分类汇编:统计与概率综合
2021年中考数学真题分类汇编--统计与概率(学生版)

C.摸出的2个球中1个红球、1个白球D.摸出的2个球都是红球
二.填空题
1.(2021•湖南省邵阳市)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机选择其中一条路径,则它遇到食物的概率是.
2.(2021•岳阳市)一个不透明 袋子中装有5个小球,其中3个白球,2个黑球,这些小球除颜色外无其它差别,从袋子中随机摸出一个小球,则摸出的小球是白球的概率为_______.
6.(2021•呼和浩特市)动物学家通过大量的调查,估计某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,据此若设刚出生的这种动物共有a只.则20年后存活的有__________只,现年20岁的这种动物活到25岁的概率是__________.
7.(2021• 上海市)有数据 ,从这些数据中取一个数据,得到偶数的概率为__________.
23.(2021•内蒙古通辽市)如图所示,电路连接完好,且各元件工作正常.随机闭合开关S1,S2,S3中的两个,能让两个小灯泡同时发光的概率是.
24.(2021• 黑龙江省龙东地区)一个不透明的口袋中装有标号为1、2、3的三个小球,这些小球除标号外完全相同,随机摸出1个小球,然后把小球重新放回口袋并摇匀,再随机摸出1个小球,那么两次摸出小球上的数字之和是偶数的概率是___________.
12.(2021•四川省南充市)在﹣2,﹣1,1,2这四个数中随机取出一个数,其倒数等于本身的概率是.
13.(2021•天津市)不透明袋子中装有7个球,其中有3个红球,4个黄球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_____.
14.(2021•浙江省湖州市)某商场举办有奖销售活动,每张奖券被抽中的可能性相同.若以每1000张奖券为一个开奖单位,设5个一等奖,15个二等奖,不设其他奖项,则只抽1张奖券恰好中奖的概率是.
辽宁省2019年、2020年中考数学试题分类汇编——统计与概率(含答案)

2019年、2020年数学中考试题分类——统计与概率一.全面调查与抽样调查(共2小题)1.(2019•朝阳)下列调查中,调查方式最适合普查(全面调查)的是()A.对全国初中学生视力情况的调查B.对2019年央视春节联欢晚会收视率的调查C.对一批飞机零部件的合格情况的调查D.对我市居民节水意识的调查2.(2019•抚顺)下列调查中,最适合采用全面调查的是()A.对全国中学生视力和用眼卫生情况的调查B.对某班学生的身高情况的调查C.对某鞋厂生产的鞋底能承受的弯折次数的调查D.对某池塘中现有鱼的数量的调查二.频数(率)分布直方图(共1小题)3.(2020•鞍山)为了解某校学生的睡眠情况,该校数学小组随机调查了部分学生一周的平均每天睡眠时间,设每名学生的平均每天睡眠时间为x时,共分为四组:A.6≤x<7,B.7≤x<8,C.8≤x<9,D.9≤x≤10,将调查结果绘制成如图两幅不完整的统计图:注:学生的平均每天睡眠时间不低于6时且不高于10时.请回答下列问题:(1)本次共调查了名学生;(2)请补全频数分布直方图;(3)求扇形统计图中C组所对应的圆心角度数;(4)若该校有1500名学生,根据抽样调查结果,请估计该校有多少名学生平均每天睡眠时间低于7时.三.扇形统计图(共2小题)4.(2020•阜新)在“尚科学,爱运动”主题活动中,某校在七年级学生中随机抽取部分同学就“一分钟跳绳”进行测试,并将测试成绩x(单位:次)进行整理后分成六个等级,分别用A,B,C,D,E,F表示,并绘制成如图所示的两幅不完整的统计图表.请根据图表中所给出的信息解答下列问题:组别成绩x(单位:次)人数A70≤x<904B90≤x<11015C110≤x<13018D130≤x<15012E150≤x<170mF170≤x<1905(1)本次测试随机抽取的人数是人,m=;(2)求C等级所在扇形的圆心角的度数;(3)若该校七年级学生共有300人,且规定不低于130次的成绩为优秀,请你估计该校七年级学生中有多少人能够达到优秀.5.(2020•盘锦)某校为了解学生课外阅读时间情况,随机抽取了m名学生,根据平均每天课外阅读时间的长短,将他们分为A,B,C,D四个组别,并绘制了如图不完整的频数分布表和扇形统计图.频数分布表组别时间/(小时)频数/人数A0≤t<0.52nB0.5≤t<120C1≤t<1.5n+10D t≥1.55请根据图表中的信息解答下列问题:(1)求m与n的值,并补全扇形统计图;(2)直接写出所抽取的m名学生平均每天课外阅读时间的中位数落在的组别;(3)该校现有1500名学生,请你估计该校有多少名学生平均每天课外阅读时间不少于1小时.四.条形统计图(共4小题)6.(2020•朝阳)由于疫情的影响,学生不能返校上课,某校在直播授课的同时还为学生提供了四种辅助学习方式:A网上自测,B网上阅读,C网上答疑,D网上讨论.