三角恒等变换公式推导过程

合集下载

《简单的三角恒等变换》三角函数简单的三角恒等变换

《简单的三角恒等变换》三角函数简单的三角恒等变换

简单的三角恒等变换xx年xx月xx日•三角函数基本概念•三角恒等变换的基本法则•三角恒等变换的应用目录•常见三角恒等变换技巧•三角恒等变换的注意事项•练习题与解答01三角函数基本概念$\sin x = \frac{y}{r}$正弦函数$\cos x = \frac{x}{r}$余弦函数$\tan x = \frac{y}{x}$正切函数三角函数的定义周期性$2k\pi, k\in Z$振幅$|\sin x| \leq 1, |\cos x| \leq 1$相位$\sin(x+2k\pi) = \sin x$;$\cos(x+2k\pi) = \cos x$;$\tan(x+k\pi) = \tan x$正弦函数$y=|\sin x|$,波动曲线余弦函数$y=|\cos x|$,波动曲线正切函数$y=\tan x$,曲线不连续,无界01020302三角恒等变换的基本法则和差角公式公式二$\cos(x+y)=\cos x\cos y-\sin x\sin y$应用用于解决角度和的问题,如求两角和的正弦、余弦等。

公式一$\sin(x+y)=\sin x\cos y+\cos x\sin y$$\sin x\cosy=\frac{1}{2}(\sin(x+y)+\sin(x-y))$积化和差公式公式一$\cos x\siny=\frac{1}{2}(\sin(x+y)-\sin(x-y))$公式二用于将两角和的正弦与余弦变换成和差角的形式,方便后续计算。

应用公式一$\sin\frac{x}{2}=\pm\frac{1}{\s qrt{2}}(\cos x+1)^{1/2}$公式二$\cos\frac{x}{2}=\pm\frac{1}{\sqrt{2}}(\cos x-1)^{1/2}$应用用于计算半角的角度,适用于解三角形等问题。

半角公式03三角恒等变换的应用利用三角函数解直角三角形,得到直角三角形的三个边长。

人教版高数必修四第10讲:简单的三角恒等变换(学生版)

人教版高数必修四第10讲:简单的三角恒等变换(学生版)

简单的三角恒等变换1、会利用已有的十一个公式进行简单的包等变换;2、能根据问题的条件进行公式变形,体会在变换过程中体现的换元、逆向使用公式等数学思想方法.2 2 . 21、公式推导:试以cos a 表布sin — ,cos — ,tan 一.2 2 2二、积化和差、和差化积公式:一.1 .1、公式推导:(1 ) sina cosP =3 sin (« + s ) + sin(a - B )];日+甲 e(2)sin&+sin 中=2sin --------- cos ----- .2 221 c o 2: cos := -----------2 . 2 tan : 1 - c 。

2二二、本章节公式汇编:2 tan a tan 2a = ------ 2—1 —tan a a=P口tan o(± tanPtan(a ± P)=七------------ -1 + tana tan P相除I相除S oH3cos2 1___ 2 _._2= cos : -sin2= 2cos「.—12=1 -2 sin :sin 2 : - 2sin 二cos ; S:-- C::移项:■ ■■ 2 :■2 :.1 cos: =2cos 22 :■1 —cos: - 2sin2变形e 1 r n …sin ot cos P = 3 b in(ot +P) + sin(ot -P)]口1 r . 口口1 cosasin ^ =~ fe in(a+ P)-sin(a - B)]D 1 r口口i cos a cos P = ? cos(a+ P)+ cos°t -P )]1 1 r . - n ,. n ,1 sin,sin - - - cos : - cos :■ ■ ■,1 -cos ; sin —二---------2 1 21 cos 上cos一2 \ 2相除, 1 1 -cos:tan i ---- -----2 1 cos ; _ sin 工1-cos工1 cos 工sin 工A +B A -Bsin A + sin B = 2sin----- c os------2 2A +B A -Bsin A -sin B =2cos------- sin-----2 2A +B A -B cosA - cosB = 2 cos------ cos2 2A +B A-B cosA -cosB =-2sin sin -----2 24 4 A cos A sin A 例1已知一2一十—2—cos B sin B4 4cos B sin B /:1 求证:-22—=1.cos A sin A1 1中,ABC是它的二个内角,记S= ---------- +-------- ,求证:S<1.1 tan A 1 tan B1 sin x 二例 2 证明-------- =tan(—+ 一).cosx 4 2练习:已知 a , 8(0,彳)且满足:3sin2”+2sin3 =1,3sin2-2sin2 3 =0, a+2 的值.练习:在锐角三角形 ABC例3求证: sin(a :)sin(::■■)sin2 1 cos2 :=1 一些tan ;练习:1 sin4i - cos 41 1 sin 4y cos4i 1.求证:----------------- = ------------2 ----2sin ? 1 - tan i1、m,2.已知 sin 3 =m,sin(2 求证3tan( a + 3 )= tan a .1 - m3.若sin a^~ ,第E第二象限,则tan亘的值为()13 2 1A.5B.-5C.一54.设5兀< 0 <6兀Rosa则sin —等于( )2 4 D.--.1 a . 1 - a2 . 25.已知 sin 。

