化学键理论

合集下载

化学中的化学键理论

化学中的化学键理论

化学中的化学键理论化学键是指原子间的吸引力力,是分子形成的基础。

化学键的形成、性质和断裂是化学反应的重要环节,也是化学研究的核心内容。

化学键理论是化学学科中的重要分支之一,它揭示了化学键的性质和本质,为化学科学的发展和应用提供了理论基础。

1. 传统化学键理论在传统的化学中,原子间的化学键是指开尔文的“亲和力”理论。

它将原子的吸引力定义为原子核和共享了某些电荷的电子间的作用力,是一个纯经验的观点。

它不是一个特别准确的预测性理论,但是仍然在一些情况下被广泛使用。

2. 共价键理论共价键理论是指两个原子通过共享电子共同发展出的化学键。

这一理论揭示了共价键的本质,即原子间电子的共享。

共价键通常用杂化轨道理论来解释。

杂化轨道理论认为,原子的价电子空壳轨道中的电子可能会混合成新的、更稳定的轨道,称为杂化轨道。

杂化轨道提供了一个更准确的方法来描述共价键——如在氨分子中,氮原子价电子空壳轨道和氢原子的原子轨道混合,产生了四个杂化轨道,分别用于和四个氢原子组成共价键。

3. 离子键理论离子键理论是指形成离子键的原理。

它是一种典型的原子或分子排斥的现象。

当两种化学物质中含有带电离子时,离子间会产生电吸引力,因此导致它们结合到一起,而这些带电离子被称为离子。

离子键通常发生在化合物中,如氯化钠(NaCl)和硫酸二钾(K2SO4)。

4. 金属键理论金属键是指金属中的化学键,通常是由金属离子通过共享电子形成金属键。

金属离子在结晶中排列成空间有序的三维结构,形成晶格。

这种排列方式为金属提供了良好的机械性能和导电性能,在大规模制造工业用金属和合金方面有着重要的应用。

总之,化学键理论是化学学科的核心,它揭示了化学键的本质及其反应机理,为探索化学反应规律和推进实用化学技术发展提供了基础。

为了更好地掌握化学反应过程,我们需要深入了解化学键理论,并将其应用于实践中。

化学键理论

化学键理论

化学键理论1. 引言化学键理论是化学的基础理论之一,用于解释物质中原子如何通过共用、离子、金属等键形成化合物。

本文将介绍化学键的概念、类型、强度和特点,以及相关的分子轨道理论和晶体结构中的键。

2. 化学键的概念化学键是由原子之间的相互作用力形成的,用于稳定原子之间的连接,以形成化合物。

它是化学反应和化学转化的基础。

根据原子之间电子的共享或转移方式,化学键可分为共价键、离子键和金属键三种类型。

2.1 共价键共价键是由两个原子共用一对电子而形成的。

在共价键中,原子之间的电子密度共享,以形成一个稳定的化合物。

共价键的强度取决于原子间的电子云重叠程度。

2.2 离子键离子键是由正负电荷之间的相互作用力形成的。

离子键通常存在于由金属和非金属元素组成的化合物中,其中金属原子失去电子形成阳离子,非金属原子获得电子形成阴离子。

离子键的强度取决于产生的离子之间的吸引力。

2.3 金属键金属键是金属原子之间的强电子云相互作用力形成的。

金属键的特点是原子之间的电子云重叠形成一个导电的金属电子海,这种电子海使得金属具有良好的导电性和延展性。

3. 化学键的强度和特点化学键的强度决定了化合物的稳定性和性质。

共价键通常强于离子键和金属键。

化学键的强度可以通过键能来衡量,键能是在形成化学键时放出或吸收的能量。

化学键的特点还包括键长和键角。

键长是指两个原子之间的距离,它通过实验或计算得到。

键角是指连接三个原子的两个化学键之间的夹角,它决定了分子的形状和空间结构。

4. 分子轨道理论分子轨道理论是用于描述共价键形成和分子性质的理论。

根据分子轨道理论,原子中的原子轨道会线性组合形成分子轨道。

