机械毕业设计英文外文翻译63超高速行星齿轮组合中内部齿轮的有限元分析

机械毕业设计英文外文翻译63超高速行星齿轮组合中内部齿轮的有限元分析
机械毕业设计英文外文翻译63超高速行星齿轮组合中内部齿轮的有限元分析

翻译部分

英文原文

Finite Element Analysis of internal Gear in High-Speed Planetary Gear Units Abstrac t: The stress and the elastic deflection of internal ring gear in high-speed spur planetary gear units are investigated. A rim thickness parameter is defined as the flexibility of internal ring gear and the gearcase. The finite element model of the whole internal ring gear is established by means of Pro/E and ANSYS. The loads on meshing teeth of internal ring gear are applied according to the contact ratio and the load-sharing coefficient. With the finite element analysis(FEA),the influences of flexibility and fitting status on the stress and elastic deflection of internal ring gear are predicted. The simulation reveals that the principal stress and deflection increase with the decrease of rim thickness of internal ring gear. Moreover, larger spring stiffness helps to reduce the stress and deflection of internal ring gear. Therefore, the flexibility of internal ring gear must be considered during the design of high-speed planetary gear transmissions.

Keywords: planetary gear transmissions; internal ring gear; finite element method High-speed planetary gear transmissions are widely used in aerospace and automotive engineering due to the advantages of large reduction ratio, high load capacity, compactness and stability. Great attention has been paid to the dynamic prediction of gear units for the purpose of vibration reduction and noise control in the past decades(1-8).as one of the key parts, internal gear must be designed carefully since its flexibility has a strong influence on the gear train’s performance. studies have shown that the flexibility of internal gear significantly affects the dynamic behaviors of planetary gear trains(9).in order to get stresses and deflections of ring gear, several finite element analysis models were proposed(10-14).however, most of the models dealt with only a segment of the internal ring gear with a thin rim. the gear segment was constrained with corresponding boundary conditions and appoint load was exerted on a single tooth along the line of action without considering the changeover between the single and double contact zone in a complete mesh cycle of a given tooth. A finite element/semi-analytical nonlinear contract model was presented to investigate the effect of internal gear flexibility on the quasi-static behavior of a

planetary gear set(15). By considering the deflections of all gears and support conditions of splines, the stresses and deflections were quantified as a function of rim thickness. Compared with the previous work, this model considered the whole transmission system. However, the method described in Ref. (15) requires a high level of expertise before it can even be successful.

The purpose of this paper is to investigate the effects of rim thickness and support conditions on the stress and the deflection of internal gear in a high-speed spur planetary gear transmission. Firstly, a finite element model for a complete internal gear fixed to gearcase with straight splines is created by means of Pro/E and ANSYS. Then, proper boundary conditions are applied to simulating the actual support conditions. Meanwhile the contact ratio and load sharing are considered to apply suitable loads on meshing teeth. Finally, with the commercial finite element code of APDL in ANSYS, the influences of rim thickness and support condition on internal ring gear stress and deflection are analyzed.

1 finite element model

1.1 example system

A three-planet planetary gear set (quenched and tempered steel 5140) defined in Tab. 1 is taken as an example to study the influence of rim thickness and support conditions.

As shown in Fig.1, three planets are equally spaced around the sun gear with 120·apart from each other. Here, all the gears in the gear unit are standard involute spur gears. The sun gear is chosen as the input member while the carrier, which is not indicated in Fig.1 for the sake of clarity, is chosen as the output member. The internal ring gear is set stationary by using 6 splines evenly spaced round the outer circle to constrain the rigid body motion of ring gear.

A dimensionless internal gear rim thickness parameter λis defined as the ratio of rim thickness to the tooth height as follows:

(1)

Where r0 ,r f ,r a are the outer , dedendum and addendum radius of internal gear, respectively.

A smaller λindicates a more flexible ring gear and vice versa . internal gears with different values of λ=1.0,1.5,2.0,2.5 are investigated in this paper. In all these cases, the widths of ring gear are 44mm, and the connecting splines are 34mm in length and 14 mm inwidth, while the heights of splines in each case are 5mm, 6mm,7mm and 8mm, respectively.

A finite element model for the internal gear with λ=1.5 is shown in Fig.2, which contains 69 813 elements and 112 527 nodes.

Fig.2 Finite element model of internal ring gear

1.2 loads and boundary conditions

The internal gear is fixed to gearcase through splines and meshes with planet gears. Assuming that the load is evenly distributed to each planet and all frictions are negligible, the

meshing force between each planet and the ring is as follows:

Where T c is the overall output torque; i sc is the overall reduction ratio; r s is the radius of sun gear; n p denotes the number of planets; is the pressure angle.

In addition, by considering the contact ratio and load sharing factors, we can finally determine the mesh positions and the proportions of the load carried by each tooth of the ring. The load state of the ring is shown in Fig.3.

Here, the phase angle between each planet is 120。and F i(1,….,6) is the normal meshing force acting on the teeth of internal gear. For clarity purpose, only the teeth in mesh are plotted in Fig.3. after obtaining the meshing forces acting on internal gear, we can apply them to the finite element model. To be specific, the meshing forces are evenly distributed to the corresponding nodes along the line of engagement.

As support conditions can be very complicated if considering the contact problems, special substitute must be made to model the actual contacts at the splines. In this paper, the splines are coupled with the ring by the overlapped nodes and six springs equally spaced between the outer surface of the ring and the housing surface are applied to simulating the support conditions. The support condition between the ring and the housing is indicated through the stiffness of these springs. The process can be detailed as follows. A single node needs to be defined for each spline-to-housing connection. This is achieved suing COMBINE 14 elements at each spline position, which connect the splines to the points at the housing surface with an infinite stiffness. All degree of freedoms (DOFs ) of these predefined nodes

are constrained. At the other end of each spring element is a common node connected with spline whose DOFs except in radial direction are all constrained. In addition, the nodes on the loaded surface of each spline are constrained in circumferential DOF . And the axial DOF of the ring is constrained.