三角恒等变换

三角恒等变换

三角恒等变换什么是三角恒等变换三角恒等变换,又称三角恒等式,是指一类三角函数之间的等式关系。

它们可以将一个三角函数表达式变换为另一个等价的三角函数表达式,从而简化计算和证明过程。

常见的三角恒等变换包括正弦、余弦和正切函数之间的关系。

常见的三角恒等变换公式下面是一些常见的三角恒等变换公式:1. 正弦函数的恒等变换•正弦函数的平方和差恒等式:$$\\sin^2 (A) = \\frac{1 - \\cos (2A)}{2}$$$$\\sin^2 (A) = \\frac{1 - \\cos (2A)}{2}$$•正弦函数的倍角恒等式:$$\\sin (2A) = 2\\sin (A)\\cos (A)$$2. 余弦函数的恒等变换•余弦函数的平方和差恒等式:$$\\cos^2 (A) = \\frac{1 + \\cos (2A)}{2}$$$$\\cos^2 (A) = \\frac{1 + \\cos (2A)}{2}$$•余弦函数的倍角恒等式:$$\\cos (2A) = \\cos^2 (A) - \\sin^2 (A)$$3. 正切函数的恒等变换•正切函数的平方恒等式:$$\\tan^2 (A) = \\sec^2 (A) - 1$$$$\\tan^2 (A) = \\csc^2 (A) - 1$$•正切函数的相反数恒等式:$$\\tan (-A) = -\\tan (A)$$三角恒等变换的应用三角恒等变换在数学和物理学中有广泛应用。

它们可以用于简化三角函数的计算,证明数学关系,以及解决实际问题。

1. 例题:求解三角方程假设我们需要求解方程 $\\sin (2A) = \\cos (2A)$ 的解集。

利用三角恒等变换公式,我们可以将方程转化为 $\\tan (2A)= 1$。

再进一步,我们可以使用反正切函数来求解 $2A =\\tan^{-1}(1)$,所以 $A = \\frac{\\pi}{4} + k\\frac{\\pi}{2}$,其中k为整数。

