路灯灯杆的抗风设计

合集下载

信号灯杆抗风等级要求标准

信号灯杆抗风等级要求标准

信号灯杆抗风等级要求标准
信号灯杆得能扛得住大风,这事儿挺重要的。

一般来说,咱们国家的信号灯杆设计时,都得保证能熬过12级的台风,那风速可是快得很,大概相当于每秒跑37米左右。

这样的设计是为了应对大部分地区的极端天气。

具体到做灯杆,要考虑它的大小、粗细、壁厚,用的材料怎么样,还有风一吹它怎么摇晃这些问题。

比如说,有的灯杆上面细下面粗,上面直径8厘米,下面直径能有21厘米多,用的钢材质量也好,壁厚4毫米,这样的设计能让它顶住每秒60米的风,那可是相当结实了。

为了确保安全,设计人员会参考国家的一些规定,比如《钢结构设计标准》,还有一些专门针对室外灯光设备防风的测试方法。

他们会用电脑模拟啊,或者专门的风洞试验来检查,看看这灯杆能不能真的在大风天里站得稳稳当当的。

总之,就是要让灯杆在狂风中依然坚挺,给大家指明方向。

8米路灯杆抗风强度计算校核算

8米路灯杆抗风强度计算校核算

8米路灯杆抗风强度计算校核算8米灯杆强度计算A、已知条件:1、风速:U=36.9m/s约12级台风3、灯杆材质:Q2354、屈服强度:[σ]=235MPa Pa=N/m25、弹性模量:E=210GPa6、H =8000mm d =70mm D =160mm T =3mmB、风压:P = U2/1.6=851.01N/m2C、迎风面积:S塔杆=(d+D)*H/2=0.92m2S挑臂=60×1500×1=0.09m2S灯具=300×1000×1=0.30m2S太阳能板=1200×540×0=0.00m2×sin35°=0.00m2 S风叶=300×1200×0=0.00m2=(2d+D)*H/3(d+D)= 3.48mHx风压对整根灯杆的扭矩,随着高度不同,而不同,所以我们采用近似计算:相当于风压全部作用在灯杆重心处的扭矩。

需要出强度计算的请联系:135********,Q:715849722、风压对路灯各部份的扭矩:M塔杆=P×S塔杆×Hx=2723.2N·mM挑臂=P×S挑臂×H=612.7N·mM灯具=P×S灯具×H=2042.4N·mM太阳能板=P×S太阳能板×H=0.0N·mM风叶=P×S风叶×H=0.0N·mM总=M灯杆+M灯具+M挑臂=5378.4N·m3、灯杆根部的截面抵抗矩:W=π*(D OD4-D ID4)/32D= 5.70E-05m34、灯杆根部实际理论扭矩允许值:[M]=W*[σ]=13397.3N·m5、因此:[M] > M total 2.5灯杆强度是安全的。

E、挠度核算:1、圆锥杆,相当于直杆近似计算:D e=(d+D)/2=115.0mm2、截面惯性矩:I=π*(D eOD4-d eID4)/64= 1.66E+06mm43、重心处荷载:Q=M total/H x=1546.28 N4、风压对路灯产生的挠度:f max=QH x3/3EI=62.4mm5、灯杆实际理论的挠度允许值:[f max]=H/40=200.0mm6、因此:[f max] > f max 3.2灯杆挠度是安全的。

10米路灯抗风强度校对5mm

10米路灯抗风强度校对5mm

10米太阳能路灯抗风强度校核一、计算依据1.风速V=120km/h(十二级风)2.基本风压 W0=0.7MPa3. 整基杆风振系数取1.33.设计计算依据:①、《建筑结构荷载规范》GB50009-2001②、《建筑地基基础设计规范》GB5007-2002③、《钢结构设计规范》GB50017-2003④、《高耸结构设计规范》GBJ135-90二、设计条件⑴.基本数据:170W硅铁模块距地面高度10m,面积1.34m2 ,每块重量45kg,220W硅铁模块距地面高度7m,面积1.74m2 ,每块重量30kg,灯杆截面为圆形,灯杆上口径直径d为120mm,底部下口径直径D为260mm,厚度δ=5mm。

法兰厚度为20mm,直径500mm。

材料为Q235钢,屈服强度为f屈=240N/mm2,灯杆高度为10m,路灯含模块灯头总重为380kg。

二、灯柱强度计算1.风载荷系数W K=βz·μs·μz·u r·W0式中:W K—风荷载标准值(KN/m2);βz—高度z处的风振系数;μs—风荷载体型系数;μz—风压高度变化系数;μr—高耸结构重现期调整系数,对重要的高耸结构取1.2。

