ 以下命题正确的是( )。

A B A AB a =)()(. ; A AB B A b =⊂则若,.;A B B A c ⊂⊂则若,.; B B A B A d =⊂ 则若,..⑵ 某学生做了三道题,i A 表示第i 题做对了的事件)3,2,1(=i ,则至少做对了两道题的事件可表示为( ). ;.;.133221321321321A A A A A A b A A A A A A A A A a ..;.321321321321133221A A A A A A A A A A A A d A A A A A A c2、A 、B 、C 为三个事件,说明下述运算关系的含义:.)6(.)5(.)4(.)3(.)2(.1ABC C B A C B A C B A C B A )(3、个工人生产了三个零件,i A 与i A )3,2,1(=i 分别表示他生产的第i 个零件为正、次品的事件。

试用i A 与i A )3,2,1(=i 表示以下事件:⑴ 全是正品;⑵ 至少有一个零件是次品;⑶ 恰有一个零件是次品;⑷ 至少有两个零件是次品。

4、下列命题中哪些成立,哪些不成立: ⑴B B A B A =;⑵ B A B A =;⑶ C B A C B A = ;⑷ ()∅=)(B A AB ;⑸ AB A B A =⊂则若;⑹ A B B A ⊂⊂则若。

(二)1、选择题:⑴ 若事件A 与B 相容,则有( ))()()(.B P A P B A P a += ; )()()()(.AB P B P A P B A P b -+= ; )()(1)(.B P A P B A P c --= ; )()(1)(.B P A P B A P d -=⑵ 事件A 与B 互相对立的充要条件是( ),1)(0)(.),()()(.===B A P AB P b B P A P AB P a 且∅=Ω=∅=AB d B A AB c .,.. 且2、袋中有12个球,其中红球5个,白球4个,黑球3个。

概率论与数理统计第一版答案

概率论与数理统计第一版答案

概率论与数理统计第一版答案【篇一:《概率论与数理统计》课后习题答案第一章】xt>习题1.1解答1. 将一枚均匀的硬币抛两次,事件a,b,c分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。

试写出样本空间及事件a,b,c中的样本点。

解:(正,正),(正,反),(反,正),(反,反)?a??(正,正),(正,反)?;b??(正,正),(反,反)?c??(正,正),(正,反),(反,正)?2. 在掷两颗骰子的试验中,事件a,b,c,d分别表示“点数之和为偶数偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。

试写出样本空间及事件ab,a?b,c,bc,a?b?c?d中的样本点。

解:(1,1),(1,2),?,(1,6),(2,1),(2,2),?,(2,6),?,(6,1),(6,2),?,(6,6)?; ab??(1,1),(1,3),(2,2),(3,1)?;a?b??(1,1),(1,3),(1,5),?,(6,2),(6,4),(6,6),(1,2),(2,1)?; c??;bc??(1,1),(2,2)?;a?b?c?d??(1,5),(2,4),(2,6),(4,2),(4,6),(5,1),(6,2),(6,4)?3. 以a,b,c分别表示某城市居民订阅日报、晚报和体育报。

试用a,b,c表示以下事件:(1)只订阅日报;(2)只订日报和晚报;(3)只订一种报;(4)正好订两种报;(5)至少订阅一种报;(6)不订阅任何报;(7)至多订阅一种报;(8)三种报纸都订阅;(9)三种报纸不全订阅。

解:(1)a;(2)ab;(4)ab?ac?bc; (8)abc;(9)??(3)a?b?c;(5)a?b?c;(6);(7)?c?b?a或??4. 甲、乙、丙三人各射击一次,事件a1,a2,a3分别表示甲、乙、丙射中。

试说明下列事件所表示的结果:a2, a2a3, a1a2, a1a2, a1a2a3,a1a2?a2a3?a1a3.解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。