为了解学生对四种学习方式的喜欢情况,该校随机抽取部分学生进行问卷调查,规定被调查学生从四种方式中选择自己最喜欢的一种,根据调查结果绘制成如图两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了名学生;(2)在扇形统计图中,m的值是,D对应的扇形圆心角的度数是;(3)请补全条形统计图;(4)若该校共有2000名学生,根据抽样调查的结果,请你估计该校最喜欢方式D的学生人数.7.(2020•锦州)某中学八年级在新学学期开设了四门校本选修课程:A.轮滑;B.书法;C.舞蹈;D.围棋,要求每名学生必须选择且只能选择其中一门课程,学校随机抽查了部分八年级学生,对他们的课程选择情况进行了统计,并绘制了如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)此次共抽查了名学生;(2)请通过计算补全条形统计图;(3)若该校八年级共有900名学生,请估计选择C课程的有多少名学生.8.(2020•沈阳)某市为了将生活垃圾合理分类,并更好地回收利用,将垃圾分为可回收物、厨余垃圾、有害垃圾和其他垃圾四类.现随机抽取该市m吨垃圾,将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)m=,n=;(2)根据以上信息直接补全条形统计图;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为度;(4)根据抽样调查的结果,请你估计该市2000吨垃圾中约有多少吨可回收物.9.(2020•丹东)某校为了解疫情期间学生居家学习情况,以问卷调查的形式随机调查了部分学生居家学习的主要方式(每名学生只选最主要的一种),并将调查结果绘制成如图不完整的统计图.种类A B C D E学习方式老师直播教学课程国家教育云平台教学课程电视台播放教学课程第三方网上课程其他根据以上信息回答下列问题:(1)参与本次问卷调查的学生共有人,其中选择B类型的有人.(2)在扇形统计图中,求D所对应的圆心角度数,并补全条形统计图.(3)该校学生人数为1250人,选择A、B、C三种学习方式大约共有多少人?五.折线统计图(共1小题)10.(2020•阜新)如图,是小明绘制的他在一周内每天跑步圈数的折线统计图.下列结论正确的是()A .众数是9B .中位数是8.5C .平均数是9D .方差是7六.加权平均数(共2小题)11.(2019•铁岭)某公司招聘职员,公司对应聘者进行了面试和笔试(满分均为100分),规定笔试成绩占40%,面试成绩占60%.应聘者蕾蕾的笔试成绩和面试成绩分别为95分和90分,她的最终得分是( ) A .92.5分B .90分C .92分D .95分12.(2020•大连)某公司有10名员工,他们所在部门及相应每人所创年利润如下表所示.部门人数每人所创年利润/万元A 1 10B 2 8 C75这个公司平均每人所创年利润是 万元. 七.中位数(共2小题)13.(2020•辽阳)一组数据1,8,8,4,6,4的中位数是( ) A .4B .5C .6D .814.(2019•抚顺)一组数据1,3,﹣2,3,4的中位数是( ) A .1B .﹣2C .12D .3八.众数(共9小题)15.(2020•锦州)某校足球队有16名队员,队员的年龄情况统计如下:年龄/岁 13 14 15 16 人数3562则这16名队员年龄的中位数和众数分别是( )A.14,15B.15,15C.14.5,14D.14.5,15 16.(2020•朝阳)某书店与一山区小学建立帮扶关系,连续6个月向该小学赠送书籍的数量分别如下(单位:本):300,200,200,300,300,500这组数据的众数、中位数、平均数分别是()A.300,150,300B.300,200,200C.600,300,200D.300,300,30017.(2020•葫芦岛)一组数据1,4,3,1,7,5的众数是()A.1B.2C.2.5D.3.5 18.(2020•鞍山)我市某一周内每天的最高气温如下表所示:最高气温(℃)25262728天数1123则这组数据的中位数和众数分别是()A.26.5和28B.27和28C.1.5和3D.2和3 19.(2019•盘锦)在中考体育加试中,某班30名男生的跳远成绩如下表:成绩/m 1.95 2.00 2.05 2.10 2.15 2.25人数239853这些男生跳远成绩的众数、中位数分别是()A.2.10,2.05B.2.10,2.10C.2.05,2.10D.2.05,2.05 20.(2019•铁岭)为了建设“书香校园”,某班开展捐书活动,班长将本班44名学生捐书情况统计如下:捐书本数2345810捐书人数25122131该组数据捐书本数的众数和中位数分别为()A.5,5B.21,8C.10,4.5D.5,4.5 21.