遥感图像几何处理
遥感数字图像的几何处理

几何精校正
• 又称为几何配准
– 是把不同传感器具有几何精度的图像、地图或数据集 中的相同地物元素精确地彼此匹配、叠加在一起的过 程。
– 由用户进行。 –重要性
• 第一,对遥感原始图像进行几何变形改正后,才能对图像信息 进行各种分析,制作满足量测和定位要求的各类地球资源及环 境的遥感专题图。
• 第二,当应用不同传感方式、不同光谱范围以及不同成像时间 的各种同一地域复合图像数据来进行计算机自动分类、地物特 征的变化监测或其他应用处理时,必须进行图像间的几何配准, 保证各不同图像间的几何一致性。
–对于第一种情况,只需要进行单片解析就可以了;对 于第二种情况,还需要立体模型的解算。
• 实际工作中所拍摄的相片有倾斜和旋转,因此必 须建立物体与相片之间的数学关系。
• 二 空间直角变换
–要建立物体与相片上相应影像的关系,
• 首先要确定摄影瞬间摄影中心与相片在地面设定的空间坐标系 中的位置与姿态,描述这些位置和姿态的参数称为相片的方位 元素。
• 由于摄影像机安装造成的误 差,像主点与像平面坐标系 原点并不重合;
– 像主点在像平面坐标系中 的坐标为xo,yo,
• 摄影中心到相片的垂距(主 距)f构成了内方位元素的三 个参数,内方位元素一般为 已知值,由摄影机鉴定单位 提供。
• 像点在像空间坐标系和像空间辅助坐标系 之间的变换关系式由传感器的方位元素得 来,内方位元素和外方位元素6个参数得出 构像方程解决像点的恢复,然后得出像点 与物点之间的构像方程以纠正影像。
–外部变形误差指的是传感器本身处在正常工作的条件下,由传感 器以外的各因素所造成的误差。
• 例如传感器的外方位(位置、姿态)变化、传感介质的不均匀、 地球曲率、地形起伏、地球旋转等因素所引起的变形误差等。
ENVI遥感图像处理实验教程 实验三 几何校正(影像、地形图)ok

实验三 ENVI影像的几何校正本专题旨在介绍如何在ENVI中对影像进行地理校正,添加地理坐标,以及如何使用ENVI进行影像到影像的几何校正。
遥感图像的几何纠正是指消除影像中的几何形变,产生一幅符合某种地图投影或图形表达要求的新影像。
一般常见的几何纠正有从影像到地图的纠正,以及从影像到影像的纠正,后者也称为影像的配准。
遥感影像中需要改正的几何形变主要来自相机系统误差、地形起伏、地球曲率以及大气折射等。
几何纠正包括两个核心环节:一是像素坐标的变换,即将影像坐标转变为地图或地面坐标;二是对坐标变换后的像素亮度值进行重采样。
本实验将针对不同的数据源和辅助数据,提供以下几种校正方法:Image to Map几何校正:通过地面控制点对遥感图像几何进行平面化的过程,控制点可以是键盘输入、从矢量文件中获取。
地形图校正就采取这种方法。
Image to image几何校正:以一副已经经过几何校正的栅格影像作为基准图,通过从两幅图像上选择同名点(GCP)来配准另一幅栅格影像,使相同地物出现在校正后的图像相同位置。
大多数几何校正都是利用此方法完成的。
Image to image自动图像配准:根据像元灰度值自动寻找两幅图像上的同名点,根据同名点完成两幅图像的配准过程。
当同一地区的两幅图像由于各自校正误差的影像,使得图上的相同地物不重叠时,可利用此方法进行调整1. 地形图的几何校正(1)打开并显示地形图从ENVI主菜单中,选择file →open image file,打开3-几何校正\地形图\G-48-34-a.JPG。
(2)定义坐标从ENVI主菜单栏中,选择Map →Registration →Select GCPs:Image to map。
在image to Map Registration对话框中,点击并选择New,定义一个坐标系从ENVI主菜单栏中,选择Map →Registration →Select GCPs: Image to Map。
如何进行遥感图像的几何校正与分类处理

如何进行遥感图像的几何校正与分类处理遥感图像是通过人造卫星、航空器或遥感器获取的地球表面的图像信息。
在进行遥感图像的处理和分析时,几何校正和分类处理是其中重要的步骤。