The support condition simulated with springs is shown as Fig.4

2 FEA results

By applying proper loads and boundary conditions, a finite element analysis can be conducted to figure out the effects of rim thickness and support conditions on internal gear stress and deflection. As to the example system, the stress and deflection are predicted at 24 discrete angular positions with an increment of 5。,which span a 120.. rotation of the carrier . this ensures that any tooth of internal gear goes through a complete meshing cycle because the number of planets is 3.

2.1 effect of rim thickness on internal gear stress and deflection

In Fig.5, the maximum principal stress (Mises stress) of the ring at each discrete position is plotted against the carrier rotation angle for four different ring rim thickness ( =1.0,1.5,2.0,2.5). here, the spring stiffness is 33N/mm.

From Fig.5, we can see that with the decrease of λ, the maximum stress in the ring increases . hence, the rim thickness of the ring cannot be too small for the sake of gear durability. And further investigations reveal that the critical point at which the maximum stress occurs moves from the fillet region to the root of tooth when λdecrease.

Fig.6 shows the deflection shapes of rings with different rim thickness. The ring deflections for λ=1.0 and λ=2.0 are demonstrated in Fig.7 with the same deflection magnification factor of 50.

Obviously, when λincreases , the deflection of ring decreases. The amount of radial deflection of the ring in both outward and inward direction is plotted as a function of λin Fig.7. here, the positive amounts denote the outward deflections while the negative ones denote the inward deflection. When λ=1.0, the maximum out-ward and inward radial deflections are predicted to be 0.139 and 0.122 mm, respectively. If the ring si permitted to deflect so much, those manufacturing errors associated with the internal gear such as the

roundness error and run-out error can be tolerated as long as their magnitudes are less the amount of deflection .

2.2 effect of spring stiffness on internal gear stress and deflection

The maximum principal stress of the ring with varied spring stiffness k is shown in Fig.8. here, the unit of stiffness is N/mm. obviously, the maximum principal stress of the ring with λ=1.0 is much more sensitive to the support stiffness than that of the ring with λ=2.5. and for a ring with a given λ, the maximum principal stress increases with the decrease of spring stiffness.

Fig.9 demonstrates the influence of spring stiffness on the maximum radial deflection of the ring. Similarly the maximum radial deflections of the ring withλ=1.0 is much more sensitive to the support stiffness than that of the ring with λ=2.5. and for a ring with a given λ, the maximum deflection increase with the decrease of spring stiffness.

3 conclusions

In this paper, a finite element analysis model is employed to investigate the effect of flexibility of internal ring gear on stresses and deflections. Based on the results presented above, some conclusions are as follows.

(1)The rim thickness of ring is influential to its stresses. With the decrease of rim

thickness, the maximum principal stress of internal ring gear increases and the

critical point at which the maximum stress occurs moves from fillet region to

the root of tooth.

(2)The rim thickness also influences internal ring gear deflections. A ring with a

thin rim produces larger deflections than a ring with thick rim. When the

deflection is large enough, some manufacturing errors associated with internal

ring gear such as roundness error and run-out error can be tolerated.

(3)The spring stiffness both affects the stress and deflection of internal ring gear.

An internal gear ring with larger spring stiffness tends to produce smaller stress

and deflection.

An alternative way of using gears to transmit torque is to make one or more gears, i.e., planetary gears, rotate outside of one gear, i.e. sun gear. Most planetary reduction gears, at conventional size, are used as well-known compact mechanical power transmission systems [1]. The schematic of the planetary gear system employed is shown in Figure。Since SUMMiT V designs are laid out using AutoCAD 2000, the Figure 1 is generated automatically from the lay out masks (Appendix [1]). One unit of the planetary gear system is composed of six gears: one sun gear, a, three planetary gears, b, one fixed ring gear, c, one rotating ring gear, d, and one output gear. The number of teeth for each gear is different from one another except among the planetary gears. An input gear is the sun gear, a, driven by the arm connected to the micro-engine. The rotating ring gear, d, is served as an output gear. For example, if the arm drives the sun gear in the clockwise direction, the planetary gears, b, will rotate counter-clockwise at their own axis and at the same time, those will rotate about the sun gear in clockwise direction resulting in planetary motion. Due to the relative motion between the planetary gears, b, and the fixed ring gear, c, the rotating ring gear, d, will rotate counterclockwise direction. This is so called a 3K mechanical paradox planetary gear [1].

中文翻译

超高速行星齿轮组合中内部齿轮的有限元分析

摘要:超高速行星齿轮组合中内部齿轮的应力和弹性变形的调查。环的厚度参数的定义是内部齿圈和齿轮箱的弹性。整个内部齿圈的有限元模型是用Pro/E and ANSYS的方式确定的。内部齿圈轮齿的载荷取决于啮合系数和载荷分布系数。依靠有限元分析(有限元分析),可以预测内部齿圈的应力和弹性变形对其灵活性和装配情况的影响。模拟表明,主应力和挠度随着内齿圈齿厚的减少而增加的。此外,较大的弹簧刚度有助于减少内部齿圈的应力和挠度。因此,在设计的高速行星齿轮传动时,内部齿圈的弹性必须加以考虑。

关键词:行星齿轮传动;内部齿圈;有限元方法

由于大减速比,高承载能力,高压实度和高稳定性的优势,超高速行星齿轮传动被广泛应用于航空航天和汽车工程。动态预测齿轮单位为目的的减振及噪音管制在过去数十年已经被给予高度重视。( 1-8 )作为其中的关键部件,内部的齿轮设计必须小心,因为它的灵活性,对齿轮传动系的性能,具有很强的影响。研究表明,内部齿轮的弹性对行星齿轮系的动态行为有显著的影响( 9 )。为得到齿圈应力和挠度,提出了几个有限元分析模型( 10月14日)。不过,大部分模型只能处理薄环内齿圈的一段。齿轮部分受相应的边界情况约束,在没有考虑到一个假设轮齿完整的啮合循环中的单、双接触带完全不同时,额定载荷等于线运动中单个轮齿受到的载荷。有限元/半解析非线性接触模式被提交去调查准静态行为的行星齿轮组中的内部齿轮的灵活性的影响。考虑到所有齿轮的挠度和齿条的支撑情况,其应力和挠度是关于环厚度的一个函数。与过去的工作相比,这种模式被考虑成整个传动系统。不过,标准的描述方法( 15 ),需要一个高层次的专业知识,才可以更成功。

