高中数学简单的三角恒等变换
高中数学-简单的三角恒等变换

= 1 .
7
4
3.(教材习题改编)若(tan α+1)(tan β+1)=2,则α+β=
教材研读 栏目索引
.
答案 +kπ,k∈Z
4
解析 由(tan α+1)(tan β+1)=2可得,
tan α+tan β=1-tan αtan β,则tan(α+β)= tan α tan β =1,则α+β= +kπ,k∈Z.
1 tan α tan β
4
教材研读 栏目索引
4.(2019江苏无锡高三模拟)已知sin2x+2sin xcos x-3cos2x=0,则cos 2x= .
答案 - 4 或0
5
教材研读 栏目索引
解析
∵sin2x+2sin
xcos
x-3cos2x= sin2
x
2sin x cos x sin2x cos2
7 14 7 14 2
考点突破 栏目索引
因为α为锐角,所以0<2α<π.又cos 2α>0,所以0<2α< ,
2
又β为锐角,所以- <2α-β< ,所以2α-β= .
2
2
3
考点突破 栏目索引
方法技巧
“给值求角”实质上可转化为“给值求值”,即通过求角的某个三角函 数值来求角(注意角的范围),在选取函数时,遵循以下原则:
(2)1+sin α=③
sin
α 2
cos
α 2
2
;
教材研读 栏目索引
1-sin α=④
第五章-5.5.2-简单的三角恒等变换高中数学必修第一册人教A版

120∘ cos
1
2
26∘ = − .
26∘
+2×
1
(cos
2
120∘
+ cos
26∘ )
=2×
1
−
2
× cos
26∘
+
1
−
2
+ cos
知识点3 万能公式
例3-3 已知tan
A.−
2
4
5
B.−
【解析】∵ tan
∴ tan =
= 2,则cos 2 =( D
2
2
1−tan2 2
∴ cos 2 =
【解析】原式=
sin+sin7 + sin3+sin5
2cos 4cos 3+2cos 4cos
=
2sin 4cos 3+2sin 4cos
2cos 4 cos 3+cos
=
2sin 4 cos 3+cos
(2)
=
1
.
tan 4
(和化积)
3
5πLeabharlann 255例5 已知cos 2 = , ∈ ( ,π),则sin =( A
当 >
−
=
−
,
2
= .
π
2
=
−
,
2
π
.
2
=
故△ 为直角三角形.
方法2 即sin
所以sin
2
cos
2
2
+
2
= cos
高中数学三角恒等变换

Page
1
知识梳理
1.两角和与差的余弦、正弦、正切公式 cos(α-β)=cos αcos β+sin αsin β,(C(α-β))
cos(α+β)=cos αcos β-sin αsin β ,(C(α+β))
sin(α-β)= sin αcos β-cos αsin β ,(S(α-β))
7 - 5
.
答案
解析
2 2 cos α - sin α cos 2α = =cos α-sin α, π 2 2 2sinα+ 2 sin α+ cos α 4 2 2 3 π ∵sin α= ,α∈( ,π), 5 2 4 7 ∴cos α=- ,∴原式=- . 5 5
Page 6
(2)在△ABC中,若tan Atan B=tan A+tan B+1,则cos C的值为 答案
2 A.- 2 2 B. 2 1 C. 2 1 D.- 2
解析
由tan Atan B=tan A+tan B+1,
tan A+tan B 可得 =-1,即 tan(A+B)=-1, 1-tan Atan B 3π 又 A+B∈(0,π),所以 A+B= , 4 π 2 则 C= ,cos C= . 4 2
Page 16
引申探究
θ θ 1+sin θ-cos θsin -cos 2 2 化简: (0<θ<π). 解答 2-2cos θ