分子轨道存在于整个分子中,描述了共价键中电子的分布情况。

常见的分子轨道包括Sigma(σ)轨道和Pi(π)轨道。

Sigma轨道是由轴向重叠形成的,是共价键中电子密度最高的轨道。

Pi轨道则是通过平面上的侧向重叠形成的,通常存在于双键和三键中。

5. 晶体结构中的键除了在分子中形成化学键外,化学键也存在于晶体结构中。

化学键的价电子对排斥理论

化学键的价电子对排斥理论

化学键的价电子对排斥理论化学键是不同元素之间的相互作用力,让原子能够形成稳定的分子。

在化学键的形成过程中,原子的价电子对的排列有着非常重要的影响。

本文将介绍化学键的价电子对排斥理论,并探讨其在化学反应和分子结构中的应用。

一、化学键的概念与价电子对化学键是原子之间由于电子重新分配而形成的相互作用力。

原子的外层电子数目直接决定了其化学性质,而形成化学键的主要是原子的外层价电子。

原子通过与其他原子共享或转让电子来达到稳定的电子构型。

原子中的价电子对是指参与化学键形成的电子对。

对于主族元素,它们的外层电子数等于它们的主族号,即它们的电子构型为ns^2np^6。

原子需要充满外层电子轨道的电子数等于该原子主族号。

比如氧原子(O)的主族号为16,因此氧原子中的价电子对数为6。

二、价电子对排斥理论的提出价电子对排斥理论是由盖伦-赛克斯(Gillespie)和纳伊伯(Nyholm)于1957年提出的。

该理论认为,在分子中,原子上的价电子对会相互排斥,使得它们尽可能地远离彼此,以减小排斥力的作用。

这种排斥力对分子的结构和化学反应产生了重要影响。

三、价电子对排斥理论对分子几何结构的影响根据价电子对排斥理论,分子中电子对的互相排斥会导致分子的几何结构发生调整,以最大程度地降低电子对之间的排斥力。

根据电子对的排布情况,常见的几何结构可以分为线性、三角形平面、四面体、五角形平面等。

以水分子(H2O)为例,氧原子中有2对非共享的孤对电子和2对与氢原子共享的电子对。

这些电子对的排列使得水分子呈现出角度为104.5度的V型结构。

这是因为两对孤对电子通过与两个氢原子的电子云产生静电斥力,使得氢原子之间的角度变成了近似109.5度而不是预期中的120度。

四、价电子对排斥理论在分子极性和化学反应中的应用价电子对排斥理论有助于解释分子的极性和化学反应的发生。

在分子中,如果化学键中的电子对较多,则分子呈极性。

例如,二氧化碳(CO2)分子由于氧气原子周围有两对非共享电子对,因此CO2是无极性分子。

化学键理论

化学键理论

偶联剂分子应至少含有两种官能团,第一种官能团在理论上可于增强材料起化学反应,第二种官能团在理论上应能参与树脂的固化反应,与树脂分子链形成化学键结合,于是,偶联剂分子像“桥”一样,将增强材料与基体通过共价键牢固地连接在一起了。

1简介1949年,Bjorksten和Lyaeger共同提出化学键理论。

关于分子(或晶体)内相邻原子(或离子)间相互结合的理论。

按照这种理论,原子(或离子)是以化学键的形式结合成分子(或晶体)的。

形成化学键的物理机制是电磁相互作用。

2重要意义分子中元素原子的电子从一个原子转移到另一个原子而形成正负离子,由电荷相反的正负离子通过其过剩电荷的库伦力彼此吸引形成分子,这种静电库伦力称为离子键;原子间以共享电子对的方式形成分子,这种化学键称为共价键;在通常情况下,共价键共享的电子对分别由两个原子提供,有时共享的电子对则是由一个原子提供的,这样的共价键称为配位共价键;联结金属原子的键称为金属键,金属键的最显著特点是成键电子的流动性,它使金属表现出高度的导电性和导热性;由极性很强的化合物H-X键上的氢原子与另一个键中电负性很大的原子X上的孤立电子相互吸引而形成的分子之间的一种结合力叫氢键。