本文将重点探讨如何进行遥感图像的几何校正和分类处理,并介绍相关的方法和技术。
一、遥感图像的几何校正遥感图像的几何校正是指将图像中的像素点与地球表面上真实位置进行对应,以消除因成像过程中的非完美性而引入的误差。
几何校正的目的是提高图像的空间分辨率和地理位置精度,从而能够更准确地用于地表特征的分析和监测。
1. 预处理在进行几何校正之前,需要先对遥感图像进行预处理,包括去除大气影响、辐射校正和减噪等。
这些预处理步骤有助于提高图像的质量和准确性。
2. 控制点的选择几何校正过程中需要选择一些已知地理位置的控制点,用于图像与地理坐标系统的对应。
这些控制点可以是地面标志物、地理信息系统(GIS)数据或其他已知位置的遥感图像。
控制点的选择应均匀分布在图像中,并要尽量选择在不同地貌和地物类型上的点,以提高校正的准确性。
3. 变换模型的选择几何校正过程中需要选择适合图像特性和误差来源的变换模型。
常用的变换模型包括线性变换模型、多项式模型和地面控制点法等。
选择合适的变换模型可以提高校正的准确性和效率。
4. 校正方法和工具进行几何校正时,可以使用遥感软件如ENVI、ERDAS等提供的功能和工具。
这些软件提供了多种校正方法和算法,如影像配准、几何校正、快速校正等。
根据具体需求和图像特性选择合适的校正方法和工具,并进行参数设置和调整。
二、遥感图像的分类处理遥感图像的分类处理是指将图像中的像素按照其所代表的地物类型进行分类和划分。
分类处理的目的是将图像中的信息有效地提取出来,并用于地表特征的研究、资源调查和环境监测等。
1. 数据预处理在进行分类处理之前,需要对遥感图像进行数据预处理,包括辐射校正、几何校正、噪声抑制等。
这些预处理步骤可以提高分类的准确性和可靠性。
第六章 遥感图像几何处理

其中,
A R R R cos 0 1 0 sin 0 a11 a12 a a 21 22 a31 a32 sin 1 0 0 cos 0 cos sin sin 0 cos 0 sin cos 0 a13 a23 a33 sin cos 0 0 0 1
所谓直接法方案是从原始图像阵列出发按行列的顺序依次对每个原始像素点位求其在地面坐标系也是输出图像坐3数字图像亮度或灰度值的重采样以间接法纠正方案为例假如输出图像阵列中的任一像素在原始图像中的投影点位坐标值为整数时便可简单地将整数点位上的原始图像的已有亮度值直接取出填入输出图像
第六章 遥感图像的几何处理
构像方程:
X X Y Y A R t Z P Z St
0
x 0 f
式中:
sin cos (X ) (Z ) (Y ) ( y ) f tan f (Z )
则共线方程可以简写为:
(X ) xf (Z ) (Y ) yf (Z )
共线方程的几何意义:当 地物点P、对应像点p和投 影中心S位于同一条直线上 时,上式成立。
像点P
6.1.3 全景摄影机的构像方程
全景摄影机影像是由一条曝光缝隙沿旁向扫描而成,对 于每条缝隙图像的形成,其几何关系等效于中心投影沿旁向 倾斜一个扫描角θ后,以中心线成像的情况。
由像点坐标可以解算大地(平面)坐标,称为正算公式:
X P X S (Z P Z S ) a11 x a12 y a13 f a31 x a32 y a33 f a x a22 y a23 f YP YS ( Z P Z S ) 21 a31 x a32 y a33 f
如何进行遥感影像的几何校正与处理

如何进行遥感影像的几何校正与处理遥感影像的几何校正与处理是遥感技术中非常重要的环节,它涉及到遥感影像数据的准确性与可靠性。
本文将从几何校正的意义、校正方法和影像处理方面展开论述。
一、几何校正的意义几何校正是指将遥感影像与地球表面几何特征进行匹配,消除影像的位置偏移、旋转和尺度变化等因素,以实现影像在地球表面的精确准位。
几何校正的意义在于:1. 提高遥感影像的空间准确性:经过几何校正的影像能够准确反映地球表面目标的位置和形状,使得遥感分析结果具有更高的可信度。
2. 为后续影像处理提供基础:几何校正是影像处理的基础,只有经过几何校正的影像才能进行后续的影像处理,如图像拼接、变化检测等。