θ π θ ∵0< < ,∴ 2-2cos θ=2sin , 2 2 2
例2 2 5 A. 25 5 3 (1)设 α、β 都是锐角,且 cos α= ,sin(α+β)= ,则 cos β 等于 5 5
答案 解析
简单的三角恒等变换公式

简单的三角恒等变换公式
三角恒等变换是一种数学操作,用于在不改变一个三角形的形状的情况下改变它的位置或方向。
下面是几个常用的三角恒等变换公式:旋转:如果要将三角形旋转角度θ,则对于每个坐标 (x,y),可以使用以下公式:
x' = x * cosθ - y * sinθ
y' = x * sinθ + y * cosθ
平移:如果要将三角形平移到新的位置 (x',y'),则对于每个坐标 (x,y),可以使用以下公式:
x' = x + x0
y' = y + y0
缩放:如果要将三角形缩放比例为k,则对于每个坐标 (x,y),可以使用以下公式:
x' = k * x
y' = k * y
这些公式都可以使用单位矩阵来表示,例如旋转变换的单位矩阵如下:
[cosθ -sinθ]
[sinθ cosθ]。
高一数学简单的三角恒等变换

例1.试以 cos 表示 sin
2
2
, cos
2
2
, tan
2
2
。
例2.求证:
1 (1) sin cos [sin( ) sin( )]; 2 (2) sin sin 2sin cos . 2 2
例3.已知函数 y sin x 3 cos x , (1)求该函数的周期,最大值和最小值; (2)求该函数的单调递增区间。
新课标人教版课件系列
《高中数学》
必修4
3.2《简单的三角恒等变换》
教学目标
• 1、通过二倍角的变形公式推导半角的正弦、余弦、正 切公式,体会化归、换元、方程、逆向使用公式等数 学思想,提高学生的推理能力。 • 2、理解并掌握二倍角的正弦、余弦、正切公式,并会 利用公式进行简单的恒等变形,体会三角恒等变形在 数学中的应用。 • 3、通过例题的解答,引导学生对变换对象目标进行对 比、分析,促使学生形成对解题过程中如何选择公式, 如何根据问题的条件进行公式变形,以及变换过程中 体现的换元、逆向使用公式等数学思想方法的认识, 从而加深理解变换思想,提高学生的推理能力. • 4、通过三角恒等变形,形如的函数转化为的函数; • 5、灵活利用公式,通过三角恒等变形,解决函数的最 值、周期、单调性等问题。
角 取何值时,矩形ABCD的面积最大?并求出这个最大面积。
Q
D
C
O
A
B P
上海自动化仪表厂系统工程公司、“销售公司”、“上海自动化仪表厂系统工程公司系统工程公司”、“DCS分公司”、“进出口部”、“国内 备品备件部”、共有18个工厂、21家合资企业。上海自动化仪表厂系统工程公司 上海自动化仪表厂系统工程公司 duh61exc 主要产品有工业生产过程控制系统装置和仪表分析仪器、汽车电子、计算机、楼宇控制系统、商业和金融自动化系统、可编程序控制 器(PLC)、家用电器及仪表控制柜、各种仪表元件和气动元件等。在工业生产过程控制方面的产品有20个大类、150个系列、3000多种品种, 拥有作为现代工业过程控制的分散控制系统(DCS)及各类控制、调节、温度、测量、显示、记录仪以及执行机构和调节阀。 日飞升,真是神仙哪!”下人涕泗横流的报告。老太太回来后听说,登时就怒了,对着明远:“请了活神仙来家,怎么不赶紧叫我去 见?”“„„”明远一脸委屈的想,“要不是这家伙临走前来了这一手,谁认他是真神仙?还不当他是江湖把式吗?请您搁下要事回府、屈尊 去见他,怎开得了这个口!”正是临走前使的一招,才使得张神仙的“活儿”有了质的飞跃,成为上上下下里里外外诸色人等口中津津乐道的 话题。而韩毓笙“芙蓉花主”的名头,听说的人更多了。第三十四章 凭尽栏杆说元夜(1)宝音的身体好得很快。老太太原是不想留个病人在 屋里的,见她病势来得急去得快,刘大夫也说不过是饮食不当、热毒急了攻破喉头,其实无事,也便放宽了心,留她在屋中再看看。