氢键不是化学键,氢键属于分子间作用力。

氢键的作用力比范德华力强而比化学键弱。

氢键在生理学和蛋白质结构化学上具有重要的意义。

3人类认识人类对物质结合方式的认识源远流长。

在古希腊,恩培多克勒用爱和恨说明物质间的结合和分离,德谟克利特则用原子的漩涡运动说明原子的聚集和分散。

中世纪的J.R.格劳伯(1604~1670)提出了物质同类相亲、异类相斥的思想。

其后还出现了关于物质结合的亲和力说,认为物质的微粒具有亲和力,由此互相吸引而结合在一起。

19世纪初,瑞典化学家J.J.贝采利乌斯(1779~1848)提出了一种建立在正负电相互吸引的观念基础上的电化二元说,从而使亲和力说更加系统化。

阐明分子中原子相互作用的经典价键理论是在原子概念基础上形成的。

化学键理论概述

化学键理论概述

波恩-哈伯循环 Na ( s ) + 1/2Cl2 ( g )
Δ f HӨm NaCl ( s )
ΔH1=ΔHvap ΔH2 =1/2 E Na ( g ) ΔH3=I1 Cl ( g ) ΔH4 =-Eea,1 ΔH5= - U
Na+( g ) + Cl-( g )
ΔfHӨm = ΔH1 + ΔH2 + ΔH3 +ΔH4 + ΔH5 = ΔHvap + 1/2E+ I1- Eea,1-U
V吸引 = -
q+ · q4 πε0 r
正、负离子之间的总势能与距离 r 关系的势能曲线。
Vp
NaCl 的势能曲线
0
Vp r0
r0
r
近距离相互排斥,远距离相互吸引, 在某一平衡距离时,吸引排斥处于动态平衡,体系势能最小,最稳定。 平衡距离 r0 —— 化学键
配位数 Na+ 6 Cl- 6 无方向性: 电荷球形对称分布 无饱和性: 空间条件允许的情况下,尽可能多的吸引相反的离子。 每个离子周围排列的异号离子的数目是一定的,实际数目与离子半 径及所带的电荷有关。
正离子和负离子之间通过静电引力结合在一起,形 成离子化合物。这种正、负离子间的静电吸引力就叫做 离子键。 当不同的原子通过离子键结合形成分子时,必然伴随 着体系能量的变化,而且新体系的能量大大低于旧体系。 根据库仑定律,两个距离为r,带有相反电荷 q+ 和 q- 的正、 负离子之间的势能 V吸引为:
缺电子体系
奇数电子体系 多电子体系
Be原子半径小,不能有大的形式电荷。
+1 -2 +1
F = Be = • F • •