(完整版)三角恒等变换公式

(完整版)三角恒等变换公式

三角恒等变换公式及其证明一、 两角和、差的三角函数公式(1)cos (α-β)=cos αcos β+sin αsin β ……………………………………………………①证明:利用三角函数线证明.(详见课本必修4 P125)cos (α+β)=cos αcos β-sin αsin β ………………………………………………………② 证明:cos (α+β)=cos [α-(-β)]=cos αcos (-β)+sin αsin (-β)=cos αcos β-sin αsin β.例:求cos 105°.解:cos 105°=cos (60°+45°)=cos 60°cos 45°-sin 60°sin 45° =12×2-2×2=4. (2)sin (α+β)=sin αcos β+cos αsin β ……………………………………………………③证明:sin (α+β)=cos =cos =cos cos β+sin sin β =sin αcos β+cos αsin β.sin (α-β)=sin αcos β-cos αsin β ………………………………………………………④ 证明:sin (α-β)=sin [α+(-β)]=sin αcos (-β)+cos αsin (-β)=sin αcos β-cos αsin β.(3)tan (α+β)=tan tan 1tan tan αβαβ+- …………………………………………………………⑤ 证明:tan (α+β)=sin()cos()αβαβ++=sin cos cos sin cos cos sin sin αβαβαβαβ+- =tan tan 1tan tan αβαβ+-. tan (α-β)=tan tan 1tan tan αβαβ-+ ……………………………………………………………⑥ 证明:tan (α-β)=tan [α+(-β)]=tan tan()1tan tan()αβαβ+---=tan tan 1tan tan αβαβ-+. [ ] π2-(α+β) [ ( ) ] π2-α -β ( ) π2-α ( )π2-α二、 二倍角公式(1)cos 2α=cos 2 α-sin 2 α ……………………………………………………………………⑦证明:cos 2α=cos (α+α)=cos αcos α-sin αsin α=cos 2 α-sin 2 α.(2)sin 2α=2sin αcos α …………………………………………………………………………⑧证明:sin 2α=sin (α+α)=sin αcos α+cos αsin α=2sin αcos α.(3)tan 2α=22tan 1tan αα- ………………………………………………………………………⑨ 证明:tan 2α=tan (α+α)=tan tan 1tan tan αααα+-=22tan 1tan αα-. 变式:公式⑦变式:cos 2α=cos 2 α-sin 2 α=(1-sin 2 α)-sin 2 α=1-2sin 2 α ……………………………⑩=cos 2 α-(1-cos 2 α)=2cos 2 α-1 ……………………………○11公式⑩变式:cos 2α=1-2sin 2 α2sin 2 α=1-cos 2αsin 2 α=1cos 22α-. ○12 公式○11变式:cos 2α=2cos 2 α-12cos 2 α=cos 2α+1cos 2 α=cos 212α+. ○13 公式○12和○13合称降幂公式.公式○12变式:sin 2α………………………………………………○14 证明: sin 2 α=1cos 22α- sin 2 2α=1cos 2α-sin2α公式○13变式:cos 2α………………………………………………○15 证明: cos 2 α=cos 212α+cos 2 2α=cos 12α+ cos2α公式○14和○15合称半角公式. 三、 辅助角公式a sin x ±b cos x(x ±ϕ),其中tanϕ=b a . …………………………○16 证明:(如图)a sin x ±b cos xsin xxsin x cos ϕ±cos x sin ϕ)(x ±ϕ).)。

复杂的三角恒等变换

复杂的三角恒等变换

复杂的三角恒等变换三角恒等变换(Trigonometric Identity Transformation)是初级数学中的重要章节之一,通过对三角函数间的恒等式进行变形和化简,加深对三角函数的理解和掌握,提高解题能力。

以下是一些常见的三角恒等变换及其演化过程:1. 和差公式$\sin(a+b)=\sin a\cos b + \cos a\sin b$$\cos(a+b)=\cos a\cos b - \sin a\sin b$$\tan(a+b)=\frac{\tan a + \tan b}{1 - \tan a\tan b}$2. 镜像公式$\sin(\pi - a)=\sin a$$\cos(-a)=\cos a$$\tan(-a)=-\tan a$3. 反三角函数公式$\sin(\arcsin a)=a$$\cos(\arccos a)=a$$\tan(\arctan a)=a$4. 积分与微分公式$\frac{d}{dx}\sin x=\cos x$ $\frac{d}{dx}\cos x=-\sin x$ $\int\sin x\,dx=-\cos x+C$ $\int\cos x\,dx=\sin x+C$ 5. 简化公式$\sin^2 x + \cos^2 x = 1$ $\sec^2 x = \tan^2 x +1$ $\csc^2 x = \cot^2 x +1$$\cos^2 x = \frac{1 + \cos 2x}{2}$$\tan^2 x = \sec^2 x -1$6. 和积公式$\sin a\sin b = \frac{1}{2}(\cos(a-b) - \cos(a+b))$ $\cos a\cos b = \frac{1}{2}(\cos(a-b) + \cos(a+b))$ $\sin a\cos b = \frac{1}{2}(\sin(a-b) + \sin(a+b))$ 7. 特殊角度公式$\sin 30^\circ = \frac{1}{2}$$\cos 30^\circ = \frac{\sqrt{3}}{2}$$\tan 30^\circ = \frac{1}{\sqrt{3}}$$\sin 45^\circ = \cos 45^\circ = \frac{\sqrt{2}}{2}$ $\tan 45^\circ =1$$\cos 60^\circ = \frac{1}{2}$$\tan 60^\circ = \sqrt{3}$以上是一些常见的三角恒等变换,希望能对初学者有所帮助。