华中师大《概率论基础》练习题库及答案

华中师大《概率论基础》练习题库及答案

华中师范大学职业与继续教育学院 《概率论基础》练习题库及答案填空题1.设随机变量ξ的密度函数为p(x), 则 p(x) ≥0;⎰∞∞-dx x p )(= ;Eξ= 。

考查第三章2.设A,B,C 为三个事件,则A,B,C 至少有一个发生可表示为: ;A,C 发生而B 不发生可表示 ;A,B,C 恰有一个发生可表示为: 。

考查第一章3.设随机变量)1,0(~N ξ,其概率密度函数为)(0x ϕ,分布函数为)(0x Φ,则)0(0ϕ等于π21,)0(0Φ等于 。

考查第三章 4.设随机变量ξ具有分布P{ξ=k}=51 ,k=1,2,3,4,5,则Eξ= ,Dξ= 。

考查第五章5.已知随机变量X ,Y 的相关系数为XY r ,若U=aX+b,V=cY+d, 其中ac>0. 则U ,V 的相关系数等于 。

考查第五章6.设),(~2σμN X ,用车贝晓夫不等式估计:≥<-)|(|σμk X P 考查第五章7.设随机变量ξ的概率函数为P{ξ=i x }=i p ,...,2,1=i 则 i p ≥ ;∑∞=1i ip= ;Eξ= 。

考查第一章8.设A,B,C 为三个事件,则A,B,C 都发生可表示为: ;A 发生而B,C 不发生可表示为: ;A,B,C 恰有一个发生可表示为: 。

9.)4,5(~N X ,)()(c X P c X P <=>,则=c 。

考查第三章10.设随机变量ξ在[1,6]上服从均匀分布,则方程012=++x x ξ有实根的概率为 。

考查第三章 较难11.若随机变量X ,Y 的相关系数为XY r ,U=2X+1,V=5Y+10 则U ,V 的相关系数= 。

考查第三章12.若 θ服从[,]22ππ-的均匀分布, 2ϕθ=,则ϕ的密度函数 ()g y = 。

考查第五章13.设4.0)(=A P ,7.0)(=+B A P ,若A 与B 互不相容,则=)(B P ;若A 与B 相互独立,则=)(B P 。

李贤平-概率论基础答案

李贤平-概率论基础答案

<M
的数,哪
k2
次取到>M
的数,这共有
C k1 n
×k2 n−k1
种不同的固定方式,因此
k1
次取到<M

数,
k2 次取到>M
的数的可能取法有
C k1 n
×k2 n−k1
(M
− 1) k1
(N

M
)k2
种。
设 B 表示事件“把取出的 n 个数从小到大重新排列后第 m 个数等于 M“,则 B 出现就
是 k1 次取到<M 的数, k2 次取到>M 的数的数,0 ≤ k1 ≤ m −1,0 ≤ k2 ≤ n − m ,因此 B 包含
(6) E1 中还有这样的点 ω :12345,它仅属于 E1 ,而不再属于其它 Ei (i ≠ 1,0) 。诸 Ei 之间的
关系用文图表示(如图)。
8、解:(1)因为 (1+ x)n = 1 + Cn1 x + Cn2 x 2 +
+
nC
n n
x
n
,两边对
x
求导得
n(1 + x)n−1 = Cn1 + 2Cn2 x + + nCnn x n−1 ,在其中令 x=1 即得所欲证。
就不是运动员的学生全体时成立。也可表述为:当男学生不爱唱歌且不爱唱歌的一定是男学 生,并且男学生不是运动员且不是运动员的是男学生时成立。
5、解:设袋中有三个球,编号为 1,2,3,每次摸一个球。样本空间共有 3 个样本点(1),
(2),(3)。设 A = {1,2}, B = {1,3}, C = {3},则 A = {3}, A ∪ B = {1,2,3}, A ∩ B = {1}, A − B = {2},