⑴.太阳能板:高度为10m和7m,风压高度变化系数μz取1.38,风荷载体型系数μs =0.8μr=1.2整基杆风振系数βz取1.3灯盘风载荷系数W K1=βz·μs·μz·ur·W0=1.3×0.8×1.38×1.2×0.7=1.2kN/m2⑵.灯杆:简化为均布荷载风压高度变化系数μz取1.38风荷载体型系数μs =0.6μr=1.2整基杆风振系数βz取1.3灯杆风载荷系数W K2=βz·μs·μz·ur·W0=1.3×0.6×1.38×1.2×0.7=0.90kN/m22.太阳能板及灯杆迎风面积S太阳能板1=(1.34+1.34)×Sin22°=0.96㎡S太阳能板2=1.74×Sin22°=0.63㎡S灯杆=(0.12+0.26)×10/2=1.9㎡3.内力计算弯矩设计值:M=M灯盘+M灯杆M=γQ×WK1×S太阳能板×10m+γQ×WK2×S灯杆×5m=1.4×1.2×0.96×10+1.4×1.2×0.63×7+1.4×0.90×1.9×5M=35.5 kN·m最大剪力V=γQ×WK1×S太阳能板+γQ×WK2×S灯杆=5.05kN式中γQ---载荷组合系数4.灯柱根部应力灯柱根部最大应力应小于灯柱材料的许应力即ξmax=M/W+P/ψA +2V/A式中M/W—弯曲应力 P/ψA—轴向应力 2V/A—剪应力由前面计算出灯柱总弯矩为M=34.25kN·mW—抗弯截面系数 W=I/yI为截面惯性矩 y为应力点到中性轴的距离截面惯性矩I=∏(D4-d4)/64d------灯柱根部内径D------灯柱根部外径I=3.14×[(260mm)4-(250mm)4]/64=0.32×108mm4弯曲应力бmax=M×y/I=35.5×106 N·mm×130mm/0.32×108mm4=144.2N/ mm2=144.2MPa轴向应力---P/ψAP—轴向负荷 P=路灯总重=380kgψ—稳定系数A—灯杆根部截面积。