3. 便于地理信息的提取和分析:几何校正后的影像与地理坐标系相一致,可以方便地与其他地理信息数据进行集成,进行地理信息的提取和分析。
二、几何校正的方法目前常用的几何校正方法主要包括控制点法、全自动匹配法和传感器模型方法。
其中,控制点法是最常用的方法,具体步骤如下:1. 选择控制点:在影像上选择一些地面特征明显、位置准确的点,并测量其地理坐标。
2. 特征提取与匹配:通过图像处理技术提取影像和地面控制点的特征,并进行特征匹配。
3. 几何变换:根据控制点的匹配关系,运用几何变换模型(如多项式变换或仿射变换)进行影像的几何变换。
4. 前后视觉精度检查:经过几何校正后,通过前后视觉精度检查来评估影像的校正效果,并及时调整参数以提高校正精度。
除了控制点法,全自动匹配法和传感器模型方法也在一些特定情况下得到应用。
全自动匹配法基于图像匹配算法实现几何校正,传感器模型方法则通过利用传感器系统的几何模型进行影像校正,适用于高精度的几何校正需求。
三、影像处理方面几何校正完成后,还需要进行一系列的影像处理操作,以进一步提取有用的信息。
1. 影像增强:通过图像增强技术,改善影像的对比度、清晰度和色彩等,以提高影像的可视化效果。
2. 影像拼接:在几何校正的基础上,将多个遥感影像进行拼接,生成大尺度的影像,以满足大范围的遥感监测需求。
遥感图像的几何校正56页PPT

遥感图像的精加工处理
在粗加工处理的基础上,采用地面控制点(GCP) 的方法进一步提高影像的几何精度
几何处理的两个环节
1. 像素坐标的变换——解决位置问题 ➢ 多项式模型 2. 灰度重采样——解决亮度问题 ➢ 最邻近像元采样法 ➢ 双线性内插法 ➢ 双三次卷积重采样法
全景畸变
左图是中心投影方式得到的(比例尺基本一致) 右边是逐点扫描成像得到的影像。横轴是飞行方向,纵轴是
扫描方向。在星下点的扫描线,分辨率最高,两边都在对称 的发生变化 直线在逐点扫描成像图中,变成曲线;圆形变成了椭圆形
不同成像方式引起的影像变形
中心投影方式
➢地形起伏引起的投影差
多中心投影方式
行于航线方向为a θ,垂直于 航线方向为a θ’
aHcosH asec
aasecasec2
逐点扫描成像——全景畸变
当观测视线垂直于地面或者倾斜 了θ角之后,地面分辨率的值发生 变化
随着扫描镜的转动,地面扫描范 围的直径在发生变化,这样的变 化对图像是有影响的,称为全景 畸变
全景畸变的原因:焦距是不变的, 物距在发生变化。导致分辨率发 生变化,也导致比例尺发生变化
地球曲率、大气折光和地形起伏引 起的误差
地球自传引起的变形
当卫星由北向南运行 的同时,地球表面也 在由西向东自转
由于卫星图像每条扫 描线的成像时间不同 ,因而造成扫描线在 地面上的投影依次向 西平移,最终使得图 像发生扭曲
遥感图像的几何变形
遥感图像通常包含严重的几何变形,一般 分为系统性和非系统性两大类
➢由于比例尺变化造成的全景畸变 ➢地形起伏引起的投影差
遥感图像处理—几何校正

遥感图像处理—⼏何校正 本节将从原理和代码两个⽅⾯讲解遥感图像的⼏何校正。
原理 ⾸先介绍⼏何校正的概念:在遥感成像过程中,传感器⽣成的图像像元相对于地⾯⽬标物的实际位置发⽣了挤压、扭曲、拉伸和偏移等问题,这⼀现象叫做⼏何畸变。
⼏何畸变会给遥感图像的定量分析、变化检测、图像融合、地图测量或更新等处理带来的很⼤误差,所以需要针对图像的⼏何畸变进⾏校正,即⼏何校正。
⼏何校正分为⼏何粗校正和⼏何精校正。
粗校正是利⽤空间位置变化关系,采⽤计算公式和辅助参数进⾏的校正,叫做系统⼏何校正;精校正是在此基础上,使图像的⼏何位置符合某种地理坐标系统,与地图配准,调整亮度值,即利⽤地⾯控制点(GCP)做的⼏何精校正。
⼏何校正步骤:1.空间位置的变换(像元坐标)2.像元灰度值的重新计算,即重采样。
1. 坐标变换 坐标变换分为直接法和间接法。
1)直接法:从原始图像阵列出发,依次计算每个像元在输出图像中的坐标。
直接法输出的像元值⼤⼩不会发⽣变化,但输出图像中的像元分布不均匀。