概率论基础试题及答案

概率论基础试题及答案

概率论基础试题及答案一、单项选择题(每题2分,共10分)1. 随机变量X服从标准正态分布,P(X≤0)的值为:A. 0.5B. 0.3C. 0.7D. 0.9答案:A2. 已知随机变量X服从二项分布B(n, p),若n=10,p=0.3,则P(X=3)的值为:A. 0.0573B. 0.05734C. 0.05735D. 0.0574答案:A3. 若随机变量X与Y相互独立,则P(X>Y)的值为:A. P(X)P(Y)B. P(X) - P(X≤Y)C. 1 - P(X≤Y)D. 1 - P(X)P(Y)答案:C4. 随机变量X服从泊松分布,其期望值为λ,若λ=5,则P(X=3)的值为:A. 0.175467B. 0.175468C. 0.175469D. 0.17547答案:A5. 随机变量X服从均匀分布U(a, b),其概率密度函数为:A. f(x) = 1/(b-a), a≤x≤bB. f(x) = 1/(a-b), a≤x≤bC. f(x) = 1/(a+b), a≤x≤bD. f(x) = 1/(a-b), b≤x≤a答案:A二、填空题(每题3分,共15分)1. 若随机变量X服从正态分布N(μ, σ^2),则其概率密度函数为f(x) = __________,其中μ为均值,σ^2为方差。

答案:1/(σ√(2π)) * e^(-(x-μ)^2/(2σ^2))2. 已知随机变量X服从指数分布,其概率密度函数为f(x) = λe^(-λx),其中x≥0,则其期望值为E(X) = __________。

答案:1/λ3. 若随机变量X与Y相互独立,且P(X) = 0.6,P(Y) = 0.4,则P(X∩Y) = __________。

答案:0.244. 随机变量X服从二项分布B(n, p),若n=5,p=0.2,则P(X≥3) = __________。

答案:0.031255. 随机变量X服从几何分布,其概率质量函数为P(X=k) = (1-p)^(k-1)p,其中k=1,2,3,...,则其方差Var(X) = __________。

第一章 事件与概率

第一章 事件与概率

复旦大学《概率论基础》习题答案(第一版)第一章 事件与概率2、解:(1)ABC A C A B A ABC A BC A ⊃⊃⇒⊂⊃⇒=且显然)(,若A 发生,则B 与C 必同时发生。

(2)A C ⊂⊂⇒⊂⇒=且A B A C B A C B A ,B 发生或C 发生,均导致A 发生。

(3)A C AB ⇒⊂与B 同时发生必导致C 发生。

(4)C B A BC A ⊂⇒⊂,A 发生,则B 与C 至少有一不发生。

3、解:n A A A 21)()(11121----++-+=n n A A A A A A(或)=121121-+++n n A A A A A A A .6、解:(1){至少发生一个}=D C B A .(2){恰发生两个}=C A BD B A CD D A BC C B AD D B AC D C AB +++++.(3){A ,B 都发生而C ,D 都不发生}=D C AB .(4){都不发生}=D C B A D C B A =.(5){至多发生一个}=C B A D D B A C D C A B D C B A D C B A ++++CD BD BC AD AC AB =.8、解:(1)因为n n n n n n x nC x C x C x ++++=+ 2211)1(,两边对x 求导得12112)1(--+++=+n n n n n n x nC x C C x n ,在其中令x=1即得所欲证。

(2)在上式中令x=-1即得所欲证。

(3)要原式有意义,必须a r ≤≤0。

由于k b bk b r b b a r a b a C C C C -++-+==,,此题即等于要证∑=++-+≤≤=a k rb b a k b br k a a r C C C 00,.利用幂级数乘法可证明此式。

因为 b a b a x x x ++=++)1()1()1(,比较等式两边r b x +的系数即得证。

概率论课后习题答案第一章

概率论课后习题答案第一章

2008年4月第一章1.1 解⑴记9件合格品分别为正1正2�6�7正9记不合格品为次则Ω正1正2正1正3正1正4�6�7正1正9正1次正2正3正2正4�6�7正2正9正2次正3正4�6�7正3正9正3次�6�7 正8正9正8次正9次A正1次正2次正3次�6�7正9次⑵记2个白球分别为w1w23个黑球分别为b1b2b34个红球分别为r1r2r3r4。

