高光谱遥感 像元空间分辨率

合集下载

高光谱遥感

高光谱遥感
高光谱遥感应用
概念: 具有比较高的光谱分辨 率,通常能达到10-2λ数量级,
高光谱遥感具有波段多的特 点,光谱通道数多达数十甚 至数百个以上,而且各通道 间往往是连续的,因此高光 谱遥感通常也被称为成像光 谱遥感(Imaging Spectrometry)。
基本概念
遥感成像技术的发展一直伴随着两方面的进步:一是通
④定量化的连续光谱曲线数据为地物光谱机理模型引入图像分类提
供了条件。 劣势:
①对数据冗余处理不当,反而会影响分类精度;
②对定量化要求高,数据前处理复杂; ③波段多,波段间的相关性大,对训练样本数量要求高;
④使用统计学分类模型对光谱特征选择要求很高。
四、高光谱图像分类与目标识别
面向高光谱图像特点的分类算法:
高光谱图像目标识别:
①从数字信号到辐射值的转换,这个过程要求在辐射和光谱上有
高精度的定标;
②剔除大气效应:从辐射值到地面视反射率; ③纠正光照几何因素和地形影响:视反射率到地面反射率; ④光谱特征选择、特征提取、数据空间转换等; ⑤从光谱数据库中提取所要识别的目标标准光谱;或者从图像中 提取光谱端元、识别和确认所找出的端元光谱; ⑥光谱匹配和识别,采用全波形匹配或者特征参量光谱匹配;也 可以采用混合光谱分解的方法,分解每一像元光谱,得出每像元 中各端元组分的相对含量。
谱特征空间,但它包括了该对象的主要特征光谱,并在一个 含有多种目标对象的组合中,该子集能够最大限度地区别于 其它地物。
光谱特征选择:光谱特征位置搜索 光谱相关性分析 光谱距离统计
三、高光谱图像光谱分析技术 (光谱特征位置搜索)
包络线去除(Continuum Removal ):光谱曲线的包络线从 直观上看,相当于光谱曲线的“外壳”。

高光谱遥感

高光谱遥感
遥感分类
多光谱遥感:国际遥感界的共识是光谱分辨率在λ /10数量级范围 的称为多光谱(Multispectral),这样的遥感器在可见光和近红外 光谱区只有几个波段,如美国 LandsatMSS,TM,法国的SPOT等。 高光谱遥感:光谱分辨率在λ /100的遥感信息称之为高光谱遥感 (HyPerspectral)。它是在电磁波谱的可见光,近红外,中红外和 热红外波段范围内,获取许多非常窄的光谱连续的影像数据的技术。 其成像光谱仪可以收集到上百个非常窄的光谱波段信息。高光谱遥 感是当前遥感技术的前沿领域,它利用很多很窄的电磁波波段从感 兴趣的物体获得有关数据,它包含了丰富的空间、辐射和光谱三重 信息。高光谱遥感使本来在宽波段遥感中不可探测的物质,在高光 谱遥感中能被探测。 超高光谱遥感:而随着遥感光谱分辨率的进一步提高,在达到 λ /1000时,遥感即进入超高光谱(ultraspeetral)阶段。
土壤属性高光谱反演
土壤盐分
在土壤反射光谱中的特征光谱,从而对土壤营养状况和
土壤侵蚀状况做进一步检测与评价。有图可知,总氮在 0.55-0.60μm之间和0.80-0.85μm之间有较明显的反射峰 ,在1.4μm周围有较显著的吸收谷。
土壤水分
当土壤的含水率增加时,土壤的反射率下降,在水的吸
Hyperion/EO-1
Hyperion 传感器搭载于 EO-1 卫星平台,EO-1(Earth
Observing-1)是美国NASA 面向 21 世纪为接替 LandSat-7 而 研制的新型地球观测卫星,于 2000 年 11月发射升空,其卫 星轨道参数与 LandSat-7 卫星的轨道参数接近,之所以设计 相同轨道,目的是为了使 EO-1 和 LandSat-7 两颗星的图像 每天至少有 1~4 景重叠,以便进行比对。 传统的陆地资源卫星只提供为数不多的七个多光谱波段,远 远不能满足各种实际应用的需要,因此美国地质调查局 (USGS)与美国宇航局(NASA)合作发射了 EO-1 卫星, 并在该卫星上搭载了三种传感器分别是 ALI (the Advanced Land Imager), Hyperion, LEISA (the Linear Etalon Imaging Spectrometer Array)Atmospheric Corrector