本文件的目的是调查环的厚度和支撑条件对一个高速的行星齿轮传动的内部齿轮应力和挠度影响。首先,一个完整的内部齿轮用直齿条固定齿轮箱上的有限元模型是依靠Pro / E和ANSYS的方式创造的。其次,适当的边界条件适用于模拟实际的支撑条件。同时,啮合系数和载荷分布系数被认为同样适用于相啮合轮齿的载荷。最后,借助于ANSYS中的商业有限元APDL编码,可以分析环厚度和支撑情况对内齿圈应力和挠度的影响。

1有限元模型

1.1系统举例

表1所示的3个行星轮的行星齿轮组(调制钢5140)用来举例研究环厚度和支撑情况的影响。

表1为系统参数

项目太阳轮行星轮内齿圈

齿数23 22 67

模数/mm 3 3 3 压力角/(·) 20 20 20

杨氏模量/GPa —205 —泊松比—0.3 —

密度/(t·m3) —7.8 —

如图1,3个行星轮两两间距120度围绕太阳轮等空间布置。这里的所有齿轮都是标准的渐开线齿轮。太阳轮作为输入件的同时,为表达清晰,图1没有表示出作为输出件的支撑件。内齿圈外圆均匀布置的可约束齿圈刚性运动的6齿花键使其得以固定。

图1为系统图例

平面内齿圈环厚系数λ被定义为环厚与轮齿高度的比,如下

(1)

r 0 ,r

f

,r

a

分别为内齿圈的分度圆、齿根高和齿顶高。

λ值越小说明齿圈越灵活,λ值越大说明齿圈越不灵活。本文章研究λ取

不同值时λ=1.0,1.5,2.0,2.5的内齿圈.在所有这些情况下,内齿圈的宽为44毫米,连接花键长34毫米、宽14毫米、高度分别为5、6、7、8毫米。

图2所示的λ=1.5的内齿圈有限元模型包含了69813个元件和112527个节点。

图2。内齿圈有限元模型

1.2载荷和边界条件

内齿圈通过键与箱体连接,与行星轮啮合。假设每个行星轮上的载荷是均匀分布的,而且所有的摩擦力可以忽略,那么每个行星轮和太阳轮间的啮合力如下:

T C 是输出的扭矩和,i

sc

是全部减速比,r

s

是内齿圈半径,n

p

是行星轮个数,

是压力角。

此外,考虑到啮合系数以及载荷分布因数,最后确定啮合的位置和齿圈每个齿的承载比例。图3所示为环的受载状态。

图3为内齿圈的受载状态

这里,每两个行星轮的相位角是120度。F

i

(1,….,6)是作用在内齿圈轮齿上正常啮合力。为明确的目的,只有轮齿画在图3中。得到内齿圈轮齿啮合力后,我们可以将其加到有限元模型中。具体说,啮合力是均匀分布在沿啮合线上相应的节点上的。

因为支撑情况特别复杂,如果考虑到接触问题,必须建立键实际接触的特殊代替模型。这里,用交替的节点和6个空间均匀布置的键与内齿圈联合在一起,在内齿圈外表面和机架表面间模拟支撑状况。内齿圈与机架间的支撑状况说明了这些凸起的刚度。其过程可详列如下。单一的节点需要详细说明每个内齿圈与机架的连接。在每个键的位置用14个联合元件完成,在无限刚度的机架表面,联合元件与键是点连接。这些定义节点的自由度是受约束的。在每个弹性元件的令一端是径向自由度全部受约束键连接的常见节点。此外,每个键的受载荷表面上的节点是受圆周自由度的约束的。环的轴向自由度也是受约束的。

模拟环的支撑情况如图4所示。

图4为键支撑情况示意图

2有限元分析的结果

运用适当的载荷和边界条件,有限元分析可以计算出内齿圈厚度和支撑情况对应力和挠度的影响。以系统为例,可以预测在旋转支座120度范围内,以5度增量的24个离散角度位置的应力和挠度。行星轮数目为3,这将保证内齿圈的每个轮齿都能有一个完整的啮合周期。

2.1齿环厚度对内齿圈应力和挠度的影响

在图5中,每一个离散的位置的最大主应力( Mises应力)在机架的旋转角度的四种不同的环厚度(λ=1.0,1.5,2.0,2.5)的绘图。在这里,弹簧刚度是33n/mm。

图5为不同值时环的最大应力

从图5我们可以看出,随着λ的减少,环的最大应力在增加。因此,为了保证齿轮的耐久性,齿轮环的厚度不能太小。进一步调查显示,当λ减少时最大应力的产生点是从圆角处到齿根。

图6所示不同环厚时,环的挠度形状。在λ=1.0 和λ=2.0时,当用同样的放大偏转因数50,图7所示环的挠度。

图6为不同λ值时环的偏斜形状

很明显,当λ增加时,环的挠度就减少。图7所示的函数是,在环外和里方向上的变位度绘制的。这里,正数表示外面的挠度,而负数则表示里面的挠度。当λ=1时,外面和里面的最大挠度估算分别得0.139和0.122毫米。如果环允许偏离了这么多,只要总的挠度小于额定的,那些制造误差与内部齿轮如圆度误差和跳动误差可以容忍的。

图7为最大径向偏转关于的λ函数

2.2内齿圈的应力和挠度对弹簧刚度的影响

图8所示为具有不同弹簧刚度k的环的最大主应力。在这里,刚度的单位是N/mm。很明显,λ=1.0时环的最大主应力比λ=2.5时的最大主应力有更明显的支撑硬度。对于环有一个特定的λ值时,最大主应力随着弹簧刚度的减少而增加。