(2019•丹东)在从小到大排列的五个整数中,中位数是2,唯一的众数是4,则这五个数和的最大值是()A.11B.12C.13D.14 22.(2019•朝阳)李老师为了了解本班学生每周课外阅读文章的数量,抽取了7名同学进行调查,调查结果如下(单位:篇/周):,其中有一个数据不小心被墨迹污损.已知这组数据的平均数为4,那么这组数据的众数与中位数分别为()A.5,4B.3,5C.4,4D.4,5 23.(2019•葫芦岛)某校女子排球队12名队员的年龄分布如下表所示:年龄(岁)13141516人数(人)1254则该校女子排球队12名队员年龄的众数、中位数分别是()A.13,14B.14,15C.15,15D.15,14九.方差(共7小题)24.(2020•盘锦)在市运动会射击比赛选拔赛中,某校射击队甲、乙、丙、丁四名队员的10次射击成绩如图所示.他们的平均成绩均是9.0环,若选一名射击成绩稳定的队员参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁25.(2020•辽阳)某校九年级进行了3次数学模拟考试,甲、乙、丙、丁4名同学3次数学成绩的平均分都是129分,方差分别是s甲2=3.6,s乙2=4.6,s丙2=6.3,s丁2=7.3,则这4名同学3次数学成绩最稳定的是()A .甲B .乙C .丙D .丁26.(2020•朝阳)临近中考,报考体育专项的同学利用课余时间紧张地训练,甲、乙两名同学最近20次立定跳远成绩的平均值都是2.58m ,方差分别是:S 甲2=0.075,S 乙2=0.04,这两名同学成绩比较稳定的是 (填“甲”或“乙”).27.(2020•葫芦岛)甲、乙两人参加“环保知识”竞赛,经过6轮比赛,他们的平均成绩都是97分.如果甲、乙两人比赛成绩的方差分别为s 甲2=6.67,s 乙2=2.50,则这6次比赛成绩比较稳定的是 .(填“甲”或“乙”)28.(2020•沈阳)甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均值都是7环,方差分别为S 甲2=2.9,S 乙2=1.2,则两人成绩比较稳定的是 (填“甲”或“乙”).29.(2020•丹东)甲、乙两人进行飞镖比赛,每人投5次,所得平均环数相等,其中甲所得环数的方差为5,乙所得环数如下:2,3,5,7,8,那么成绩较稳定的是 (填“甲”或“乙”).30.(2020•营口)从甲、乙、丙三人中选拔一人参加职业技能大赛,经过几轮初赛选拔,他们的平均成绩都是87.9分,方差分别是S 甲2=3.83,S 乙2=2.71,S 丙2=1.52.若选取成绩稳定的一人参加比赛,你认为适合参加比赛的选手是 . 一十.统计量的选择(共1小题)31.(2019•阜新)商场经理调查了本商场某品牌女鞋一个月内不同尺码的销售量,如表:尺码/码 36 37 38 39 40 数量/双15281395商场经理最关注这组数据的( ) A .众数B .平均数C .中位数D .方差一十一.随机事件(共2小题)32.(2020•沈阳)下列事件中,是必然事件的是( ) A .从一个只有白球的盒子里摸出一个球是白球B .任意买一张电影票,座位号是3的倍数C .掷一枚质地均匀的硬币,正面向上D .汽车走过一个红绿灯路口时,前方正好是绿灯 33.(2019•盘锦)下列说法正确的是( )A .方差越大,数据波动越小B .了解辽宁省初中生身高情况适合采用全面调查C .抛掷一枚硬币,正面向上是必然事件D .用长为3cm ,5cm ,9cm 的三条线段围成一个三角形是不可能事件 一十二.概率公式(共5小题)34.(2020•阜新)掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,则再次掷出这枚硬币,正面朝下的概率是( ) A .1B .25C .35D .1235.(2020•大连)在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是( ) A .14B .13C .37D .4736.(2020•葫芦岛)一个不透明的口袋中有4个红球、2个白球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸到红球的概率是( ) A .16B .13C .12D .2337.(2020•丹东)四张背面完全相同的卡片,正面分别印有等腰三角形、圆、平行四边形、正六边形,现在把它们的正面向下,随机的摆放在桌面上,从中任意抽出一张,则抽到的卡片正面是中心对称图形的概率是( ) A .14B .12C .34D .138.(2020•锦州)在一个不透明的袋子中装有4个白球,a 个红球.这些球除颜色外都相同.若从袋子中随机摸出1个球,摸到红球的概率为23,则a = .一十三.列表法与树状图法(共9小题)39.(2020•锦州)A ,B 两个不透明的盒子里分别装有三张卡片,其中A 盒里三张卡片上分别标有数字1,2,3,B 盒里三张卡片上分别标有数字4,5,6,这些卡片除数字外其余都相同,将卡片充分摇匀.