三角恒等变换

三角恒等变换

专题三角恒等变换(一)一、诱导公式1、诱导公式(一~六)诱导公式一:sin(2)sin k απα+=,cos(2)cos k απα+=,tan(2)tan k απα+=,其中k Z ∈诱导公式二:sin()sin παα+=-,cos()cos παα+=-,tan()tan παα+=,其中k Z ∈诱导公式三:sin()sin αα-=-,cos()cos αα-=,tan()tan αα-=-,其中k Z ∈诱导公式四:sin()sin παα-=,cos()cos παα-=-,tan()tan παα-=-,其中k Z∈诱导公式五:sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭,其中k Z ∈诱导公式六:sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭,其中k Z∈2、诱导公式口诀:“奇变偶不变,符号看象限”,意思是说角90k α⋅±(k 为常整数)的三角函数值:当k 为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变,然后α的三角函数值前面加上当视α为锐角时原函数值的符号.3、用诱导公式进行化简时的注意点:(1)化简后项数尽可能的少;(2)函数的种类尽可能的少;(3)分母不含三角函数的符号;(4)能求值的一定要求值;(5)含有较高次数的三角函数式,多用因式分解、约分等.二、利用诱导公式求任意角三角函数值的步骤1、“负化正”:用公式一或三来转化.2、“大化小”:用公式一将角化为0°到360°间的角.3、“角化锐”:用公式二或四将大于90°的角转化为锐角.4、“锐求值”:得到锐角的三角函数后求值.三、利用诱导公式求值与求解解题策略1、条件求值问题的策略(1)条件求值问题,首先要仔细观察条件与所求式之间的角、函数名称及有关运算之间的差异及联系.(2)将已知式进行变形向所求式转化,或将所求式进行变形向已知式转化.2、给值求角问题,先通过化简已给的式子得出某个角的某种三角函数值,再结合特殊角的三角函数值逆向求角.3、观察互余、互补关系:如π3-α与π6+α,π3+α与π6-α,π4α与π4+α等互余,π3+θ与2π3θ,π4+θ与3π4-θ等互补,遇到此类问题,不妨考虑两个角的和,要善于利用角的变换来解决问题.题型一利用诱导公式给角求值【例1】cos 210︒的值等于()A .12B 32C .32D .22-【变式1-1】35πsin 6=()A .12B .12-C 32D .32【变式1-2】计算:5π7ππ2sin2cos tan 663⎛⎫+--= ⎪⎝⎭______.题型二利用诱导公式给值求值【例2】若()4sin ,5πα+=-且α是第二象限角,则cos α=()A .45-B .35-C .35D .45【变式2-1】设02πα⎛⎫∈ ⎪⎝⎭,,若3sin ,5α=则cos 2πα⎛⎫+= ⎪⎝⎭()A .35B .45C .35-D .45-【变式2-2】若()4sin 5πα+=-,则3cos 2πα⎛⎫-= ⎪⎝⎭()A .45-B .35-C .45D .35【变式2-3】设sin 25a ︒=,则sin 65cos115tan 205︒︒︒=()A 221a -B .221a -C .2a -D .2a题型三利用互余互补关系求值【例3】已知π3cos 35α⎛⎫-= ⎪⎝⎭,则πsin 6α⎛⎫+= ⎪⎝⎭()A .45±B .45C .45-D .35【变式3-1】已知π1sin 43α⎛⎫+= ⎪⎝⎭,则πcos 4α⎛⎫- ⎪⎝⎭的值为()A .13B.3C .13-D.3-【变式3-2】若1sin ,63a π⎛⎫+= ⎪⎝⎭则2cos 3a π⎛⎫+= ⎪⎝⎭()A .13B .13-C .79D .79-【变式3-3】已知cos 6πθ⎛⎫- ⎪⎝⎭=a (|a |≤1),则cos 56πθ⎛⎫+⎪⎝⎭+sin 23πθ⎛⎫- ⎪⎝⎭的值是________.【变式3-4】已知函数()π5π10πcos 2cos 2tan 26334π4πtan 2sin 233x x x f x x x ⎛⎫⎛⎫⎛⎫--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭.(1)化简()f x ;(2)若()0310f x =,求00π2πsin 2cos 263x x ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭的值.题型四利用诱导公式化简求值A .sin 4cos4-B .sin 4cos4--C .cos 4sin 4-D .sin 4cos 4+【变式4-1】(多选)已知角α满足sin cos 0αα⋅≠,则()()()sin πcos πsin cos k k k αααα+++∈Z 的取值可能为()A .2-B .1-C .2D .0【变式4-2】已知α是第四象限角,且cos α=()()sin cos cos sin 22πααππαα++-=⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭___________.【变式4-3】(1)化简:222cos(4)cos ()sin (3)sin(4)sin(5)cos ()θπθπθπθππθθπ+++-+--(2)已知()sin 3n f n π=(n ∈Z ),求(1)f +(2)f +(3)f +…+(2012)f 的值.【变式4-4】已知()()()()()3sin cos tan cos 222sin 2tan sin f πππααπαααπααππα⎛⎫⎛⎫⎛⎫+--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=---+.(1)化简()f α;(2)若31cos 25πα⎛⎫-=- ⎪⎝⎭,求()f α的值.题型五三角恒等式的证明【例5】(1)求证:tan(2)sin(2)cos(6)tan 33sin()cos()22παπαπααππαα----=-++;(2)设8tan()7m πα+=,求证1513sin()3cos()37720221sin()cos()77m m ππααππαα++-+=+--+.【变式5-1】求证:232sin()cos()12212sin ()ππθθπθ-+--+=tan(9)1tan()1πθπθ+++-.