这日但见 宝音对着一本书,一边还比着手势,便动问道:“怎么了?不好好养身子,这还比划捣药呢?”宝音忙阖起书,屈膝道:“这本书„„写着捣 茶。”她从明秀那儿,没借佛经,倒借了本茶经,还是挺古早的簿子,里头说吃茶,要捣、要煎、要放盐放油放香料,甚或有把茶叶都吃下去 的!可是作怪。丫头们都纳闷:“好茶叶一捣,不就坏了么,还怎么泡?”老太太倒触动心上痒处,笑道:“你们不知道。拿来我看看。”丫 头捧起书,且喜书上字体不小,她眯着眼看了会儿,道:“果然如此,这倒说的是古法儿的吃茶法呢!——你们单知道‘喝茶’,土话儿也叫 ‘吃茶’,哪知道老早时候,兴的就是吃茶?茶叶先经蒸制,压成饼,好的茶饼,只取芽尖一缕,光明莹洁,状若银线,压得密,手掌薄、半 个手掌大这么一小团,拿起来沉甸甸的,就快半斤了!叫密云团。用时切一小片,磨细下来,已够煮三五碗茶汤——三碗为佳,最多煮五碗, 这才是会吃茶的人。我的爷爷,每次只吃三碗,他就有那种密云团,茶汤浓得呀,再没其他相仿佛的好比拟,那种着实劲儿,用‘喝’就太轻 浮了,所以叫‘吃’。我小时候,从京城以降,已经都兴起炒青泡茶法儿了,他还恋着团茶,我亲手伺候他,煮完了最后一片密云团,再就没 了。市面上再没人能做那种茶啦!”老太太的爷爷,其实是晚年获罪,被抄赃,一吓而亡。老太太很少讲她爷爷的事,无非一次兴起,跟宝音 提过她十来岁时跟爷爷学得一手好煮茶手艺,也不过那么几句话,点到即止。现在她也打算“即止”了,但小丫头们没有宝音识相,簇拥过来 还想听她讲团茶,宝音在当中只凑趣插了几句嘴,老太太忽然发现自己已经兴致勃勃谈起来了。跟她的爷爷无关,只是团茶。话头被引导得那 么好,纯粹说古制,给小孩子们开开眼。她不觉间讲解了螃蟹眼、鹧鸪斑、三沸三辨、十二先生、兔豪鱼目、冷粥栗纹。这些术语、掌故,久 储在她心里,而今渐渐活了过来。老人
【高中数学必修四】3.2简单的三角恒等变换

11
11
11
11
11
对于(C2)公式的变形用,即升(降)幂公式的运用,已介绍。
复习:
凑角公式
a sin x b cos x a 2 b 2 sin x b a, b所在象限决定 其中tan , 角所在象限由点 a
功能:把形如“asinx+bcosx”的多项式化成“一角一函数” 形式,从而使问题简化,蕴含了化归思想。
三.课堂小结
1.( S2 )公式的变形用 2.(C 2 )公式的变形用
2 tan 3.万能公式: sin 2 1 tan2 1 tan2 cos 2 1 tan2
5.积化和差与和差化积公式
2 tan tan 2 1 tan2
4.三角恒等变换在实际问题中的应用
万 能 公 式
例4.求证(教材140页例2) 1 1sin cos sin sin 2 2sin sin 2 sin cos 2 2
此例中(1)与教材142练习2,称为积化和差公式 此例中(2)与教材142练习3,称为和差化积公式
1 2 4 解法二:原式 cos cos cos 2 9 9 9 8 2 4 8 sin sin sin sin 1 1 9 9 9 9 2 2 sin 2 sin 2 2 sin 4 16 sin 16 9 9 9 9 1 2 3 4 5 cos cos cos cos cos 32 .
R, k
2 , k
(T2 )
4 (k Z )
二.新课: 题型1:二倍角中的连乘积问题
例1 求值: cos 80o cos 40o cos 20o
高中数学必修4第三章3.2简单的三角恒等变换

一、复习:两角和的正弦、余弦、正切公式:
sin sin cos cos sin
cos cos cos sin sin
tan
tan tan 1 tan tan
二sin 2 2sin cos
=3(cosx 2)2 1 33
又 x 2 , 1 cosx 1 ,
3 当x= 2
3
32
时,(cosx) min
1 2
,
y2max=145
;
当x=
3
时,(cosx) max
1 2
, ymin=
1 4.