(1)从A 盒里抽取一张卡、抽到的卡片上标有数字为奇数的概率是 ; (2)从A 盒,B 盒里各随机抽取一张卡片,请用列表或画树状图的方法,求抽到的两张卡片上标有的数字之和大于7的概率.40.(2020•朝阳)某校准备组建“校园安全宣传队”,每班有两个队员名额,七年2班有甲、乙、丙、丁四位同学报名,这四位同学综合素质都很好,王老师决定采取抽签的方式确定人选.具体做法是:将甲、乙、丙、丁四名同学分别编号为1、2、3、4号,将号码分别写在4个大小、质地、形状、颜色均无差别的小球上,然后把小球放入不透明的袋子中,充分搅拌均匀后,王老师从袋中随机摸出两个小球,根据小球上的编号确定本班“校园安全宣传员”人选.(1)用画树状图或列表法,写出“王老师从袋中随机摸出两个小球”可能出现的所有结果.(2)求甲同学被选中的概率.41.(2020•盘锦)有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外无其他差别,现将它们背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是奇数的概率为.(2)随机抽取一张卡片,然后放回洗匀,再随机抽取一张卡片,请用列表或画树状图的方法,求两次抽取的卡片上的数字和等于6的概率.42.(2020•葫芦岛)某校计划组建航模、摄影、乐器、舞蹈四个课外活动小组,要求每名同学必须参加,并且只能选择其中一个小组.为了解学生对四个课外活动小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把此次调查结果整理并绘制成如图两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次被调查的学生有人;(2)请补全条形统计图,并求出扇形统计图中“航模”所对应的圆心角的度数;(3)通过了解,喜爱“航模”的学生中有2名男生和2名女生曾在市航模比赛中获奖,现从这4个人中随机选取2人参加省青少年航模比赛,请用列表或画树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.43.(2020•鞍山)甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有两个种类的奶制品:A.纯牛奶,B.核桃奶;伊利品牌有三个种类的奶制品:C.纯牛奶,D.酸奶,E.核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请利用画树状图或列表的方法求出两人选购到同一种类奶制品的概率.44.(2020•沈阳)沈阳市图书馆推出“阅读沈阳书香盛京”等一系列线上线下相融合的阅读推广活动,需要招募学生志愿者.某校甲、乙两班共有五名学生报名,甲班一名男生,一名女生;乙班一名男生,两名女生.现从甲、乙两班各随机抽取一名学生作为志愿者,请用列表法或画树状图法求抽出的两名学生性别相同的概率.(温馨提示:甲班男生用A 表示,女生用B表示;乙班男生用a表示,两名女生分别用b1,b2表示).45.(2020•丹东)在一个不透明的口袋中装有4个依次写有数字1,2,3,4的小球,它们除数字外都相同,每次摸球前都将小球摇匀.(1)从中随机摸出一个小球,小球上写的数字不大于3的概率是.(2)若从中随机摸出一球不放回,再随机摸出一球,请用画树状图或列表的方法,求两次摸出小球上的数字和恰好是偶数的概率.46.(2020•营口)随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:①洗手监督岗,②戴口罩监督岗,③就餐监督岗,④操场活动监督岗.李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗.(1)李老师被分配到“洗手监督岗”的概率为;(2)用列表法或画树状图法,求李老师和王老师被分配到同一个监督岗的概率.47.(2020•辽阳)为培养学生的阅读习惯,某中学利用学生课外时间开展了以“走近名著”为主题的读书活动.为了有效了解学生课外阅读情况,现随机调查了部分学生每周课外阅读的时间,设被调查的每名学生每周课外阅读的总时间为x小时,将它分为4个等级:A(0≤x<2),B(2≤x<4),C(4≤x<6),D(x≥6),并根据调查结果绘制了如图两幅不完整的统计图:请你根据统计图的信息,解决下列问题:(1)本次共调查了名学生;(2)在扇形统计图中,等级D所对应的扇形的圆心角为°;(3)请补全条形统计图;(4)在等级D中有甲、乙、丙、丁4人表现最为优秀,现从4人中任选2人作为学校本次读书活动的宣传员,用列表或画树状图的方法求恰好选中甲和乙的概率.一十四.利用频率估计概率(共3小题)48.