图8为在不同弹簧刚度下内齿圈的最大应力

图9所示为,环最大的径向偏转对弹簧刚度的影响。同样地,λ=1.0时环的最大径向偏转比λ=2.5时的最大径向偏转有更明显的支撑硬度。对于环有一个特定的λ值时,最大挠度随着弹簧刚度的减少而增加。

图9为在不同弹簧刚度下的最大径向偏转

3结论

本文的有限元分析是研究内齿圈灵活度对其应力和挠度的影响。基于上述的一些结果,得到一些结论如下:

(1)环的厚度对其应力有影响。随着环厚度的减少,内齿圈的最大主应力增加,危险点发生在最大应力产生的地方,即在圆角与齿根之间移动。(2)环的厚度也影响了内部齿圈的挠度。具有薄环的环比具有厚环的环能产生更大的挠度。当挠度足够大,一些内齿圈的制造误差,如圆度误

差和跳动误差是允许的。

(3)弹簧刚度影响内齿圈应力和挠度。具有较大的弹簧刚度的内齿圈,往往产生较小的应力和挠度。

使用齿轮传输转矩的其它可行的方法是将一个或者多个的齿轮,也就是, 行星齿轮,在另一个齿轮的外面旋转,也就是太阳轮。按照传统的尺寸设计的行星齿轮减速器是使整体结构紧凑的常用的传输系统。图1是上述的行星齿

轮的示意图。自从用AutoCAD设计SUMMiT V以来,图(1)可以通过软件自动产生(附[1])。一个完整的行星齿轮系统是由六个齿轮组成的: 一个太阳齿轮a,三个行星齿轮b,一个固定的内齿圈c,一个旋转的内齿圈d,和一个输出齿轮e。除了行星齿轮之外,每个齿轮的齿数都不相同。太阳齿轮a是输入齿轮,由与微引擎连接的机械手驱动。内齿圈d,被视为输出齿轮。举例来说,如果机械手驱动太阳轮按照顺时针方向方向旋转, 那么行星轮b, 将绕着它们自己的轴按照逆时针方向宣战,同时也将绕着太阳轮按照顺时针方向的方向旋转,这样就形成了行星运动。由于多个行星齿轮b和固定内齿圈c 之间的运动相似,所以旋转的内齿圈d将按照逆时针方向旋转。这也被叫做3K行星齿轮。

毕业设计外文翻译资料

外文出处: 《Exploiting Software How to Break Code》By Greg Hoglund, Gary McGraw Publisher : Addison Wesley Pub Date : February 17, 2004 ISBN : 0-201-78695-8 译文标题: JDBC接口技术 译文: JDBC是一种可用于执行SQL语句的JavaAPI(ApplicationProgrammingInterface应用程序设计接口)。它由一些Java语言编写的类和界面组成。JDBC为数据库应用开发人员、数据库前台工具开发人员提供了一种标准的应用程序设计接口,使开发人员可以用纯Java语言编写完整的数据库应用程序。 一、ODBC到JDBC的发展历程 说到JDBC,很容易让人联想到另一个十分熟悉的字眼“ODBC”。它们之间有没有联系呢?如果有,那么它们之间又是怎样的关系呢? ODBC是OpenDatabaseConnectivity的英文简写。它是一种用来在相关或不相关的数据库管理系统(DBMS)中存取数据的,用C语言实现的,标准应用程序数据接口。通过ODBCAPI,应用程序可以存取保存在多种不同数据库管理系统(DBMS)中的数据,而不论每个DBMS使用了何种数据存储格式和编程接口。 1.ODBC的结构模型 ODBC的结构包括四个主要部分:应用程序接口、驱动器管理器、数据库驱动器和数据源。应用程序接口:屏蔽不同的ODBC数据库驱动器之间函数调用的差别,为用户提供统一的SQL编程接口。 驱动器管理器:为应用程序装载数据库驱动器。 数据库驱动器:实现ODBC的函数调用,提供对特定数据源的SQL请求。如果需要,数据库驱动器将修改应用程序的请求,使得请求符合相关的DBMS所支持的文法。 数据源:由用户想要存取的数据以及与它相关的操作系统、DBMS和用于访问DBMS的网络平台组成。 虽然ODBC驱动器管理器的主要目的是加载数据库驱动器,以便ODBC函数调用,但是数据库驱动器本身也执行ODBC函数调用,并与数据库相互配合。因此当应用系统发出调用与数据源进行连接时,数据库驱动器能管理通信协议。当建立起与数据源的连接时,数据库驱动器便能处理应用系统向DBMS发出的请求,对分析或发自数据源的设计进行必要的翻译,并将结果返回给应用系统。 2.JDBC的诞生 自从Java语言于1995年5月正式公布以来,Java风靡全球。出现大量的用java语言编写的程序,其中也包括数据库应用程序。由于没有一个Java语言的API,编程人员不得不在Java程序中加入C语言的ODBC函数调用。这就使很多Java的优秀特性无法充分发挥,比如平台无关性、面向对象特性等。随着越来越多的编程人员对Java语言的日益喜爱,越来越多的公司在Java程序开发上投入的精力日益增加,对java语言接口的访问数据库的API 的要求越来越强烈。也由于ODBC的有其不足之处,比如它并不容易使用,没有面向对象的特性等等,SUN公司决定开发一Java语言为接口的数据库应用程序开发接口。在JDK1.x 版本中,JDBC只是一个可选部件,到了JDK1.1公布时,SQL类包(也就是JDBCAPI)

冲压模具技术外文翻译(含外文文献)