则Ωw1w2b1b2b3r1r2r3r4 ⅰA w1w2。

ⅱB r1r2r3r4。

1.2 解⑴事件ABC表示该生是三年级男生但不是运动员。

⑵ABCC等价于CAB表示全系运动员都是三年级的男生。

⑶当全系运动员都是三年级学生时。

⑷当全系女生都在三年级并且三年级学生都是女生时。

1.3 解⑴1niiA⑵22221222211nCDniCDiCDCDnCDACDCD ⑶11nnijijjiAA⑷原事件即“至少有两个零件是合格品”可表为1nijijijAA。

1.4 解1—4显然5和6的证法分别类似于课文第10—12页1.5式和1.6式的证法。

1.5 解样本点总数为28A8×7。

所得分数为既约分数必须分子分母或为71113中的两个或246812中的一个和71113中的一个组合所以事件A“所得分数为既约分数”包含28A218A×15A3×22×3×52×3×6个样本点。

于是PA23698714。

1.6 解样本点总数为5310。

所取三条线段能构成一个三角形这三条线段必须是3、5、7或5、7、9。

所以事件A“所取三条线段能构成一个三角形”包含3个样本点于是PA310。

17解显然样本点总数为13事件A“恰好组成MATHEMATICIAN”包含3222个样本点。

所以3222481313PA 18解任意固定红“车”的位置黑“车”可处在9×10-189个不同位置当它处于和红“车”同行或同列的9817个位置之一时正好互相“吃掉”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论基础第一版课后练习题含答案
第一章试验与事件
习题1.1
在一家商店的百货部有不少于三只铅笔和不多于五只铅笔。

一名顾客在不知道
这一点的情况下购买两只铅笔。

试问顾客买到至少一枝铅笔的概率是多少?
答案:
假设所有可能购买的铅笔数量为N,并设顾客购买的两支铅笔为A和B。

1. 所有购买方式:
- 购买一枝铅笔的情况有3+4+5=12种 - 购买两枝不同的铅笔的情况有
$C_{3}^{3} \\times C_{4}^{4} \\times C_{5}^{5} = 1$ 种 - 购买两枝相同的
铅笔的情况有C32+C42+C52=20种
2. 至少购买一枝铅笔的情况是,购买两枝不同的铅笔、购买两枝相同的铅笔、只
购买一枝铅笔。

即(1+20+12)种。

因此,顾客买到至少一枝铅笔的概率为:$P=\\dfrac{1+20+12}{3+4+5 \\choose 2}=0.9$。

习题1.2
小明受邀参加某微信群的聚会,詹嫣是这个群的一员。

在该群中,除了詹嫣外,其他人不能辨别出小明和任何一位其他人是否是同一人。

试问,如若只在詹嫣的帮助下,做到让三位不知情的其他成员分不清他与其他成员之间的关系,则考虑以下概率事件: - 以A表示小明与已知一人不是同一人 - 以B表示小明与已知两
人不是同一人 - 以C表示已知两人中,至少一人就是小明 - 以D表示已知的
三个人均不是小明
那么事件A,B,C,D中,哪些是不可能发生的?哪些是必然发生的?哪些是可能发生的?
答案:
- 不可能发生的事件:B和D。

因为如果小明与已知的两人都不是同一人,那么已知的两人肯定是同一人,与已知的两人中,至少一人就是小明的条件矛盾;如果已知的三个人均不是小明,那么小明就不可能在群里。

- 必然发生的事件:C。

因为在已知的人中,肯定至少有一个人是小明。

- 可能发生的事件:A。

因为无法确定小明是与已知的哪一位不是同一人。

相关文档
最新文档