七、y (a sinx+cosx)+bsinxcosx型
例7 求函数y sinx+cosx+sinxcosx的最值. <分析>注意到(sinx+cosx)2=1 2sinxcosx.可把sinx+cosx
sin2 1 cos 2
2
降幂升角公式
二、讲授新课:
例1.试以cos表示sin2 ,cos2 ,tan2 .
2
2
2
半角公式
sin 1 cos ,
2
2
cos 1 cos ,
2
2
tan 1 cos .
符号由α所在象限决定. 2
1 cos
2
1.半角公式
sin 1 cos
分析:要求当角取何值时,矩形ABCD的面积 S最大, 可分二步进行. ①找出S与之间的函数关系; ②由得出的函数关系,求S的最大值.
解 在Rt△OBC中,OB=cos,BC=sin 在Rt△OAD中,
高二数学简单的三角恒等变换教案(通用11篇)

高二数学简单的三角恒等变换教案(通用11篇)高二数学简单的三角恒等变换教案 1教学目标1、理解并掌握基本的三角恒等式,如和差化积、积化和差公式。
2、能够运用三角恒等式进行简单的三角恒等变换。
3、培养学生的逻辑推理能力和数学运算能力。
教学重点1、三角恒等式的理解和记忆。
2、三角恒等变换的方法和步骤。
教学难点三角恒等式的灵活运用和复杂三角表达式的化简。
教学准备1、多媒体课件,包含三角恒等式、例题和练习题。
2、黑板和粉笔。
教学过程一、导入新课复习上节课内容,回顾三角函数的定义和性质。
提出问题:如何利用已知的三角函数公式推导出新的三角恒等式?二、新课讲解1、讲解三角恒等式的基本概念,介绍和差化积、积化和差等公式。
2、通过实例演示如何使用三角恒等式进行三角恒等变换。
3、引导学生总结三角恒等变换的.一般方法和步骤。
三、课堂练习布置一些简单的三角恒等变换练习题,让学生尝试运用所学知识解决问题。
教师巡视指导,及时纠正学生的错误,并给予适当的提示和帮助。
四、巩固提升分析一些较复杂的三角恒等变换问题,引导学生思考如何灵活运用三角恒等式进行化简。
鼓励学生相互讨论,分享解题思路和方法。
五、课堂小结总结本节课的重点内容,强调三角恒等变换的重要性和应用价值。
布置课后作业,要求学生完成一些三角恒等变换的练习题,以巩固所学知识。
教学反思本节课通过实例演示和课堂练习,使学生初步掌握了三角恒等变换的基本方法和步骤。
但在处理较复杂问题时,部分学生仍显得不够熟练,需要进一步加强练习和指导。
在今后的教学中,可以设计更多具有针对性的练习题,帮助学生巩固和提高三角恒等变换的能力。
同时,也要注重培养学生的逻辑思维能力和数学运算能力,为后续的数学学习打下坚实的基础。
高二数学简单的三角恒等变换教案 2理解并掌握三角恒等变换的基本公式,包括正弦、余弦、正切的和差公式,二倍角公式,半角公式等。
能够运用三角恒等变换解决一些简单的三角函数化简、求值及证明问题,培养学生的逻辑推理能力和数学运算能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.5.2 简单的三角恒等变换学习目标1.能用二倍角公式导出半角公式2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法.3.能利用三角恒等变换对三角函数式化简、求值以及证明三角恒等式,并能进行一些简单的应用.知识点一 半角公式 sin α2=±1-cos α2, cos α2=±1+cos α2, tan α2=±1-cos α1+cos α=sin α1+cos α=1-cos αsin α.知识点二 辅助角公式 辅助角公式:a sin x +b cos x =a 2+b 2sin(x +θ).⎝⎛⎭⎫其中tan θ=b a1.cos α2=1+cos α2.( × ) 2.对任意α∈R ,sin α2=12cos α都不成立.( × )3.若cos α=13,且α∈(0,π),则cos α2=63.( √ )4.对任意α都有sin α+3cos α=2sin ⎝⎛⎭⎫α+π3.( √ )一、三角恒等式的证明例1 求证:1+sin θ-cos θ1+sin θ+cos θ+1+sin θ+cos θ1+sin θ-cos θ=2sin θ.证明 方法一 左边=2sin 2θ2+2sin θ2cos θ22cos 2θ2+2sin θ2cos θ2+2cos 2θ2+2sin θ2cosθ22sin 2θ2+2sin θ2cosθ2=sinθ2cos θ2+cos θ2sin θ2=1cos θ2sinθ2=2sin θ=右边.