高光谱遥感

高光谱遥感
(4)基于光谱数据库的地物光谱匹配识别算法; (5)混合光谱分解模型; (6)基于光谱模型的地表生物物理化学过程与参数的识别和反演算 法
25
高光谱影像分析技术:
国内外关于成像光谱仪的遥感应用研究中,所采用 的分析方法可归纳为两大类: 一、 基于纯像元的分析方法 (1)。。。
(2)。。。
二、基于混合像元的分析方法
21
PHI和OMIS成像光谱仪的技术指标
22
• 2002年3月在我国载人航天计划中发射的第三艘试验飞船“神 舟三号”中,搭载了一台我国自行研制的中分辨率成像光谱 仪。这是继美国EOS计划MODIS之后,几乎与欧洲环境卫星 (ENVISAT)上的MERIS同时进入地球轨道的同类仪器。它 在可见光到热红外波长范围(0.4-12.5μm)具有34个波段。 • 2007年10月24日我国发射的“嫦娥-1”探月卫星上,成像光谱 仪也作为一种主要载荷进入月球轨道。这是我国的第一台基 于富里叶变换的航天干涉成像光谱仪,它具有光谱分辨率高 的特点。 • 2008年发射的环境与减灾小卫星(HJ-1)星座中,也搭载一 台工作在可见光—近红外光谱区(0.45—0.95μm)、具有128 个波段、光谱分辨率优于5nm的高光谱成像仪。它将对广大 陆地及海洋环境和灾害进行不间断的业务性观测。 • “风云-3”气象卫星也将中分辨率光谱成像仪作为基本观测仪 器,纳入大气、海洋、陆地观测体系,为对地球的全面观测 和监测提供服务。
18
19
我国高光谱发展:
• 80年代,研制和发展了新型模块化航空成像光谱仪 (MAIS)。这一成像光谱系统在可见—近红外—短波红 外具有64波段,并可与6-8波段的热红外多光谱扫描仪集 成使用,从而使其总波段达到70—72个。
• 高光谱仪器的研制成功,为中国遥感科学家提供了新的技 术手段。通过在我国西部干旱环境下的地质找矿试验,证 明这一技术对各种矿物的识别以及矿化蚀变带的制图十分 有利,成为地质研究和填图的有效工具。

高光谱遥感080705(2)

高光谱遥感080705(2)

2. 高光谱遥感成像技术——光谱成像
色散型成像光谱仪
光谱图像立方体
λ
前置光学 干涉型成像光谱仪 前置光学 干涉成像 光电转换 分色成像 光电转换
ΔL
干涉图像立方体
FFT
光谱图像立方体
2. 高光谱遥感成像技术——光谱成像 (1)棱镜、光栅色散型成像光谱仪
Grating spectrometer
衍射光栅
飞机最高飞行地速要求:
V
≤ 像元分辨率 × 遥感器行扫描速率
1. 引言
(8)信噪比 (SNR): 信噪比是遥感器采集到的信号和噪声的比,信噪比和图像的空间分 辨率、光谱分辨率是相互制约的 。
Vs D02ωτ aτ 0 Dλ = X T ΔT VN 4 AD Δf
D0为成像仪光学系统的有 效口径,
2. 高光谱遥感成像技术——空间成像 摆扫型成像光谱仪的优点:
(1) FOV大; (2) 像元配准好; (3) 探测元件定标方便,数据稳定性好; (4) 进入物镜后再分光,光谱波段范围可以 做得很宽。
摆扫型成像光谱仪的不足之处:
像元凝视时间短,提高光谱和空间分辨率以及 信噪比相对困难。
2. 高光谱遥感成像技术——空间成像 (2)推扫型成像光谱仪(Pushbroom) 推扫型成像光谱仪采用一个面阵探测器,其垂直于运动方向在飞 行平台向前运动中完成二维空间扫描;平行于平台运动方向,通 过光栅和棱镜分光,完成光谱维扫描。
GR=2×tg(IFOV/2) ×altitude
r
α
L
L α = rad r
1. 引言 2.1 基本概念
(5)空间分辨率(Spatial Resolution):
1 IFOV = rad = 1mrad 1000

《遥感概论》作业参考答案

《遥感概论》作业参考答案

《遥感概论》作业参考答案一.填空题1.地面平台航空平台航天平台2.CCD3.直接标志间接标志。

4.1999中巴地球资源卫星5.传感器仪器本身产生的误差大气对辐射的影响6.暖阴影冷阴影7.监督分类非监督分类8.精确的定位能力准确定时及测速能力9.图像处理与特征提取子系统遥感图像解译知识获取系统狭义的遥感图像解译专家系统10.直方图最小值去除法回归分析法11.比值植被指数归一化植被指数差值植被指数正交植被指数12.瑞利散射米氏散射无选择性散射二.名词解释1.黑体:如果一个物体对于任何波长的电磁辐射都全部吸收,则这个物体是绝对黑体。