路灯抗风等级标准

路灯抗风等级标准

路灯抗风等级标准为确保路灯在恶劣的天气条件下能够正常使用并减少风灾给城市带来的损失,制定路灯抗风等级标准是非常必要的。

本文将介绍一份关于路灯抗风等级标准的规范,以保障道路照明的稳定性和可靠性。

一、引言在城市化发展的过程中,道路照明设施起到不可忽视的作用。

由于地理位置和天气条件的差异,路灯在遭受高风速和强气流冲击时可能存在倾斜、折断等安全隐患。

为了解决这个问题,制定一套科学合理的路灯抗风等级标准是必不可少的。

二、标准概述1. 应用范围:本标准适用于各类城市道路照明设施的抗风能力评估和等级划分。

2. 抗风等级划分:根据照明设施的结构、高度、材料等因素,将抗风能力划分为五个等级,分别为一级至五级,五级为最高等级。

三、抗风等级的划分1. 一级:照明设施高度低于6米,可承受最大风速为12m/s,适用于小型街道和小区内的道路照明。

2. 二级:照明设施高度范围为6米至9米,可承受最大风速为16m/s,适用于一般城市道路照明。

3. 三级:照明设施高度范围为9米至12米,可承受最大风速为20m/s,适用于主干道照明。

4. 四级:照明设施高度范围为12米至15米,可承受最大风速为24m/s,适用于大型道路和广场的照明。

5. 五级:照明设施高度大于15米,可承受最大风速为30m/s,适用于高速公路和大型交通枢纽的照明。

四、抗风等级的评估方法1. 设计考虑:照明设施在设计过程中应考虑到当地的气象条件和地理情况,合理选择材料和构造,确保稳定性和抗风能力。

2. 强度测试:照明设施应按照相关标准进行强度测试,测试包括静态承载能力和动态抗震能力等。

3. 风洞实验:针对不同高度和结构的照明设施,进行风洞实验,模拟不同风速下的作用力,评估其抗风能力。

4. 数值模拟:利用计算机模拟方法,通过数值计算分析照明设施在不同风速下的抗风能力,为实际应用提供依据。

五、标准的应用和推广1. 标准的应用:各地政府和相关部门在进行道路照明设施规划和建设时,应参考本标准,保证照明设施的抗风能力符合要求。

路灯灯杆的抗风破坏设计计算公式

路灯灯杆的抗风破坏设计计算公式

路灯灯杆得抗风破坏设计计算公式路灯得参数如下: 电池板倾角A=16°,灯杆高度=5m 设计选取灯杆底部焊缝宽度δ=4mm灯杆底部外径=168mm。

焊缝所在面即灯杆破坏面。

灯杆破坏面抵抗矩W得计算点P到灯杆受到得电池板作用荷载F作用线得距离为PQ= [50(168+6/tan16o]×Sin16o= 1545mm=1。

545m。

所以,风荷载在灯杆破坏面上得作用矩M=F×1、545。

根据27m/s得设计最大允许风速,2×30W得双灯头太阳能路灯电池板得基本荷载为730N。

考虑1。

3得安全系数,F=1.3×730=949N。

所以,M=F×1。

545=949×1。

545=1466N。

m、根据数学推导,圆环形破坏面得抵抗矩W=π×(3r2δ+3rδ2+δ3)。

上式中,r就是圆环内径,δ就是圆环宽度。

破坏面抵抗矩W=π×(3r2δ+3rδ2+δ3)=π×(3×842×4+3×84×42+43)=88768mm3=88、768×10-6m3风荷载在破坏面上作用矩引起得应力=M/W=1466/(88、768×10-6)=16.5×106pa=16、5Mpa<〈215Mpa其中,215Mpa就是Q235钢得抗弯强度。

所以,设计选取得焊缝宽度满足要求,只要焊接质量能保证,灯杆得抗风就是没有问题得。

灯杆材质选用上海宝钢产优质低碳钢Q235A型,钢材得硅含量不高于0、04%,经大型折弯机一次折弯成型,直线度误差不超过0、05%,灯杆得抗风能力按36.9米/秒11级以上设计,抗地震烈度为8级。

高杆灯具操作及注意事项一:高杆灯具得操作必须由两人或两人以上进行,控制柜由一人操作,其余人员注意观瞧灯盘得升降位置、二:高杆灯具得升降操作1、打开配电控制柜,将空气开关分开,切断总电源。

10米路灯抗风强度校对5mm

10米路灯抗风强度校对5mm

10米太阳能路灯抗风强度校核一、计算依据1.风速V=120km/h(十二级风)2.基本风压 W0=3. 整基杆风振系数取3.设计计算依据:①、《建筑结构荷载规范》GB50009-2001②、《建筑地基基础设计规范》GB5007-2002③、《钢结构设计规范》GB50017-2003④、《高耸结构设计规范》GBJ135-90二、设计条件⑴.基本数据:170W硅铁模块距地面高度10m,面积1.34m2 ,每块重量45kg,220W硅铁模块距地面高度7m,面积1.74m2 ,每块重量30kg,灯杆截面为圆形,灯杆上口径直径d为120mm,底部下口径直径D为260mm,厚度δ=5mm。

法兰厚度为20mm,直径500mm。

材料为Q235钢,屈服强度为f屈=240N/mm2,灯杆高度为10m,路灯含模块灯头总重为380kg。

二、灯柱强度计算1.风载荷系数W K=βz·μs·μz·u r·W0式中:W K—风荷载标准值(KN/m2);βz—高度z处的风振系数;μs—风荷载体型系数;μz—风压高度变化系数;μr—高耸结构重现期调整系数,对重要的高耸结构取。

⑴.太阳能板:高度为10m和7m,风压高度变化系数μz取,风荷载体型系数μs =μr=整基杆风振系数βz取灯盘风载荷系数W K1=βz·μs·μz·ur·W0=××××=m2⑵.灯杆:简化为均布荷载风压高度变化系数μz取风荷载体型系数μs =μr=整基杆风振系数βz取灯杆风载荷系数W K2=βz·μs·μz·ur·W0=××××=m22.太阳能板及灯杆迎风面积S太阳能板1=+×Sin22°=㎡S太阳能板2=×Sin22°=㎡S灯杆=+×10/2=㎡3.内力计算弯矩设计值:M=M灯盘+M灯杆M=γQ×WK1×S太阳能板×10m+γQ×WK2×S灯杆×5m=×××10+×××7+×××5M= kN·m最大剪力V=γQ×WK1×S太阳能板+γQ×WK2×S灯杆=式中γQ---载荷组合系数4.灯柱根部应力灯柱根部最大应力应小于灯柱材料的许应力即ξmax=M/W+P/ψA +2V/A式中M/W—弯曲应力 P/ψA—轴向应力 2V/A—剪应力由前面计算出灯柱总弯矩为M=·mW—抗弯截面系数 W=I/yI为截面惯性矩 y为应力点到中性轴的距离截面惯性矩I=∏(D4-d4)/64d------灯柱根部内径D------灯柱根部外径I=×[(260mm)4-(250mm)4]/64=×108mm4弯曲应力бmax=M×y/I=×106 N·mm×130mm/×108mm4= mm2=轴向应力---P/ψAP—轴向负荷 P=路灯总重=380kgψ—稳定系数A—灯杆根部截面积。