专题三角恒等变换(二)一、升(降)幂缩(扩)角公式利用余弦的二倍角公式变形可得:升幂公式:21cos 22cos αα+=,21cos 22sin αα-=降幂公式:21cos 2cos 2αα+=,21cos 2sin 2αα-=二、半角公式(只要求推导,不要求记忆)sin2a =cos2a =sin 1cos tan.21cos sin ααααα-===+以上三个公式分别称作半角正弦、余弦、正切公式,它们是用无理式表示的.sin 1cos tan ,tan 21cos 2sin αααααα-==+;2sin2sin 1cos 22tan 2sin cos 2sin cos 222αααααααα-===以上两个公式称作半角正切的有理式表示.三、积化和差与和差化积公式1、积化和差1sin cos [sin()sin()]2αβαβαβ=-++1cos sin )sin()]2αβαβαβ=+--1cos cos )cos()]2αβαβαβ=-++1sin sin [cos()cos()]2αβαβαβ=--+2、和差化积sin sin 2sincos 22x y x yx y +-+=sin sin 2cossin 22x y x yx y +--=cos cos 2cos cos22x y x yx y +-+=cos cos 2sin 22x y x yx y +--=-四、辅助角公式对于形如sin cos a x b x +的式子,可变形如下:sin cos a x b x +sin cos x x ⎫⋅⋅的平方和为1,故令cos ϕϕ==则sin cos a x b x +)sin cos cos sin x x ϕϕ+)x ϕ+其中ϕ角所在象限由,a b 的符号确定,ϕ角的值由tan baϕ=确定,或由sin ϕ=和cos ϕ=五、万能公式22tan2sin 1tan 2ααα=+;221tan 2cos 1tan 2ααα-=+;22tan2tan 1tan 2ααα=-六、三角函数化简“三看”原则七、三角恒等变换综合应用的解题思路(1)将()f x 化为sin cos a x b x +的形式;(2)构造)cos sin ()(x ba b x ba ab a x f ⋅++⋅++=222222(3)和角公式逆用,得())f x x ϕ=+(其中φ为辅助角);(4)利用())f x x ϕ=+研究三角函数的性质;(5)反思回顾,查看关键点、易错点和答题规范.题型一半角公式与万能公式的应用【例1】已知,02πα⎛⎫∈- ⎪⎝⎭,3sin 5α=-,则tan 2α=()A .3B .3-C .13D .13-【变式1-1】已知π3,π,sin 25αα⎛⎫∈= ⎪⎝⎭,则cos π2α⎛⎫-= ⎪⎝⎭()A.10B.10C.10-D.10【变式1-2】若3sin 5θ=,5π3π2θ<<,则tan cos 22θθ+=()A.3B .3C .3D .3-【变式1-3】已知()tan 3πα+=,则cos 22πα⎛⎫-= ⎪⎝⎭()A .35B .310C .34D 【变式1-4】若sin 11cos 2αα=+,则sin cos αα+的值为________.题型二积化和差与和差化积的应用【例2】利用和差化积公式,求下列各式的值:(1)sin15sin105︒+︒;(2)sin20sin40sin80︒+︒-︒;(3)cos40cos60cos80cos160︒+︒+︒+︒.【变式2-1】利用积化和差公式,求下列各式的值:(1)cos15cos75︒︒;(2)sin20sin40sin80︒︒︒.【变式2-2】下列关系式中正确的是()A .sin 5sin 32sin 8cos 2θθθθ+=B .cos3cos52sin 4sin θθθθ-=-C .1sin3sin5cos4cos 2θθθθ-=-D .()()1cos cos sin sin 2x y x y x y --+=⎡⎤⎣⎦【变式2-3】若1cos cos sin sin 2x y x y +=,2sin 2sin 23x y +=,则()sin +=x y ()A .23B .23-C .13D .13-【变式2-4】求值:cos 40cos80cos80cos160cos160cos 40︒︒︒︒︒++︒.【变式2-5】在ABC 中,若30B = ,则cos sin A C 的取值范围是()A .[]1,1-B .11,22⎡⎤-⎢⎥⎣⎦C .13,44⎡⎤-⎢⎥⎣⎦D .31,44⎡⎤-⎢⎥⎣⎦题型三辅助角公式及其应用【例3】将下列各式化成()sin A x ϕ+的形式:(1cos x x -;(2).444x x ππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭【变式3-1】求下列函数的最大值和最小值:(1)1cos 2y x x =;(2)sin cos y x x =-;(3)sin y x x =+;(4)sin 22y x x =.【变式3-2】(多选)若1sin cos()22x x x ϕ+=+,则ϕ的值可能为()A .6π-B .6πC .56πD .116π【变式3-3】已知πcos(63x -=,则πcos cos()3x x +-等于()A B .±C .-1D .1【变式3-4】已知函数2()cos 2cos f x x x x =+.(1)求函数()f x 的单调增区间;(2)求函数()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上的最大值与最小值,以及此时x 的取值.题型四三角恒等变换的化简问题【例4】化简4sin 24cos 24tan12cos12︒︒︒︒+=()A .1B CD .2【变式4-1】化简()()sin5cos51︒+︒︒=()A .2B .C .2D【变式4-2】若1cos sin 222αα=,则1sin cos 14ααπα++=⎛⎫+ ⎪⎝⎭()A .1B .12CD.【变式4-3】若2πθπ<<,tan 3θ=-=_________.题型五三角形中的三角恒等变换【例5】在ABC ∆中,若sin cos()1sin()cos 22A B A B ππ-=--,则这个三角形是()A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形【变式5-1】已知ABC ,角,,A B C 所对应的边分别为,,a b c ,且sin sin cos cos A B A B +=+,则ABC 是()A .直角三角形B .等边三角形C .钝角三角形D .锐角三角形【变式5-2】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,()()2sin sin sin B C B C A +⋅-=.则△ABC的形状为()A .正三角形B .等腰直角三角形C .直角三角形D .等腰三角形。