前言 在目前激烈的市场竞争中,产品投入市场的迟早往往是成败的关键。模具是高质量、高效率的产品生产工具,模具开发周期占整个产品开发周期的主要部分。因此客户对模具开发周期要求越来越短,不少客户把模具的交货期放在第一位置,然后才是质量和价格。因此,如何在保证质量、控制成本的前提下加工模具是值得认真考虑的问题。模具加工工艺是一项先进的制造工艺,已成为重要发展方向,在航空航天、汽车、机械等各行业得到越来越广泛的应用。模具加工技术,可以提高制造业的综合效益和竞争力。研究和建立模具工艺数据库,为生产企业提供迫切需要的高速切削加工数据,对推广高速切削加工技术具有非常重要的意义。本文的主要目标就是构建一个冲压模具工艺过程,将模具制造企业在实际生产中结合刀具、工件、机床与企业自身的实际情况积累得高速切削加工实例、工艺参数和经验等数据有选择地存储到高速切削数据库中,不但可以节省大量的人力、物力、财力,而且可以指导高速加工生产实践,达到提高加工效率,降低刀具费用,获得更高的经济效益。 1.冲压的概念、特点及应用 冲压是利用安装在冲压设备(主要是压力机)上的模具对材料施加压力,使其产生分离或塑性变形,从而获得所需零件(俗称冲压或冲压件)的一种压力加工方法。冲压通常是在常温下对材料进行冷变形加工,且主要采用板料来加工成所需零件,所以也叫冷冲压或板料冲压。冲压是材料压力加工或塑性加工的主要方法之一,隶属于材料成型工程术。 冲压所使用的模具称为冲压模具,简称冲模。冲模是将材料(金属或非金属)批量加工成所需冲件的专用工具。冲模在冲压中至关重要,没有符合要求的冲模,批量冲压生产就难以进行;没有先进的冲模,先进的冲压工艺就无法实现。冲压工艺与模具、冲压设备和冲压材料构成冲压加工的三要素,只有它们相互结合才能得出冲压件。 与机械加工及塑性加工的其它方法相比,冲压加工无论在技术方面还是经济方面都具有许多独特的优点,主要表现如下; (1) 冲压加工的生产效率高,且操作方便,易于实现机械化与自动化。这是

本科毕业设计文献综述范例(1)

###大学 本科毕业设计(论文)文献综述 课题名称: 学院(系): 年级专业: 学生姓名: 指导教师: 完成日期:

燕山大学本科生毕业设计(论文) 一、课题国内外现状 中厚板轧机是用于轧制中厚度钢板的轧钢设备。在国民经济的各个部门中广泛的采用中板。它主要用于制造交通运输工具(如汽车、拖拉机、传播、铁路车辆及航空机械等)、钢机构件(如各种贮存容器、锅炉、桥梁及其他工业结构件)、焊管及一般机械制品等[1~3]。 1 世界中厚板轧机的发展概况 19世纪五十年代,美国用采用二辊可逆式轧机生产中板。轧机前后设置传动滚道,用机械化操作实现来回轧制,而且辊身长度已增加到2m以上,轧机是靠蒸汽机传动的。1864年美国创建了世界上第一套三辊劳特式中板轧机,当时盛行一时,推广于世界。1918年卢肯斯钢铁公司科茨维尔厂为了满足军舰用板的需求,建成了一套5230mm四辊式轧机,这是世界上第一套5m以上的轧机。1907年美国钢铁公司南厂为了轧边,首次创建了万能式厚板轧机,于1931年又建成了世界上第一套连续式中厚板轧机。欧洲国家中厚板生产也是较早的。1910年,捷克斯洛伐克投产了一套4500mm二辊式厚板轧机。1940年,德国建成了一套5000mm四辊式厚板轧机。1937年,英国投产了一套3810mm中厚板轧机。1939年,法国建成了一套4700mm 四辊式厚板轧机。这些轧机都是用于生产机器和兵器用的钢板,多数是为了二次世界大战备战的需要。1941年日本投产了一套5280mm四辊式厚板轧机,主要用于满足海军用板的需要。20世纪50年代,掌握了中厚板生产的计算机控制。20世纪80年代,由于中厚板的使用部门萧条,许多主要产钢国家的中厚板产量都有所下降,西欧国家、日本和美国关闭了一批中厚板轧机(宽度一般在3、4米以下)。国外除了大的厚板轧机以外,其他大型的轧机已很少再建。1984年底,法国东北方钢铁联营敦刻尔克厂在4300mm轧机后面增加一架5000mm宽厚板轧机,增加了产量,且扩大了品种。1984年底,苏联伊尔诺斯克厂新建了一套5000mm宽厚板轧机,年产量达100万t。1985年初,德国迪林冶金公司迪林根厂将4320mm轧机换成4800mm 轧机,并在前面增加一架特宽得5500mm轧机。1985年12月日本钢管公司福山厂新型制造了一套4700mmHCW型轧机,替换下原有得轧机,更有效地控制板形,以提高钢板的质量。 - 2 -

机械类外文文献

附:外文翻译 外文原文: Fundamentals of Mechanical Design Mechanical design means the design of things and systems of a mechanical nature—machines, products, structures, devices, and instruments. For the most part mechanical design utilizes mathematics, the materials sciences, and the engineering-mechanics sciences. The total design process is of interest to us. How does it begin? Does the engineer simply sit down at his desk with a blank sheet of paper? And, as he jots down some ideas, what happens next? What factors influence or control the decisions which have to be made? Finally, then, how does this design process end? Sometimes, but not always, design begins when an engineer recognizes a need and decides to do something about it. Recognition of the need and phrasing it in so many words often constitute a highly creative act because the need may be only a vague discontent, a feeling of uneasiness, of a sensing that something is not right. The need is usually not evident at all. For example, the need to do something about a food-packaging machine may be indicated by the noise level, by the variations in package weight, and by slight but perceptible variations in the quality of the packaging or wrap. There is a distinct difference between the statement of the need and the identification of the problem. Which follows this statement? The problem is more specific. If the need is for cleaner air, the problem might be that of reducing the dust discharge from power-plant stacks, or reducing the quantity of irritants from automotive exhausts. Definition of the problem must include all the specifications for the thing that is to be designed. The specifications are the input and output quantities, the characteristics of the space the thing must occupy and all the limitations on t hese quantities. We can regard the thing to be designed as something in a black box. In this case we must specify the inputs and outputs of the box together with their characteristics and limitations. The specifications define the cost, the number to be manufactured, the expected life, the range, the operating temperature, and the reliability. There are many implied specifications which result either from the designer's particular environment or from the nature of the problem itself. The manufacturing processes which are available, together with the facilities of a certain plant, constitute restrictions on a designer's freedom, and hence are a part of the implied specifications. A small plant, for instance, may not own cold-working machinery. Knowing this, the designer selects other metal-processing methods which can be performed in the plant. The labor skills available and the competitive situation also constitute implied specifications. After the problem has been defined and a set of written and implied specifications has been obtained, the next step in design is the synthesis of an optimum solution. Now synthesis cannot take place without both analysis and optimization because the system under design must be analyzed to determine whether the performance complies with the specifications. The design is an iterative process in which we proceed through several steps, evaluate the results, and then return to an earlier phase of the procedure. Thus we may synthesize several components of a system, analyze and optimize them, and return to synthesis to see what effect this has on the remaining parts of the system. Both analysis and optimization require that we construct or devise abstract models of the system which will admit some form of mathematical analysis. We call these models