路灯灯杆的抗风设计

路灯灯杆的抗风设计

在太阳能路灯系统中,抗风设计主要分为两大块,一为电池组件支架的抗风设计,二为灯杆的抗风设计。

下面按以上两块分别做分析。

⑴太阳能电池组件支架的抗风设计依据电池组件厂家的技术参数资料,太阳能电池组件可以承受的迎风压强为2400Pa。

若抗风系数选定为27m/s(相当于十级台风),根据非粘性流体力学,电池组件承受的风压只有477Pa。

风压就是垂直于气流方向的平面所受到的风的压力。

根据伯努利方程得出的风-压关系,风的动压为wp=0.5·ro·v² (1)其中wp为风压[kN/m²],ro为空气密度[kg/m³],v为风速[m/s]。

由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有ro=r/g。

在(1)中使用这一关系,得到wp=0.5·r·v²/g (2)此式为标准风压公式。

在标准状态下(气压为1013 hPa, 温度为15°C), 空气重度r=0.01225 [kN/m³]。

纬度为45°处的重力加速度g=9.8[m/s²], 我们得到wp=v²/1600 (3)太阳板受力面积为0.770*0.680m+0.770*0.680m即:太阳板所受风压=(27)²\(1600*0.77*0.68*2)=0.4771305kpa≈477pa 所以,组件本身是完全可以承受27m/s的风速而不至于损坏的。

所以,设计中关键要考虑的是电池组件支架与灯杆的连接。

在本套路灯系统的设计中电池组件支架与灯杆的连接设计使用螺栓杆固定连接。

⑵路灯灯杆的抗风设计路灯的参数如下:电池板倾角A =25度灯杆高度= 8m设计选取灯杆底部焊缝宽度δ = 4mm 灯杆底部外径= 168mm焊缝所在面即灯杆破坏面。

灯杆破坏面抵抗矩W 的计算点P到灯杆受到的电池板作用荷载F作用线的距离为PQ = [8000+(168+6)/tan25]× Sin25 = 1545mm =1.545m。

12m路灯灯杆抗风、抗挠强度计算

12m路灯灯杆抗风、抗挠强度计算

12m 路灯灯杆抗风、抗挠技术1、已知条件1.1 最大风速 Vm=35m/s (P 风压:ω0=0.81KN/m 2)1.2 材料 材质符合Q235(A3)/Q3451.3 许用应力[σ]=210Mpa(《钢结构设计规范》)(Q235) 许用应力[σ]=345Mpa(《钢结构设计规范》)(Q345)1.4 弹性模量:E=2.06×1011N/M 2(《机械设计手册》)1.5 灯管外形为选用Q235钢管焊接,100*200,壁厚分别为4mm.1.6 灯体自重10kg ,杆重 500 kg2、迎风面积2.1 S 灯体= 0.1m 22.2 S 灯杆= 6m 23、结构自振周期I=⨯64π (0.174-0.1724)=8.5×10-6m 4 A=⨯4π(0.172-0.1722)=0.0022m 2T1=3.63×)236.0(3AH m EIH ρ+ =0.56sT1>0.25s 采用风振系数来考虑,风压脉动的影响。