第七章 化学键理论概述

第七章  化学键理论概述

3
BF CH BeCl 3 4 2 实例 HgCl2 BCl3 SiCl4 Be(ⅡA) B(ⅢA) C,Si 中心原子 Hg(ⅡB) (ⅣA)
PH3 N,P
(ⅤA)
NH 3
H2O H2S O,S
(ⅥA)
(5)sp3d2杂化

定义:同一原子内,由1个ns轨道与3个np轨道、 2个nd轨道间发生的杂化叫sp3d2杂化。杂化后形成 的6个新轨道叫sp3d2杂化轨道。 特点:每个sp3d2杂化轨道中含有1/6s成分和 3/6的p成分、2/6的d成分。
2.杂化轨道类型与分子的空间构型 ①sp杂化
由1个ns轨道和1个np轨道进行杂化,组成2个等同的sp杂化轨道。
每个sp杂化轨道中含1/2 s成分和1/2 p的成分。 两个sp杂化轨道之间夹角为180°,分子空间构型为直线型。
BeCl2分子形成过程
②sp2杂化
1个ns轨道和2个np轨道经杂化组成3个等同的sp2杂化轨道。
第七章
分子结构
离子键理论 化学键理论 共价键理论 金属键理论
§7 - 1 离子键理论
一、离子键的特点 1. 离子键的本质是库仑静电作用力 + f ∝ q q /r
q+、q-为离子所带电荷, R为离子间距离。
离子键强度是用晶格能来描述的。
2.离子键的特点:
既无方向性,也无饱和性。 离子化合物是由正负离子通过离子键相互交替连 结而成的晶体结构。
Na(s) + 1/2F2(g) S Na(g) I 1/2D F(g) A
ΔH
NaF(s)
U
Na+(g)
+ F-(g)
式中 S为 Na 的升华热 (108.8 kJ· mol - 1) , I 为 Na 的电离势( 495.8 kJ· mol - 1) , D 为 F 的 键 能 (141.8 kJ· mol - 1 ) , A 为 F 的 电 子 亲 合 势 (-328.0 2 kJ· mol-1),ΔH为NaF的生成焓(-573.65 kJ· mol-1),U为NaF的晶格能。

配合物的化学键理论

 配合物的化学键理论

杂化
轨道 sp3d2 d2sp3
sp3
dsp2
配键 类型 外轨型 内轨型
外轨型
内轨型
Kf 1014
稳定性
<
1042
107. 96
1031. 3
<
磁性
Ni2+的d电子构型 杂化轨道 配键类型
未成对电子数 磁性
[Ni(NH3)4]2+ [Ni(CN)4]2 d8
sp3 外轨型
dsp2 内轨型
2 顺磁性
弱场配体
强场配体
——以上称为光谱化学序列
4. 电子成对能和配合物高、低自旋
电子在分裂后轨道上的分布遵循: 能量最低原理和洪特规则
如 Cr3+ d3
eg
E t2g
八面体场
d4d7构型的离子, d电子分布有高、低自旋两种方式。
如 Cr2+ d4
[Cr(H2O)6]2+
eg
△o t2g
[Cr(CN)6]4-
中心离子和配体之间以静电引力相互作用而形 成化学键。
中心离子的5个能量相同的d轨道受配体负电场 的排斥作用,发生能级分裂(有的轨道能量升 高,有的能量降低)。
2. 正八面体场中d轨道的能级分裂
无外电场作用下的d轨道 Edxy= Edxz= Edyz= Edx2-y2= Edz2
在带负电荷均匀球形场的作用下,d轨道能量 均升高相同值,能级不发生分裂。
请问: [Zn(NH3)4]2+、 [Ag(NH3)2]+呈现什么颜色?
中心离子d 轨道全空(d0)或全满(d10), 不能发生 d-d跃迁,其水合离子为无色。
解释配合物的稳定性
Eeg=+0.