2)间接法:从输出图像阵列出发,依次计算每个像元在原始图像中的位置,然后计算原始图像在该位置的像元值,再将计算的像元值赋予输出图像像元。
此⽅法保证校正后的图像的像元在空间上均匀分布,但需要进⾏灰度重采样。
该⽅法是最常⽤的⼏何校正⽅法。
由上图可见,直接法直接以原始图像的坐标为基准点,坐标偏移到校正后的图像,坐标的位置有很多出现在了像元的中间位置,所以直接输出像元值⼤⼩导致像元分布不均匀。
⽽对于间接法。
以输出图像的坐标为基准点,已经定义在了格点的位置上,此时反算出该点在原始图像上对应的图像坐标,坐标多数落在像元的中间位置。
这⾥采⽤最邻近法、双线性内插和三次卷积法来计算该点的灰度值,达成重采样的⽬的。
2. 重采样 图像数据经过坐标变换之后,像元中⼼的位置发⽣改变,其在原始图像的位置不⼀定是整数⾏\列,需要根据输出图像各像元在原始图像中对应的位置,对原始图像重采样,建⽴新的栅格矩阵。
遥感数字图像处理-第6章 几何校正

二、几何校正原理
几何校正涉及两个过程: ➢ 一是空间位置(像元坐标)的变换 ➢ 二是像元灰度值的重新计算(重采样)
4
二、几何校正原理
坐标转换 (a)直接法;(b)间接法
5
三、几何校正步骤
几何精校正不需要空间位置变化数据,回避了成像的空间 几何过程,主要借助地面控制点实现校正。其主要校正步 骤为:
第6章
几何校正
几何校正
一、几何校正原理 二、几何校正步骤 三、几何校正类型 四、图像匹配 五、投影转换
难点:图像匹配 重点:几何校正方法
2
一、几何校正原理
几何校正和几何配准
➢ 几何配准是指将不同时间、不同波段、不同传感器系统所获得的同一 地区的图像(数据),经几何变换使同名像点在位置上和方位上完全 叠合的操作。
➢ 对畸变图像和基准图像建立统一的坐标系和地图投影。 ➢ 选择地面控制点(GCP),按照GCP选择原则,在畸变图像
和基准图像上寻找相同位置的地面控制点对。 ➢ 选择校正模型,利用选择的GCP数据求取校正模型的参数,
然后利用校正模型实现畸变图像和基准图像之间的像元坐 标变换。 ➢ 选择合适的重采样方法对畸变图像的输出图像像元进行灰 度赋值。 ➢ 几何校正的精度分析。
9
四、图像匹配
3.图像匹配方法 根据图像特征的选择,图像匹配方法一般可以分为基于灰
度的图像匹配和基于特征的图像匹配。
10
➢ 几何配准与几何校正的原理是完全相同的,即都涉及到空间位置(像 元坐标)变换和像元灰度值重采样处理两个过程。
➢ 二者的区别主要在于其侧重点不相同:几何校正注重的是数据 本身的处理,目的是为了对数据的一种真实性还原。而几何配 准注重的是图和图(数据)之间的一种几何关系,其目的是为 了和参考数据达成一致,而不考虑参考数据的坐标是否标准、 是否正确。也就是说几何校正和几何配准最本质的差异在于参 考的标准。另外,几何校正更像前期数据处理,几何配准更像 后期处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从通用构像方程出发,可写出各种类型传感器的构像方程。
5
几何处理两个层次
粗纠正:仅对图像上的系统几何误差进 行改正。对传感器内部畸变的改正很有效, 但处理后图像仍有较大的残差。 精纠正:消除图像中的几何变形,得到 符合某种地图投影或图形表达要求的新图 像。
7
MSS图像的粗纠正,需要得到:
成像时投影中心的坐标 卫星姿态角 扫描角
8
精纠正
两个环节:
像素坐标的变换(将图像坐标转变为地图或地面坐标) 对坐标变换步骤:
根据图像的成像方式确定影像坐标和地面坐标之间的数学 模型; 根据所采用的数学模型确定纠正公式; 根据地面控制点和对应像点坐标进行平差计算变换参数, 评定精度。 对原始图像进行变换计算,像素亮度值重采样。
4
构像方程:地物点在图像上的图像坐标 ( x, y ) 和其在地
面对应点的大地坐标 ( X , Y , Z ) 之间的数学关系。 地面坐标系传感器坐标系图像坐标系
( X ,Y , Z )
的数学关系。
(U ,V ,W )
( x, y )
通用构像方程:地物点在地面坐标系与传感器坐标系之间