所以原式成立.方法二 左边=(1+sin θ-cos θ)2+(1+sin θ+cos θ)2(1+sin θ+cos θ)(1+sin θ-cos θ)=2(1+sin θ)2+2cos 2θ(1+sin θ)2-cos 2θ=4+4sin θ2sin θ+2sin 2θ=2sin θ=右边. 所以原式成立.反思感悟 三角恒等式证明的常用方法 (1)执因索果法:证明的形式一般是化繁为简; (2)左右归一法:证明左右两边都等于同一个式子;(3)拼凑法:针对题设和结论之间的差异,有针对性地变形,以消除它们之间的差异,简言之,即化异求同;(4)比较法:设法证明“左边-右边=0”或“左边/右边=1”;(5)分析法:从被证明的等式出发,逐步地探求使等式成立的条件,直到已知条件或明显的事实为止,就可以断定原等式成立. 跟踪训练1 求证:2sin x cos x(sin x +cos x -1)(sin x -cos x +1)=1+cos x sin x .证明 左边=2sin x cos x⎝⎛⎭⎫2sin x 2cos x 2-2sin 2x 2⎝⎛⎭⎫2sin x 2cos x 2+2sin 2x 2=2sin x cos x 4sin 2x 2⎝⎛⎭⎫cos 2x 2-sin 2x 2=sin x 2sin 2x 2=cos x 2sin x 2=2cos 2x 22sin x 2cos x 2=1+cos x sin x =右边.所以原等式成立.二、三角恒等变换的综合问题例2 已知函数f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4(ω>0)的最小正周期为π. (1)求ω的值;(2)讨论f (x )在区间⎣⎡⎦⎤0,π2上的单调性. 解 (1)f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4 =22sin ωx ·cos ωx +22cos 2ωx =2(sin 2ωx +cos 2ωx )+ 2 =2sin ⎝⎛⎭⎫2ωx +π4+ 2. 因为f (x )的最小正周期为π,且ω>0, 从而有2π2ω=π,故ω=1.(2)由(1)知,f (x )=2sin ⎝⎛⎭⎫2x +π4+ 2. 若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2,即0≤x ≤π8,f (x )单调递增; 当π2<2x +π4≤5π4,即π8<x ≤π2时,f (x )单调递减. 综上可知,f (x )在区间⎣⎡⎦⎤0,π8上单调递增,在区间⎝⎛⎦⎤π8,π2上单调递减. 反思感悟 研究三角函数的性质,如单调性和最值问题,通常是把复杂的三角函数通过恰当的三角变换,转化为一种简单的三角函数,再研究转化后函数的性质.在这个过程中通常利用辅助角公式,将y =a sin x +b cos x 转化为y =A sin(x +φ)或y =A cos(x +φ)的形式,以便研究函数的性质.跟踪训练2 已知函数f (x )=sin 2x -sin 2⎝⎛⎭⎫x -π6,x ∈R . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值和最小值. 解 (1)由已知,有f (x )=1-cos 2x2-1-cos ⎝⎛⎭⎫2x -π32=12⎝⎛⎭⎫12cos 2x +32sin 2x -12cos 2x =34sin 2x -14cos 2x =12sin ⎝⎛⎭⎫2x -π6. 所以f (x )的最小正周期T =2π2=π.(2)因为f (x )在区间⎣⎡⎦⎤-π3,-π6上是减函数,在区间⎣⎡⎦⎤-π6,π4上是增函数,且f ⎝⎛⎭⎫-π3=-14,f ⎝⎛⎭⎫-π6=-12,f ⎝⎛⎭⎫π4=34, 所以f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值为34,最小值为-12. 三、三角函数的实际应用例3 如图,有一块以点O 为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD 开辟为绿地,使其一边AD 落在半圆的直径上,另两点B ,C 落在半圆的圆周上.已知半圆的半径长为20 m ,如何选择关于点O 对称的点A ,D 的位置,可以使矩形ABCD 的面积最大,最大值是多少?