4、风振系数βz4.1 基本风压 ω0T 12= 0.81×0.562 =0.254kN/ m 2∴脉动增大系数 ξ =2.104.2 风压脉动和风压高度变化的影响系数ε1 =0.754.3 振型、结构外形影响系数 ε2=0.76∴β =1+ξ ·ε1•ε2=2.205、顶端灯具大风时的风荷载: (u τ 取1.3)F1=βzUsUzU τ灯体S ⋅0ω=2.20×0.9×1.3×1.0×0.81×0.15=0.31KN6、灯杆大风的风荷载:F2=βzUsUzU τ杆S ⋅0ω=2.20×0.7×1.0×1.1×0.81×1=1.40KN7、灯杆距底法兰处所受的最大弯矩:M 总=0.31×8+1.40×4=8.08KN ·m8 、灯杆底端(危险截面即筋板上部开孔处的截面) 风压弯曲应力 σb σb = S M 总 =34417.0)162.017.0(098.004.8mm KN -⨯⋅ =87MPaσb <[ σb ]=210Mpa结论:结构设计是满足国家相关设计规程的要求是安全的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在太阳能路灯系统中,抗风设计主要分为两大块,一为电池组件支架的抗风设计,二为灯杆的抗风设计。

下面按以上两块分别做分析。

⑴ 太阳能电池组件支架的抗风设计依据电池组件厂家的技术参数资料,太阳能电池组件可以承受的迎风压强为2400Pa。

若抗风系数选定为27m/s (相当于十级台风),根据非粘性流体力学,电池组件承受的风压只有
477Pa。

风压就是垂直于气流方向的平面所受到的风的压力。

根据伯努利方程得出的风-压关系,风的动压为
wp=0.5 ro v2(1)
其中wp为风压[kN/m2], ro为空气密度[kg/m3], v为风速[m/s]。

由于空气密度(ro)和重度(r)的关系为r=ro g,因此有ro=r/g。

在(1)中使用这一关系,得到
wp=0.5r r r v2/g (2)
此式为标准风压公式。

在标准状态下(气压为1013 hPa, 温度为15°C), 空气重度r=0.01225 [kN/m3]。

纬度为45°处的重力加速度g=9.8[m/s2, 我们得到
wp=v2/1600 (3)
太阳板受力面积为0.770*0.680m+0.770*0.680m
即:太阳板所受风压=(27) 2(1600*0.77*0.68*2)=0.4771305kpa竝I77pa 所以,组件本身是完全可以承受27m/s的风速而不至于损坏的。

所以,设计
中关键要考虑的是电池组件支架与灯杆的连接。

在本套路灯系统的设计中电池组件支架与灯杆的连接设计使用
螺栓杆固定连接。

⑵ 路灯灯杆的抗风设计
路灯的参数如下:
电池板倾角A =25 度灯杆高度= 8m
设计选取灯杆底部焊缝宽度8 = 4mm灯杆底部外径二168mm
焊缝所在面即灯杆破坏面。

灯杆破坏面抵抗矩W 的计算点P 到灯杆受到的电池板作用荷载F 作用线的距离为PQ = [8000+(168+6)/tan25]
S in25 = 1545mm =1.545m。

所以,风荷载在灯杆破坏面上的作用矩M二F S.545。

根据27m/s 的设计最大允许风速,2S70W 的双灯头太阳能路灯
电池板的基本荷载为477N。

考虑1.3的安全系数,F = 1.3 S77 =
620.1N。

所以,M = F S1.545 = 949 1S.545 = 1466N.m。

根据数学推导,圆环形破坏面的抵抗矩W = n (3r2井3r 8缶83)。

上式中,r是圆环内径,8是圆环宽度。

破坏面抵抗矩W = n (3r2井3r 8缶8 3
二n(3 >842X1 + 3X84X42 + 43)= 88768mm3
=88.768S10-6 m3
风荷载在破坏面上作用矩引起的应力= M/W
=1466/(88.768 X0-6) =16.5 X06pa =16.5 Mpa<v 215Mpa 其中,215 Mpa是Q235钢的抗弯强度。

所以,设计选取的焊缝宽度满足要求,只要焊接质量能保证,灯杆的抗风是没有问题的。

2.4 控制器
太阳能充放电控制器的主要作用是保护蓄电池。

基本功能必须具备过充保护、过放保护、光控、时控与防反接等。

蓄电池防过充、过放保护电压一般参数如表1 ,当蓄电池电压达到设定值后就改变电路的状态。

在选用器件上,目前有采用单片机的,也有采用比较器的,方案较多,各有特点和优点,应该根据客户群的需求特点选定相应的方案,在此不一
一详述。

2.5 表面处理
该系列产品采用静电涂装新技术,以FP 专业建材涂料为主,可以满
足客户对产品表面色彩及环境协调一致的要求,同时产品自洁性高、抗蚀
性强,耐老化,适用于任何气候环境。

加工工艺设计为热浸锌的基础上涂
装,。

相关文档
最新文档