机械专业毕业论文外文翻译

附录一英文科技文献翻译 英文原文: Experimental investigation of laser surface textured parallel thrust bearings Performance enhancements by laser surface texturing (LST) of parallel-thrust bearings is experimentally investigated. Test results are compared with a theoretical model and good correlation is found over the relevant operating conditions. A compari- son of the performance of unidirectional and bi-directional partial-LST bearings with that of a baseline, untextured bearing is presented showing the bene?ts of LST in terms of increased clearance and reduced friction. KEY WORDS: ?uid ?lm bearings, slider bearings, surface texturing 1. Introduction The classical theory of hydrodynamic lubrication yields linear (Couette) velocity distribution with zero pressure gradients between smooth parallel surfaces under steady-state sliding. This results in an unstable hydrodynamic ?lm that would collapse under any external force acting normal to the surfaces. However, experience shows that stable lubricating ?lms can develop between parallel sliding surfaces, generally because of some mechanism that relaxes one or more of the assumptions of the classical theory. A stable ?uid ?lm with su?cient load-carrying capacity in parallel sliding surfaces can be obtained, for example, with macro or micro surface structure of di?erent types. These include waviness [1] and protruding microasperities [2–4]. A good literature review on the subject can be found in Ref. [5]. More recently, laser surface texturing (LST) [6–8], as well as inlet roughening by longitudinal or transverse grooves [9] were suggested to provide load capacity in parallel sliding. The inlet roughness concept of Tonder [9] is based on ??e?ective clearance‘‘ reduction in the sliding direction and in this respect it is identical to the par- tial-LST concept described in ref. [10] for generating hydrostatic e?ect in high-pressure mechanical seals. Very recently Wang et al. [11] demonstrated experimentally a doubling of the load-carrying capacity for the surface- texture design by reactive ion etching of SiC

软件开发概念和设计方法大学毕业论文外文文献翻译及原文

毕业设计(论文)外文文献翻译 文献、资料中文题目:软件开发概念和设计方法文献、资料英文题目: 文献、资料来源: 文献、资料发表(出版)日期: 院(部): 专业: 班级: 姓名: 学号: 指导教师: 翻译日期: 2017.02.14

外文资料原文 Software Development Concepts and Design Methodologies During the 1960s, ma inframes and higher level programming languages were applied to man y problems including human resource s yste ms,reservation s yste ms, and manufacturing s yste ms. Computers and software were seen as the cure all for man y bu siness issues were some times applied blindly. S yste ms sometimes failed to solve the problem for which the y were designed for man y reasons including: ?Inability to sufficiently understand complex problems ?Not sufficiently taking into account end-u ser needs, the organizational environ ment, and performance tradeoffs ?Inability to accurately estimate development time and operational costs ?Lack of framework for consistent and regular customer communications At this time, the concept of structured programming, top-down design, stepwise refinement,and modularity e merged. Structured programming is still the most dominant approach to software engineering and is still evo lving. These failures led to the concept of "software engineering" based upon the idea that an engineering-like discipl ine could be applied to software design and develop ment. Software design is a process where the software designer applies techniques and principles to produce a conceptual model that de scribes and defines a solution to a problem. In the beginning, this des ign process has not been well structured and the model does not alwa ys accurately represent the problem of software development. However,design methodologies have been evolving to accommo date changes in technolog y coupled with our increased understanding of development processes. Whereas early desig n methods addressed specific aspects of the

机械设计外文翻译(中英文)

机械设计理论 机械设计是一门通过设计新产品或者改进老产品来满足人类需求的应用技术科学。它涉及工程技术的各个领域,主要研究产品的尺寸、形状和详细结构的基本构思,还要研究产品在制造、销售和使用等方面的问题。 进行各种机械设计工作的人员通常被称为设计人员或者机械设计工程师。机械设计是一项创造性的工作。设计工程师不仅在工作上要有创造性,还必须在机械制图、运动学、工程材料、材料力学和机械制造工艺学等方面具有深厚的基础知识。如前所诉,机械设计的目的是生产能够满足人类需求的产品。发明、发现和科技知识本身并不一定能给人类带来好处,只有当它们被应用在产品上才能产生效益。因而,应该认识到在一个特定的产品进行设计之前,必须先确定人们是否需要这种产品。 应当把机械设计看成是机械设计人员运用创造性的才能进行产品设计、系统分析和制定产品的制造工艺学的一个良机。掌握工程基础知识要比熟记一些数据和公式更为重要。仅仅使用数据和公式是不足以在一个好的设计中做出所需的全部决定的。另一方面,应该认真精确的进行所有运算。例如,即使将一个小数点的位置放错,也会使正确的设计变成错误的。 一个好的设计人员应该勇于提出新的想法,而且愿意承担一定的风险,当新的方法不适用时,就使用原来的方法。因此,设计人员必须要有耐心,因为所花费的时间和努力并不能保证带来成功。一个全新的设计,要求屏弃许多陈旧的,为人们所熟知的方法。由于许多人墨守成规,这样做并不是一件容易的事。一位机械设计师应该不断地探索改进现有的产品的方法,在此过程中应该认真选择原有的、经过验证的设计原理,将其与未经过验证的新观念结合起来。 新设计本身会有许多缺陷和未能预料的问题发生,只有当这些缺陷和问题被解决之后,才能体现出新产品的优越性。因此,一个性能优越的产品诞生的同时,也伴随着较高的风险。应该强调的是,如果设计本身不要求采用全新的方法,就没有必要仅仅为了变革的目的而采用新方法。 在设计的初始阶段,应该允许设计人员充分发挥创造性,不受各种约束。即使产生了许多不切实际的想法,也会在设计的早期,即绘制图纸之前被改正掉。只有这样,才不致于堵塞创新的思路。通常,要提出几套设计方案,然后加以比较。很有可能在最后选定的方案中,采用了某些未被接受的方案中的一些想法。