化学键理论概述

化学键理论概述

F
sp杂化轨道
激 发
杂 化
SP3d2杂化(以SF6的分子结构为例)
激发
杂化
重叠 SF6的分子形成过程
sp3d2杂化轨道是由一个s轨道、三个p轨道和两个d轨道组合而成,其特点是6 个sp3d杂化轨道指向正八面体的六个顶点,相邻的夹角为90º 。
F
SF6分子的空间结构
F
F S F
F
sp3d2杂化轨道示意图
NH
3
H2 O
杂化轨道总结
(1)轨道杂化是指同一个原子中相关轨道的混合由此产生的 杂化轨道也是原子轨道。
(2)参与杂化的轨道中电子所处的能级略有不同,而杂化后 的电子则处于相同能级。杂化后能级相当于杂化前有关 电子能级的中间值。 (3) 杂化只能发生在能级接近的轨道之间,如能层数相同的 s、p、d轨道之间,或(n-1)d与ns、np之间,能量也是相 近的。亚层符号按能层、能级升高的顺序排列,例如 d2sp3和sp3d2代表不同杂化轨道。
⑷ 周期表中相邻族左上与右下斜对角线上的正离 子半径近似相等; 如:r(Mg 2+ )=65pm ≈ r(Li + )= 60pm ⑸ 负离子半径一般较大,约130-250pm 正离子半径一般较小,约10-170pm.
四、离子晶体
1、离子晶体的特征和性质 类型:活泼金属的氧化物和盐类 特征: 晶格结点上的质点—正、负离子; 质点间作用力—离子键; 配位数 — 6、8、4等;
Na(s)+1/2Cl 2 (g) 298K,标准态 NaCl(s) △f Hm°
S↓ ↓ 1/2D
Na(g)
I↓
+
Cl(g)
↓E
-
-U ° △ f Hm =S+I+1/2D+( - E)-U U=109+496+121- 34பைடு நூலகம்+411 =788( KJ · mol
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.2.2.2
化学键理论
认为:基体树脂表面的活性官能团与增强体表面的官 能团能起化学反应。因此树脂基体与增强体之间形成化学 键的结合,界面的结合力是主价键力的作用。偶联剂正是 实现这种化学键结合的架桥剂。 成功之处:在偶联剂应用于玻璃纤维复合材料中得到很 好应用,也被界面研究的实验所证实。 偶联剂在界面所起的作用:用 Br2 破坏偶联剂双键,制 品强度下降。 局限性: a、聚合物不具备活性基团; b、不具备与树脂反应的基团。 总结:对于复合体系的界面现象和结构的解释,不能单 纯以一种化学偶联或单纯以一种物理化学现象来解释。 若润湿理论和化学键理论都存在时,认为化学偶联作 用应是主要的,然后提高浸润性,则效果最佳。
4、复合体系的界面结合特性
本章要点:
1、掌握复合材料界面的形成过程; 2 、掌握树脂基复合材料的润湿理论、化学键理论、 优先吸附理论、防水层理论,了解可逆水解理论和摩 擦理论; 3、重点掌握树脂基复合材料界面的破坏机理; 4、重点掌握复合材料界面的优化设计; 5、掌握界面分析技术。
4、复合体系的界面结合特性
4.2.2.4 防水层理论 提出背景:解释玻纤经偶联剂处理后,湿态强度大 大改善的现象。 认为:清洁的玻璃表面是亲水的,而经偶联剂处理 并覆盖的表面变成疏水表面,该表面可以防止水的侵蚀 ,从而改善复合材料湿态强度。 不足:理论与实际有出入。
4.2.2.5 可逆水解理论 亦称为可形变层理论、减轻界面局部应力理论。 认为:在玻璃纤维增强的复合材料中,偶联剂不是阻止 可以生成刚性较强的 Si-OH反应 水分进入界面,而是当有水存在时,偶联剂与水在玻璃表面 键与硅醇反应成原来 能力强于水 上竞争结合。 键、或键断裂后相对 1、产生排斥作用; 滑移,形成新键。 2、由于这种动态平衡,使界面上应力松弛; 3、这种键的形成-断裂-形成的动态结合状态使树脂 与增强体表面始终保持一定的粘合强度。
15、简述复合材料界面的形成过程。 16、解释润湿理论所包含的内容,并指出其成功之处与不 足之处。 17、解释化学键理论与优先吸附理论,并指出其成功之处 与不足之处。