解 连接OB (图略),设∠AOB =θ,则AB =OB sin θ=20sin θ,OA =OB cos θ=20cos θ,且θ∈⎝⎛⎭⎫0,π2. 因为A ,D 关于原点对称, 所以AD =2OA =40cos θ. 设矩形ABCD 的面积为S ,则 S =AD ·AB =40cos θ·20sin θ=400sin 2θ. 因为θ∈⎝⎛⎭⎫0,π2,所以当sin 2θ=1, 即θ=π4时,S max =400(m 2).此时AO =DO =102(m).故当A ,D 距离圆心O 为10 2 m 时,矩形ABCD 的面积最大,其最大面积是400 m 2. 反思感悟 (1)三角函数与平面几何有着密切联系,几何中的角度、长度、面积等问题,常借助三角变换来解决;实际问题的意义常反映在三角形的边、角关系上,故常用三角恒等变换的方法解决实际的优化问题.(2)解决此类问题的关键是引进角为参数,列出三角函数式.跟踪训练3 如图所示,要把半径为R 的半圆形木料截成长方形,应怎样截取,才能使△OAB 的周长最大?解 设∠AOB =α,则0<α<π2,△OAB 的周长为l ,则AB =R sin α,OB =R cos α, ∴l =OA +AB +OB =R +R sin α+R cos α =R (sin α+cos α)+R =2R sin ⎝⎛⎭⎫α+π4+R . ∵0<α<π2,∴π4<α+π4<3π4.∴l 的最大值为2R +R =(2+1)R , 此时,α+π4=π2,即α=π4,即当α=π4时,△OAB 的周长最大.1.已知cos α=15,α∈⎝⎛⎭⎫3π2,2π,则sin α2等于( ) A.105 B .-105 C.265 D.255答案 A解析 ∵α∈⎝⎛⎭⎫3π2,2π, ∴α2∈⎝⎛⎭⎫3π4,π,sin α2=1-cos α2=105. 2.若函数f (x )=-sin 2x +12(x ∈R ),则f (x )是( )A .最小正周期为π2的奇函数B .最小正周期为π的奇函数C .最小正周期为2π的偶函数D .最小正周期为π的偶函数 答案 D解析 f (x )=-1-cos 2x 2+12=12cos 2x .故选D.3.下列各式与tan α相等的是( ) A.1-cos 2α1+cos 2αB.sin α1+cos αC.sin α1-cos 2αD.1-cos 2αsin 2α答案 D解析 1-cos 2αsin 2α=2sin 2α2sin αcos α=sin αcos α=tan α.4.函数y =-3sin x +cos x 在⎣⎡⎦⎤-π6,π6上的值域是________. 答案 [0,3]解析 y =-3sin x +cos x =2sin ⎝⎛⎭⎫π6-x . 又∵-π6≤x ≤π6,∴0≤π6-x ≤π3.∴0≤y ≤ 3.5.已知sin α2-cos α2=-15,π2<α<π,则tan α2=________.答案 2解析 ∵⎝⎛⎭⎫sin α2-cos α22=15, ∴1-sin α=15,∴sin α=45.又∵π2<α<π,∴cos α=-35.∴tan α2=1-cos αsin α=1-⎝⎛⎭⎫-3545=2.1.知识清单: (1)半角公式; (2)辅助角公式;(3)三角恒等变换的综合问题; (4)三角函数在实际问题中的应用. 2.方法归纳:换元思想,化归思想.3.常见误区:半角公式符号的判断,实际问题中的定义域.1.设5π<θ<6π,cos θ2=a ,则sin θ4等于( )A.1+a 2 B.1-a2C .-1+a2D .-1-a2答案 D解析 ∵5π<θ<6π,∴5π4<θ4<3π2,∴sin θ4=-1-cosθ22=-1-a2. 2.设a =12cos 6°-32sin 6°,b =2sin 13°cos 13°,c =1-cos 50°2,则有( ) A .c <b <a B .a <b <c C .a <c <b D .b <c <a 答案 C解析 由题意可知,a =sin 24°,b =sin 26°,c =sin 25°,而当0°<x <90°,y =sin x 为增函数,∴a <c <b ,故选C.3.