毕业设计文献综述范文

四川理工学院毕业设计(文献综述)红外遥控电动玩具车的设计 学生:程非 学号:10021020402 专业:电子信息工程 班级:2010.4 指导教师:王秀碧 四川理工学院自动化与电子信息学院 二○一四年三月

1前言 1.1 研究方向 随着科技的发展,越来越多的现代化电器走进了普通老百姓的家庭,而这些家用电器大都由红外遥控器操控,过多不同遥控器的混合使用带来了诸多不便。因此,设计一种智能化的学习型遥控器,学习各种家用电器的遥控编码,实现用一个遥控器控制所有家电,已成为迫切需求。首先对红外遥控接收及发射原理进行分析,通过对红外编码理论的学习,设计以MSP430单片机为核心的智能遥控器。其各个模块设计如下:红外遥控信号接收,红外接收器把接收到的红外信号经光电二极管转化成电信号,再对电信号进行解调,恢复为带有一定功能指令码的脉冲编码;接着是红外编码学习,利用单片机的输入捕捉功能捕捉载波的跳变沿,并通过定时器计时记下载波的周期和红外信号的波形特征,进行实时编码;存储电路设计,采用I2C总线的串行E2PROM(24C256)作为片外存储器,其存储容量为8192个字节,能够满足所需要的存取需求;最后是红外发射电路的设计,当从存储模块中获取某红外编码指令后,提取红外信号的波形特征信息并进行波形还原;将其调制到38KHZ的载波信号上,通过三极管放大电路驱动红外发光二极管发射红外信号,达到红外控制的目的。目前,国外进口的万能遥控器价格比较昂贵,还不能真正走进普通老百姓的家中。本文在总结和分析国外设计的基础上,设计一款以MSP430单片机为核心的智能型遥控器,通过对电视机和空调的遥控编码进行学习,能够达到预期的目的,具有一定的现实意义。 1.2 发展历史 红外遥控由来已久,但是进入90年代,这一技术又有新的发张,应用范围更加广泛。红外遥控是一种无线、非接触控制技术,具有抗干扰能力强,信息传输可靠,功耗低,成本低,易实现等显著优点,被诸多电子设备特别是家用电器广泛采用,并越来越多的应用到计算机系统中。 60年代初,一些发达国家开始研究民用产品的遥控技术,单由于受当时技术条件限制,遥控技术发展很缓慢,70年代末,随着大规模集成电路和计算机技术的发展,遥控技术得到快速发展。在遥控方式上大体经理了从有线到无限的超声波,从振动子到红外线,再到使用总线的微机红外遥控这样几个阶段。无论采用何种方式,准确无误传输新信号,最终达到满意的控制效果是非常重要的。最初的无线遥控装置采用的是电磁波传输信号,由于电磁波容易产生干扰,也易受干扰,因此逐渐采用超声波和红外线媒介来传输信号。与红外线相比,超声传感器频带窄,所能携带的信息量少扰而引起误动作。较为理想的是光控方式,逐渐采用红外线的遥控方式取代了超声波遥控方式,出现了红外线多功能遥控器,成为当今时代的主流。 1.3 当前现状 红外线在频谱上居于可见光之外,所以抗干扰性强,具有光波的直线传播特性,不易产生相互间的干扰,是很好的信息传输媒体。信息可以直接对红外光进行调制传输,例如,信息直接调制红外光的强弱进行传输,也可以用红外线产生一定频率的载波,再用信息对载波进调制,接收端再去掉载波,取到信息。从信

Manufacturing Engineering and Technology(机械类英文文献+翻译)

Manufacturing Engineering and Technology—Machining Serope kalpakjian;Steven R.Schmid 机械工业出版社2004年3月第1版 20.9 MACHINABILITY The machinability of a material usually defined in terms of four factors: 1、Surface finish and integrity of the machined part; 2、Tool life obtained; 3、Force and power requirements; 4、Chip control. Thus, good machinability good surface finish and integrity, long tool life, and low force And power requirements. As for chip control, long and thin (stringy) cured chips, if not broken up, can severely interfere with the cutting operation by becoming entangled in the cutting zone. Because of the complex nature of cutting operations, it is difficult to establish relationships that quantitatively define the machinability of a material. In manufacturing plants, tool life and surface roughness are generally considered to be the most important factors in machinability. Although not used much any more, approximate machinability ratings are available in the example below. 20.9.1 Machinability Of Steels Because steels are among the most important engineering materials (as noted in Chapter 5), their machinability has been studied extensively. The machinability of steels has been mainly improved by adding lead and sulfur to obtain so-called free-machining steels. Resulfurized and Rephosphorized steels. Sulfur in steels forms manganese sulfide inclusions (second-phase particles), which act as stress raisers in the primary shear zone. As a result, the chips produced break up easily and are small; this improves machinability. The size, shape, distribution, and concentration of these inclusions significantly influence machinability. Elements such as tellurium and selenium, which are both chemically similar to sulfur, act as inclusion modifiers in