4.3 非树脂基复合材料的基体及界面结构 4.3.1 晶态非树脂基基体的结构特性 对金属基及无机非金属基复合材料,界面往往是指增 强体与基体接触区间中化学成分有显著变化、彼此构成结 合、能传递载荷作用的区域。 4.3.1.1 晶格的周期性
这两个过程往往是连续的,有时几乎是同时进行的, 对于在固态下制备的非金属基或金属基复合材料,往往难 以区分这两个过程。
1、固化剂诱发树脂 4.2 树脂基复合材料的界面结构及界面理论 官能团反应固化 4.2.1 树脂基复合材料的界面结构 2、树脂本身官能团 热固性树脂基体的固化反应是如何进行的? 进行反应固化。
本章将介绍复合材料的结合特性。 4.1 复合材料界面形成过程 复合材料中,增强体与基体间最终界面的获得,一般分 为两个阶段: 1、基体与增强体在一种组分为液态(或粘流态)时发生接触 或润湿的过程,或是两种组分在一定条件下均呈液态(或粘 流态)的分散、接触及润湿过程;也可以是两种固态组分在 分散情况下以一定的条件发生物理及化学变化形成结合并看 1、润湿过程; 作为一种特殊润湿过程。这种润湿过程是增强体与基体形成 2、固化过程。 紧密的接触而导致界面良好结合的必要条件。 2、液态(粘流态)组分的固化过程。要形成复合材料增强体 与基体间稳定的界面结合,不论是何种材料(金属、非金属、 聚合物)均必须通过物理或化学的固化过程(凝固或化学反 应固化)。
胶束(胶粒):固化反应后,密度大的中心部位。 胶絮:固化反应后,密度小的中心部位。 树脂抑制层:在增强体表面形成的有序树脂胶束层。 结构:类似胶束的高密度区、类似胶絮的低密度区。 复合材料中界面区的作用使基体与增强体结合形成材料整 体,并实现外力场作用下的应力传递。 界面结构:Eg 环氧树脂的固化;增强体高表面能:内部致密层,外部松散层; 增强体低表面能:松散层; 连续纤维增强的树脂基复合材料:界面微观结构与非连续 纤维增强体一致。
(a) 简单立方体
(b) 简单单斜立方体
(c) 晶格原胞 (d) 二维Bravais格子 图4.3 晶胞结构
4.3.1.2
晶系 三斜晶系 单斜晶系
周期性
单胞基矢特性 a≠b≠c α ≠β ≠γ a≠b≠c a⊥b,a⊥c Bravais格子 简单三斜 简单单斜 底心单斜 简单正交 底心正交 体心正交 面心正交 三角 简单四方 体心四方 六角 记作bcp 备注
4.2.2.3 优先吸附理论 提出背景:解释化学键不能解释的现象。 当玻璃纤维被偶联剂覆盖后,偶联剂对树脂中的某些组 分“优先吸附”,这样,改变了树脂对玻璃表面的浸润性。 认为:界面上可能发生增强体表面优先吸附树脂中的某 些组分,这些组分与树脂有良好的相容性,可以大大改善树 脂对增强体的浸润;同时,由于优先吸附作用,在界面上可 以形成所谓的“柔性层”,此“柔性层”极可能是一种欠固 化的树脂层,它是“可塑的”,可以起到松弛界面上应力集 中的作用,故可以防止界面粘脱。
பைடு நூலகம்
4.2.2 树脂基复合材料的界面结合理论 4.2.2.1 润湿理论 指出:要使树脂对增强体紧密接触,就必须使树脂对增 强体表面很好地浸润。 前提条件:液态树脂的表面张力必须低于增强体的临界 表面张力。 结合方式:属于机械结合与润湿吸附。 优点:解释了增强体表面粗化、表面积增加有利于提高 注意:单纯以两者润湿好 与基体树脂界面结合力的事实。 坏来判定增强体与树脂的 不足:a、不能解释施用偶联剂后使树脂基复合材料界 粘结效果是不全面的。 面粘结强度提高的现象。 b、证明偶联剂在玻璃纤维/树脂界面上的偶联效 果一定有部分(或者是主要的)不是由界面的物理吸附所提 供,而是存在着更为本质的因素在起作用。
成功与局限:
1、对热固性树脂/玻璃纤维复合材料界面系统的结合机 理能很好地解释
2、对于柔性聚合物就不一样了。
4.2.2.6 摩擦理论 认为:树脂与增强体之间的粘结完全基于摩擦作用,增 强体与树脂之间的摩擦系数决定了复合材料的强度。偶联 剂的重要作用在于增加了树脂基体与增强体之间的摩擦系 数。
作业:
相关文档
最新文档