三角恒等变换推导过程

三角恒等变换推导过程

三角恒等变换推导过程1.余弦的和差公式:cos(A ± B) = cosAcosB ∓ sinAsinB这个公式可以通过将两个角A和B分别投影在一个单位圆上来推导出来。

在单位圆上,角A的坐标点是(cosA, sinA),角B的坐标点是(cosB, sinB)。

那么角A + B对应的坐标点是(cos(A + B), sin(A + B))。

根据三角函数的定义,cos(A + B)等于A + B角度的横坐标,sin(A + B)等于A + B角度的纵坐标。

因此,在单位圆上,有:cos(A + B) = cosAcosB - sinAsinBsin(A + B) = sinAcosB + cosAsinB同理,可以推导出cos(A - B)和sin(A - B)的表达式。

2.正弦的和差公式:sin(A ± B) = sinAcosB ± cosAsinB这个公式也可以通过将两个角A和B分别投影在一个单位圆上来推导出来。

在单位圆上,角A的坐标点是(cosA, sinA),角B的坐标点是(cosB, sinB)。

那么角A + B对应的坐标点是(cos(A + B), sin(A + B))。

根据三角函数的定义,sin(A + B)等于A + B角度的纵坐标,cos(A + B)等于A + B角度的横坐标。

因此,在单位圆上,有:sin(A + B) = sinAcosB + cosAsinBcos(A + B) = cosAcosB - sinAsinB同理,可以推导出sin(A - B)和cos(A - B)的表达式。

3.二倍角公式:sin2A = 2sinAcosAcos2A = cos^2A - sin^2A = 1 - 2sin^2A = 2cos^2A - 1这些公式可以通过将一个角度A与自身相加或相减来推导得到。