X X U Y Y A V Z P Z S W P
6
粗纠正
——基于图像的构像方程来进行。 MSS的构像方程: (任一像元的构像,都等效于中心投影朝旁向旋转了 一个扫描角后,以像幅中心成像的几何关系。)
X X 0 Y Y A R 0 t Z P Z S f
数字图像镶嵌
18
图像间的自动配准
图像配准是多源数据进行比较和分析的基本保证 图像配准的两种方式:
相对配准 绝对配准
图像配准通常采用多项式纠正法,分两步
确定足够数量的图像间同名点 通过所选同名点解算多项式系数,通过纠正完成一幅
图像对另一幅图像的几何纠正
19
图像配准的关键问题 ——同名点的选取
差分测度
S (c, r ) Ti , j Si r , j c
勒让德多项式 双变量分区插值多项式
11
多项式纠正中的几个重要的问题
问题一:利用已知地面控制点求解多项式系数
利用已知控制点的坐标值按最小二乘原理求解。 地面控制点要求:
在影像上为明显的地物点,易于判读; 在影像上均匀分布。
地面控制点个数要求:
1 n (t 1)( t 2) 2
方法之一:利用图像相关法自动获取
20
相关性测度
相关系数
(c, r )
( f
i 1 j 1
m
m
i, j
f i , j )(g i r , j c g r ,c )
1 2
m m m m 2 2 ( f i , j f i , j ) ( g i r , j c g r ,c ) i 1 j 1 i 1 j 1
双线性内插法
(实践中常采用)
双三次卷积重采样法
(内插精度较高,但计算量大)
15
双线性内插法
I p Wx I Wy Wx1
T
I11 Wx 2 I 21
I12 Wy1 W I 22 y2
Wx1 1 x Wx 2 x
W y1 1 y W y 2 y
16
方法二:共线方程纠正
建立在图像坐标与地面坐标严格数学变换 关系的基础上,是对成像时空间几何形态 的直接描述。 纠正过程中需要有地面高程信息。 虽有严密的理论基础,但数学模型中参数 的确定有着很强的近似性,因此其精度并 不比多项式纠正的精度高。
17
遥感图象几何处理的应用
图像间的自动配准
9
方法一:多项式纠正
回避成像的空间几何过程,直接对图像变 形的本身进行数学模拟。 把遥感图像的总体变形看作是平移、缩放、 旋转、仿射、偏扭、弯曲以及更高次的基 本变形的综合作用结果。 用一个适当的多项式来描述图像相应点之 间的坐标关系。
10
常用的多项式
一般多项式
2 2 x a ( a X a Y ) ( a X a XY a Y ) 0 1 2 3 4 5 2 2 y b ( b X b Y ) ( b X b XY b Y ) 0 1 2 3 4 5
遥感图像几何处理
1
主要内容:
遥感图像几何变形 遥感图像的几何处理
遥感图像几何处理的应用
2
遥感图像的几何变形
遥感图像的几何变形是指原始图像上各地物的几 何位置、形状、尺寸、方位等特征与在参照系统 (切平面坐标系)中的表达要求不一致时产生的 变形。 变形误差
静态误差与动态误差 内部误差与外部误差
12
问题二:坐标纠正变换后数字图像的边界范围的确定
原则是:既包括了纠正后图像的全部内容,又使 空白图像空间尽可能地少。
13
问题三:坐标纠正变换两种方案
直接法(需进行像元的重新排列,要求存储空间大一倍,计算
时间也长)
间接法(常采用)
14
几个重要的问题
问题四:亮度值重采样
最邻近像元采样
(简单计算量小、辐射保真度好,但几何精度低)
传感器成像方式 传感器外方位元素的变化 地形起伏 地球曲率 大气折射 地球自转
3
引起变形误差的原因
遥感图像几何处理
概念:改正遥感图像中的几何变形,并将其投影到需要的地理坐标系中。 数学基础:
遥感制图: 地面实况 遥感图像 地图 地面坐标图像坐标地图坐标 地面坐标系传感器坐标系图像坐标系地图坐标系 几何处理: 图像坐标系(出发点)地图坐标系(归宿) 地面坐标地图坐标(地图投影) 地面坐标图像坐标(构像方程) 因此,几何处理的实质是将由构像方程建立的关系与由地图投影建立的关系相 统一,进一步满足制图的几何要求.