已知函数f (x )=2cos 2x -sin 2x +2,则( ) A .f (x )的最小正周期为π,最大值为3 B .f (x )的最小正周期为π,最大值为4 C .f (x )的最小正周期为2π,最大值为3 D .f (x )的最小正周期为2π,最大值为4 答案 B解析 易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=32(2cos 2x -1)+32+1=32cos 2x +52,则f (x )的最小正周期为π,当x =k π(k ∈Z )时,f (x )取得最大值,最大值为4. 4.化简⎝⎛⎭⎫sin α2+cos α22+2sin 2⎝⎛⎭⎫π4-α2得( ) A .2+sin α B .2+2sin ⎝⎛⎭⎫α-π4 C .2 D .2+2sin ⎝⎛⎭⎫α+π4 答案 C解析 原式=1+2sin α2cos α2+1-cos ⎣⎡⎦⎤2⎝⎛⎭⎫π4-α2 =2+sin α-cos ⎝⎛⎭⎫π2-α=2+sin α-sin α=2.5.设函数f (x )=2cos 2x +3sin 2x +a (a 为实常数)在区间⎣⎡⎦⎤0,π2上的最小值为-4,那么a 的值等于( )A .4B .-6C .-4D .-3 答案 C解析 f (x )=2cos 2x +3sin 2x +a =1+cos 2x +3sin 2x +a =2sin ⎝⎛⎭⎫2x +π6+a +1. 当x ∈⎣⎡⎦⎤0,π2时,2x +π6∈⎣⎡⎦⎤π6,7π6, ∴f (x )min =2·⎝⎛⎭⎫-12+a +1=-4. ∴a =-4.6.若3sin x -3cos x =23sin(x +φ),φ∈(-π,π),则φ=________. 答案 -π6解析 因为3sin x -3cos x =23⎝⎛⎭⎫32sin x -12cos x =23sin ⎝⎛⎭⎫x -π6, 因为φ∈(-π,π),所以φ=-π6.7.若θ是第二象限角,且25sin 2θ+sin θ-24=0,则cos θ2=________.答案 ±35解析 由25sin 2θ+sin θ-24=0, 又θ是第二象限角,得sin θ=2425或sin θ=-1(舍去).故cos θ=-1-sin 2θ=-725,由cos 2 θ2=1+cos θ2得cos 2 θ2=925.又θ2是第一、三象限角, 所以cos θ2=±35.8.化简:sin 4x 1+cos 4x ·cos 2x 1+cos 2x ·cos x1+cos x =________.考点 利用简单的三角恒等变换化简求值 题点 综合运用三角恒等变换公式化简求值 答案 tan x2解析 原式=2sin 2x cos 2x 2cos 22x ·cos 2x 1+cos 2x ·cos x1+cos x=sin 2x 1+cos 2x ·cos x 1+cos x =2sin x cos x 2cos 2x ·cos x1+cos x=sin x 1+cos x=tan x2.9.已知cos θ=-725,θ∈(π,2π),求sin θ2+cos θ2的值.解 因为θ∈(π,2π), 所以θ2∈⎝⎛⎭⎫π2,π, 所以sin θ2=1-cos θ2=45, cos θ2=-1+cos θ2=-35, 所以sin θ2+cos θ2=15.10.已知函数f (x )=3sin ⎝⎛⎭⎫2x -π6+2sin 2⎝⎛⎭⎫x -π12 (x ∈R ). (1)求函数f (x )的最小正周期;(2)求使函数f (x )取得最大值的x 的集合. 解 (1)∵f (x )=3sin ⎝⎛⎭⎫2x -π6+2sin 2⎝⎛⎭⎫x -π12 =3sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12+1-cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12 =2⎩⎨⎧⎭⎬⎫32sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12-12cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12+1 =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12-π6+1 =2sin ⎝⎛⎭⎫2x -π3+1, ∴f (x )的最小正周期为T =2π2=π.(2)当f (x )取得最大值时,sin ⎝⎛⎭⎫2x -π3=1, 有2x -π3=2k π+π2(k ∈Z ),即x =k π+5π12(k ∈Z ),∴所求x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π+5π12,k ∈Z .11.