机械类毕业设计外文翻译

本科毕业论文(设计) 外文翻译 学院:机电工程学院 专业:机械工程及自动化 姓名:高峰 指导教师:李延胜 2011年05 月10日 教育部办公厅 Failure Analysis,Dimensional Determination And

Analysis,Applications Of Cams INTRODUCTION It is absolutely essential that a design engineer know how and why parts fail so that reliable machines that require minimum maintenance can be designed.Sometimes a failure can be serious,such as when a tire blows out on an automobile traveling at high speed.On the other hand,a failure may be no more than a nuisance.An example is the loosening of the radiator hose in an automobile cooling system.The consequence of this latter failure is usually the loss of some radiator coolant,a condition that is readily detected and corrected.The type of load a part absorbs is just as significant as the magnitude.Generally speaking,dynamic loads with direction reversals cause greater difficulty than static loads,and therefore,fatigue strength must be considered.Another concern is whether the material is ductile or brittle.For example,brittle materials are considered to be unacceptable where fatigue is involved. Many people mistakingly interpret the word failure to mean the actual breakage of a part.However,a design engineer must consider a broader understanding of what appreciable deformation occurs.A ductile material,however will deform a large amount prior to rupture.Excessive deformation,without fracture,may cause a machine to fail because the deformed part interferes with a moving second part.Therefore,a part fails(even if it has not physically broken)whenever it no longer fulfills its required function.Sometimes failure may be due to abnormal friction or vibration between two mating parts.Failure also may be due to a phenomenon called creep,which is the plastic flow of a material under load at elevated temperatures.In addition,the actual shape of a part may be responsible for failure.For example,stress concentrations due to sudden changes in contour must be taken into account.Evaluation of stress considerations is especially important when there are dynamic loads with direction reversals and the material is not very ductile. In general,the design engineer must consider all possible modes of failure,which include the following. ——Stress ——Deformation ——Wear ——Corrosion ——Vibration ——Environmental damage ——Loosening of fastening devices

本科毕业设计方案外文翻译范本

I / 11 本科毕业设计外文翻译 <2018届) 论文题目基于WEB 的J2EE 的信息系统的方法研究 作者姓名[单击此处输入姓名] 指导教师[单击此处输入姓名] 学科(专业 > 所在学院计算机科学与技术学院 提交日期[时间 ]

基于WEB的J2EE的信息系统的方法研究 摘要:本文介绍基于工程的Java开发框架背后的概念,并介绍它如何用于IT 工程开发。因为有许多相同设计和开发工作在不同的方式下重复,而且并不总是符合最佳实践,所以许多开发框架建立了。我们已经定义了共同关注的问题和应用模式,代表有效解决办法的工具。开发框架提供:<1)从用户界面到数据集成的应用程序开发堆栈;<2)一个架构,基本环境及他们的相关技术,这些技术用来使用其他一些框架。架构定义了一个开发方法,其目的是协助客户开发工程。 关键词:J2EE 框架WEB开发 一、引言 软件工具包用来进行复杂的空间动态系统的非线性分析越来越多地使用基于Web的网络平台,以实现他们的用户界面,科学分析,分布仿真结果和科学家之间的信息交流。对于许多应用系统基于Web访问的非线性分析模拟软件成为一个重要组成部分。网络硬件和软件方面的密集技术变革[1]提供了比过去更多的自由选择机会[2]。因此,WEB平台的合理选择和发展对整个地区的非线性分析及其众多的应用程序具有越来越重要的意义。现阶段的WEB发展的特点是出现了大量的开源框架。框架将Web开发提到一个更高的水平,使基本功能的重复使用成为可能和从而提高了开发的生产力。 在某些情况下,开源框架没有提供常见问题的一个解决方案。出于这个原因,开发在开源框架的基础上建立自己的工程发展框架。本文旨在描述是一个基于Java的框架,该框架利用了开源框架并有助于开发基于Web的应用。通过分析现有的开源框架,本文提出了新的架构,基本环境及他们用来提高和利用其他一些框架的相关技术。架构定义了自己开发方法,其目的是协助客户开发和事例工程。 应用程序设计应该关注在工程中的重复利用。即使有独特的功能要求,也

机械类外文翻译

机械类外文翻译 塑料注塑模具浇口优化 摘要:用单注塑模具浇口位置的优化方法,本文论述。该闸门优化设计的目的是最大限度地减少注塑件翘曲变形,翘曲,是因为对大多数注塑成型质量问题的关键,而这是受了很大的部分浇口位置。特征翘曲定义为最大位移的功能表面到表面的特征描述零件翘曲预测长度比。结合的优化与数值模拟技术,以找出最佳浇口位置,其中模拟armealing算法用于搜索最优。最后,通过实例讨论的文件,它可以得出结论,该方法是有效的。 注塑模具、浇口位臵、优化、特征翘曲变形关键词: 简介 塑料注射成型是一种广泛使用的,但非常复杂的生产的塑料产品,尤其是具有高生产的要求,严密性,以及大量的各种复杂形状的有效方法。质量ofinjection 成型零件是塑料材料,零件几何形状,模具结构和工艺条件的函数。注塑模具的一个最重要的部分主要是以下三个组件集:蛀牙,盖茨和亚军,和冷却系统。拉米夫定、Seow(2000)、金和拉米夫定(2002) 通过改变部分的尼斯达到平衡的腔壁厚度。在平衡型腔充填过程提供了一种均匀分布压力和透射电镜,可以极大地减少高温的翘曲变形的部分~但仅仅是腔平衡的一个重要影响因素的一部分。cially Espe,部分有其功能上的要求,其厚度通常不应该变化。 pointview注塑模具设计的重点是一门的大小和位臵,以及流道系统的大小和布局。大门的大小和转轮布局通常被认定为常量。相对而言,浇口位臵与水口大小布局也更加灵活,可以根据不同的零件的质量。 李和吉姆(姚开屏,1996a)称利用优化流道和尺寸来平衡多流道系统为multiple 注射系统。转轮平衡被形容为入口压力的差异为一多型腔模具用相同的蛀牙,也存

相关文档
最新文档