根据和差公式sin(2A) = sin(A + A) = sinAcosA + cosAsinA = 2sinAcosAcos(2A) = cos(A + A) = cosAcosA - sinAsinA = cos^2A - sin^2A = 1 - 2sin^2A = 2cos^2A - 14.半角公式:sin(A/2) = ± √[(1 - cosA)/2]cos(A/2) = ± √[(1 + cosA)/2]这些公式可以通过正弦和余弦的二倍角公式推导得到。

课件2:5.5.2 简单的三角恒等变换

课件2:5.5.2  简单的三角恒等变换

1.设 α 是第二象限角,tan α=-43,且 sinα2<cosα2,则 cosα2=( )
A.-
5 5
5 B. 5
3 C.5
D.-35
解析:∵α 是第二象限角,且 sinα2<cosα2,∴α2为第三象限,∴cosα2<0,
∵tan α=-43,∴cos α=-35,∴cosα2=- 答案:A
点拨:解答本题可设∠PAB=θ 并用 θ 表示 PR,PQ.根据 S 矩形 PQCR =PQ·PR 列出关于 θ 的函数式,求最大值、最小值.
解:如图,连接 AP,设∠PAB=θ(0°≤θ≤90°), 延长 RP 交 AB 于 M, 则 AM=90cos θ,MP=90sin θ. 所以 PQ=MB=100-90cos θ, PR=MR-MP=100-90sin θ. 所以 S 矩形 PQCR=PQ·PR =(100-90cos θ)(100-90sin θ) =10 000-9 000(sin θ+cos θ)+8 100sin θcos θ.
5.5.2 简单的三角恒等变换
【课标要求】
能运用公式进行简单的恒等变换(包括推导出积化和差、 和差化积、半角公式,这三组公式不要求记忆).
【新知初探】
要点一 半角公式
1-2sin2α 2α
1-2sin2α2
2cos2α-1 α
2cos2α2-1
1-cos α
±
2
1+cos α
±
2
状元随笔 巧记“半角公式” 无理半角常戴帽,象限确定帽前号; 数 1 余弦加减连,角小值大用加号. “角小值大用加号”即 y=1+cosα(α 是锐角)是减函数,角小值 大,因此用“+”号,而 y=1-cosα 为增函数,角大值大,因 此用“ -”号.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角恒等变换公式推导过程
三角恒等变换公式推导过程
在三角函数中,存在一些重要的恒等变换公式,它们可以简化三角函数的计算和化简复杂的三角表达式。

下面是推导三角恒等变换公式的过程:
1. 正弦的恒等变换公式:
- 根据正弦函数的定义,sinθ= y / r,其中y 为三角形的对边,r 为斜边。

- 假设有一个与原三角形相似的三角形,但边长为k 倍,则新三角形的对边记为ky,斜边记为kr。

- 根据新的三角形,新的正弦值为sinθ' = ky / kr = y / r = sinθ。

- 由此可得,sinθ' = sinθ。

- 进一步,利用三角函数的周期性可得sin(θ+ 2π) = sinθ。

- 综上所述,推导得到正弦恒等变换公式:sin(θ+ 2π) = sinθ。

2. 余弦的恒等变换公式:
- 根据余弦函数的定义,cosθ= x / r,其中x 为三角形的邻边,
r 为斜边。

- 同样假设有一个与原三角形相似的三角形,但边长为k 倍,则新三角形的邻边记为kx,斜边记为kr。

- 根据新的三角形,新的余弦值为cosθ' = kx / kr = x / r = cosθ。

- 由此可得,cosθ' = cosθ。

- 利用三角函数的周期性可得cos(θ+ 2π) = cosθ。

- 综上所述,推导得到余弦恒等变换公式:cos(θ+ 2π) = cosθ。

3. 正切的恒等变换公式:
- 根据正切函数的定义,tanθ= y / x,其中y 为三角形的对边,x 为邻边。

- 假设有一个与原三角形相似的三角形,但边长为k 倍,则新三角形的对边记为ky,邻边记为kx。

- 根据新的三角形,新的正切值为tanθ' = ky / kx = y / x = tanθ。

- 由此可得,tanθ' = tanθ。

- 利用三角函数的周期性可得tan(θ+ π) = tanθ。

- 综上所述,推导得到正切恒等变换公式:tan(θ+ π) = tanθ。

通过上述推导过程,我们得到了正弦、余弦和正切的恒等变换公式。

这些恒等变换公式在解三角方程、化简三角式以及进行三角函数的特殊角值计算时具有重要作用。

相关文档
最新文档