函数f (x )=sin 2x +3sin x cos x 在区间⎣⎡⎦⎤π4,π2上的最大值是( ) A .1 B .2 C.32 D .3答案 C解析 f (x )=1-cos 2x 2+32sin 2x=sin ⎝⎛⎭⎫2x -π6+12, ∵x ∈⎣⎡⎦⎤π4,π2,∴2x -π6∈⎣⎡⎦⎤π3,5π6, ∴sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤12,1, ∴f (x )max =1+12=32,故选C.12.化简:tan 70°cos 10°(3tan 20°-1)=________. 答案 -1解析 原式=sin 70°cos 70°·cos 10°·⎝⎛⎭⎫3sin 20°cos 20°-1 =sin 70°cos 70°·cos 10°·3sin 20°-cos 20°cos 20° =sin 70°cos 70°·cos 10°·2sin (-10°)cos 20°=-sin 70°cos 70°·sin 20°cos 20°=-1.13.设0≤α≤π,不等式8x 2-8x sin α+cos 2α≥0对任意x ∈R 恒成立,则α的取值范围是________.答案 ⎣⎡⎦⎤0,π6∪⎣⎡⎦⎤5π6,π 解析 Δ=(8sin α)2-4×8×cos 2α≤0, 即2sin 2α-cos 2α≤0,所以4sin 2α≤1, 所以-12≤sin α≤12.因为0≤α≤π,所以0≤α≤π6或5π6≤α≤π.14.函数y =sin 2x +sin x cos x +1的最小正周期是______,单调递增区间是________. 答案 π ⎝⎛⎭⎫k π-π8,k π+3π8,k ∈Z 解析 y =sin 2x +sin x cos x +1=1-cos 2x 2+sin 2x 2+1=22sin ⎝⎛⎭⎫2x -π4+32.最小正周期T =2π2=π. 令-π2+2k π<2x -π4<π2+2k π,k ∈Z , 解得-π8+k π<x <3π8+k π,k ∈Z . 所以f (x )的单调递增区间是⎝⎛⎭⎫k π-π8,k π+3π8(k ∈Z ).15.已知sin 2θ=35,0<2θ<π2,则2cos 2θ2-sin θ-12sin ⎝⎛⎭⎫θ+π4=________. 答案 12解析 2cos 2θ2-sin θ-12sin ⎝⎛⎭⎫θ+π4 =⎝⎛⎭⎫2cos 2θ2-1-sin θ2⎝⎛⎭⎫sin θcos π4+cos θsin π4 =cos θ-sin θsin θ+cos θ=1-sin θcos θsin θcos θ+1=1-tan θtan θ+1. 因为sin 2θ=35,0<2θ<π2, 所以cos 2θ=45,所以tan θ=sin 2θ1+cos 2θ=351+45=13, 所以1-tan θtan θ+1=1-1313+1=12, 即2cos 2θ2-sin θ-12sin ⎝⎛⎭⎫θ+π4=12. 16.如图所示,已知OPQ 是半径为1,圆心角为π3的扇形,四边形ABCD 是扇形的内接矩形,B ,C 两点在圆弧上,OE 是∠POQ 的平分线,E 在PQ 上,连接OC ,记∠COE =α,则角α为何值时矩形ABCD 的面积最大?并求最大面积.解 如图所示,设OE 交AD 于M ,交BC 于N ,显然矩形ABCD 关于OE 对称,而M ,N 分别为AD ,BC的中点,在Rt △ONC 中,CN =sin α,ON =cos α,OM =DM tan π6=3DM =3CN =3sin α, 所以MN =ON -OM =cos α-3sin α,即AB =cos α-3sin α,而BC =2CN =2sin α,故S 矩形ABCD =AB ·BC =()cos α-3sin α·2sin α=2sin αcos α-23sin 2α=sin 2α-3(1-cos 2α)=sin 2α+3cos 2α- 3=2⎝⎛⎭⎫12sin 2α+32cos 2α- 3 =2sin ⎝⎛⎭⎫2α+π3- 3. 因为0<α<π6,所以0<2α<π3,π3<2α+π3<2π3. 故当2α+π3=π2,即α=π12时,S 矩形ABCD 取得最大值, 此时S 矩形ABCD =2- 3.。