2.遥感平台:是搭载传感器的工具。

3.监督分类:包括利用训练样本建立判别函数的“学习”过程和把待分像元代入判别函数进行判别的过程。

4.遥感:遥远地感知。

5.解译标志:又称判读标志,指能够反映和表现目标地物信息的遥感影像各种特征,这些特征能帮助判读者识别遥感图像上目标地物或现象。

6.归一化植被指数(NVl):遥感影像中近红外波段的反射值减去红光波段的反射值的差与二者之和的比值7.电磁波谱:按电磁波在真空中传播的波长或频率,递增或递减排列,则构成了电磁波谱。

8.大气窗口:把电磁波通过大气层时较少被反射、吸收或散射的,透射率较高的波段称为大气窗口。

9.空间分辨率:像元所代表的地面范围的大小。

10.主动遥感:由探测器主动发射一定电磁波能量并接收目标的后向散射信号。

11.反射波谱:指地物反射率随波长的变化规律。

通常用平面坐标曲线表示,横坐标表示波长,纵坐标表示反射率。

12.波谱分辨率:是传感器在接收目标辐射的波谱时能分辨的最小波长间隔。

13.高光谱遥感:是高光谱分辨率遥感的简称。

就是在电磁辐射的可见光、近红外、中红外、远红外获取许多非常窄的光谱连续的影像数据技术。

三.简答题1.根据传感器所接受到的电磁波光谱特征的差异来识别地物。

(1)不同地物在不同波段反射率存在差异(2)同类地物的光谱是相似的,但随着该地物的内在差异而有所变化。

高光谱遥感技术的介绍及应用

高光谱遥感技术的介绍及应用

高光谱遥感技术的介绍及应用在20世纪,人类的一大进步是实现了太空对地观测,即可以从空中和太空对人类赖以生存的地球通过非接触传感器的遥感进行观测。

最近几十年,随着空间技术、电脑技术、传感器技术等与遥感密切相关学科技术的飞速发展,遥感正在进入一个以高光谱遥感技术、微波遥感技术为主要标志的时代。

本文简要介绍了高光谱遥感技术的特点、发展状况及其在一些领域的应用。

1 高光谱遥感简介1.1高光谱遥感概念所谓高光谱遥感,即高光谱分辨率遥感,指利用很多很窄的电磁波波段〔通常<10nm〕从感兴趣的物体获取有关数据;与之相对的则是传统的宽光谱遥感,通常>100nm,且波段并不连续。

高光谱图像是由成像光谱仪获取的,成像光谱仪为每个像元提供数十至数百个窄波段光谱信息,产生一条完整而连续的光谱曲线。

它使本来在宽波段遥感中不可探测的物质,在高光谱中能被探测。

高光谱遥感技术是近些年来迅速发展起来的一种全新遥感技术,它是集探测器技术、精密光学机械、微弱信号检测、电脑技术、信息处理技术于一体的综合性技术。

在成像过程中,它利用成像光谱仪以纳米级的光谱分辨率,以几十或几百个波段同时对地表地物像,能够获得地物的连续光谱信息,实现了地物空间信息、辐射信息、光谱信息的同步获取,因而在相关领域具有巨大的应用价值和广阔的发展前景。

1.2高光谱遥感数据的特点同其他常用的遥感手段相比,成像光谱仪获得的数据具有以下特点:1〕、多波段、波段宽度窄、光谱分辨率高。

波段宽度< 10 nm ,波段数较多光谱遥感(由几个离散的波段组成)大大增多,在可见光和近红外波段可达几十到几百个。

如A VIRIS在0. 4~214 波段范围内提供了224 个波段。

研究说明许多地物的吸收特征在吸收峰深度一半处的宽度为20~40 nm。

这是传统的多光谱等遥感技术所不能分辨的(多光谱遥感波段宽度在100~200 nm 之间),而高光谱遥感甚至光谱分辨率更高的超光谱遥感却能对地物的吸收光谱特征进行很好的识别,这使得过去以定性、半定量的遥感向定量遥感发展的进程被大大加快。

遥感基础知识试题及答案

遥感基础知识试题及答案

1、多波段遥感:探测波段在可见光与近红外波段范围内,再分为若干窄波段来探测目标。

2、维恩位移定律:黑体辐射光谱中最强辐射的波长与黑体的绝对温度成反比。

黑体的温度越高,其曲线的峰顶就越往左移,即往短波方向移动。

3、瑞利散射与米氏散射:前者是指当大气中的粒子直径比波长小得多的时候所发生的大气散射现象。

后者是指气中的粒子直径与波长相当时发生的散射现象。

4、大气窗口;太阳辐射通过大气时,要发生反射、散射、吸收,从而使辐射强度发生衰减。

对传感器而言,某些波段里大气的投射率高,成为遥感的重要探测波段,这些波段就是大气窗口。

5、多源信息复合:遥感信息图遥感信息,以及遥感信息与非遥感信息的复合。

6、空间分辨率与波谱分辨率:像元多代表的地面范围的大小。

后者是传感器在接收目标地物辐射的波谱时,能分辨的最小波长间隔。

7、辐射畸变与辐射校正:图像像元上的亮度直接反映了目标地物的光谱反射率的差异,但也受到其他严肃的影响而发生改变,这一改变的部分就是需要校正的部分,称为辐射畸变。

通过简便的方法,去掉程辐射,使图像的质量得到改善,称为辐射校正。

8、平滑与锐化;图像中某些亮度变化过大的区域,或出现不该有的亮点时,采取的一种减小变化,使亮度平缓或去掉不必要的“燥声”点,有均值平滑和中值滤波两种。

锐化是为了突出图像的边缘、线状目标或某些亮度变化大的部分。

9、多光谱变换;通过函数变换,达到保留主要信息,降低数据量;增强或提取有用信息的目的。

本质是对遥感图像实行线形变换,使多光谱空间的坐标系按照一定的规律进行旋转。

10、监督分类:包括利用训练样本建立判别函数的“学习”过程和把待分像元代入判别函数进行判别的过程。

1、遥感与遥感技术系统:遥远地感知;目标地物的电磁波,信息获取,信息接受,信息处理,信息应用。

2、动遥感与被动遥感:前者是探测器主动发射电磁波并接受信息。

后者是被动接受目标地物的电磁波。

3、磁波与电磁波谱:电磁振动的传播;按电磁波在真空中的传播的波长排列。

高光谱遥感与多光谱遥感

高光谱遥感与多光谱遥感

高光谱和多光谱实质上的差别就是,高光谱的波段 波段 较多,谱带较窄(比如hyperion 有242个波段,带 较多,谱带较窄 宽10nm) 多光谱相对波段较少 波段较少(比如ETM+,8个波段,分为 波段较少 红波段,绿波段,蓝波段,可见光,热红外(2个), 短波红外和全波段)。 高光谱遥感就是比多光谱遥感的光谱分辨率更高, 但是光谱分辨率高的同时空间分辨率会降低。
高光谱遥感简介
高光谱遥感起源于20世纪70年代初的多光谱遥感,它 将成像技术与光谱技术 成像技术与光谱技术结合在一起,在对目标的空间 成像技术与光谱技术 特征成像的同时,对每个空间像元经过色散形成几十 乃至几百个窄波段以进行连续的光谱覆盖,这样形成 的遥感数据可以用“图像立方体”来形象的描述。 “ ” 。 同传统遥感技术相比, 其所获取的图像包含了丰富的 空间,辐射和光谱 辐射和光谱三重信息。 空间 辐射和光谱 高光谱遥感技术已经成为当前遥感领域的前沿技术。
高光谱遥感简介高光谱遥感简介高光谱遥感简介高光谱遥感简介高光谱遥感起源于20世纪70年代初的多光谱遥感它将成像技术与光谱技术结合在一起在对目标的空间特征成像的同时对每个空间像元经过色散形成几十乃至几百个窄波段以进行连续的光谱覆盖这样形成的遥感数据可以用图像立方体来形象的描述
高光谱遥感与 多光谱遥感的异同
遥感影像的表现——多波段的显示
优点: 优点:
多光谱遥感不仅可以根据影像的形态和结构的差异判别地 物,还可以根据光谱特性的差异判别地物,扩大了遥感的 扩大了遥感的 信息量。 信息量 航空摄影用的多光谱摄影与陆地卫星所用的多光谱扫描均 能得到不同谱段的遥感资料 不同谱段的遥感资料,分谱段的图像或数据可以通 不同谱段的遥感资料 过摄影彩色合成或计算机图像处理,获得比常规方法更为 获得比常规方法更为 丰富的图像,也为地物影像计算机识别与分类提供了可能。 丰富的图像
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高光谱遥感的像元空间分辨率通常取决于所使用的传
感器和成像方式。

一般来说,高光谱遥感图像的空间分辨率较高,可以达到米级甚至厘米级。

这是因为高光谱遥感图像是在非常精细的波段上获取的,可以提供更多的光谱信息,从而提高了空间分辨率。

然而,需要注意的是,像元空间分辨率并不是越高越好,还需要考虑其他因素,如光谱分辨率、信噪比、辐射分辨率等。

因此,在实际应用中,需要根据具体需求和条件选择合适的传感器和成像方式,以达到最佳的空间分辨率和其他性能指标。

相关文档
最新文档