(2020•盘锦)为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下:身高x/cm x<160160≤x<170170≤x<180x≥180人数60260550130根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于170cm的概率是()A.0.32B.0.55C.0.68D.0.87 49.(2020•营口)某射击运动员在同一条件下的射击成绩记录如下:射击次数20801002004001000“射中九环以上”的次数186882168327823“射中九0.900.850.820.840.820.82环以上”的频率(结果保留两位小数)根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是()A.0.90B.0.82C.0.85D.0.84 50.(2019•阜新)一个不透明的袋子中有红球、白球共20个这些球除颜色外都相同将袋子中的球搅匀后,从中随意摸出1个球,记下颜色后放回,不断重复这个过程,共摸了100次,其中有30次摸到红球,由此可以估计袋子中红球的个数约为()A.12B.10C.8D.62019年、2020年辽宁省数学中考试题分类(13)——统计与概率参考答案与试题解析一.全面调查与抽样调查(共2小题)1.【解答】解:A、对全国初中学生视力情况的调查,适合用抽样调查,A不合题意;B、对2019年央视春节联欢晚会收视率的调查,适合用抽样调查,B不合题意;C、对一批飞机零部件的合格情况的调查,适合全面调查,C符合题意;D、对我市居民节水意识的调查,适合用抽样调查,D不合题意;故选:C.2.【解答】解:A、对全国中学生视力和用眼卫生情况的调查,适合抽样调查,故此选项错误;B、对某班学生的身高情况的调查,适合全面调查,故此选项正确;C、对某鞋厂生产的鞋底能承受的弯折次数的调查,适合抽样调查,故此选项错误;D、对某池塘中现有鱼的数量的调查,适合抽样调查,故此选项错误;故选:B.二.频数(率)分布直方图(共1小题)3.【解答】解:(1)本次共调查了17÷34%=50名学生,故答案为:50;(2)C组学生有50﹣5﹣18﹣17=10(名),补全的频数分布直方图如右图所示;(3)扇形统计图中C组所对应的圆心角度数是:360°×1050=72°,即扇形统计图中C组所对应的圆心角度数是72°;(4)1500×550=150(名),答:该校有150名学生平均每天睡眠时间低于7时.三.扇形统计图(共2小题)4.【解答】解:(1)15÷25%=60(人),m=60﹣4﹣15﹣18﹣12﹣5=6;答:本次测试随机抽取的人数是60人,故答案为60,6;(2)C等级所在扇形的圆心角的度数=360°×1860=108°,(3)该校七年级学生能够达到优秀的人数为300×12+6+560=115(人).故答案为:60,6.5.【解答】解:(1)m=20÷40%=50,2n+(n+10)=50﹣20﹣5,解得,n=5,A组所占的百分比为:2×5÷50×100%=20%,C组所占的百分比为:(5+10)÷50×100%=30%,补全的扇形统计图如右图所示;(2)∵A组有2×5=10(人),B组有20人,抽查的学生一共有50人,∴所抽取的m名学生平均每天课外阅读时间的中位数落在B组;(3)1500×5+10+550=600(名),答:该校有600名学生平均每天课外阅读时间不少于1小时.四.条形统计图(共4小题)6.【解答】解:(1)20÷40%=50(名); 故答案为:50;(2)15÷50×100%=30%,即m =30;1050×360°=72°;故答案为:30,72°;(3)50﹣20﹣15﹣10=5(名);(4)2000×1050=400(名).答:该校最喜欢方式D 的学生约有400名. 7.【解答】解:(1)这次学校抽查的学生人数是40÷80360=180(名), 故答案为:180名;(2)C 项目的人数为180﹣46﹣34﹣40=60(名) 条形统计图补充为:(3)估计全校选择C课程的学生有900×60180=300(名).8.【解答】解:(1)m=8÷8%=100,n%=100−30−2−8100×100%=60%,故答案为:100,60;(2)可回收物有:100﹣30﹣2﹣8=60(吨),补全完整的条形统计图如右图所示;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为:360°×30100=108°,故答案为:108;(4)2000×60100=1200(吨),即该市2000吨垃圾中约有1200吨可回收物.9.【解答】解:(1)参与本次问卷调查的学生共有:240÷60%=400(人),其中选择B类型的有:400×10%=40(人);故答案为:400,40;(2)在扇形统计图中,D 所对应的圆心角度数为: 360°×(1﹣60%﹣10%﹣20%﹣6%)=14.4°, ∵400×20%=80(人), ∴选择C 种学习方式的有80人. ∴补全的条形统计图如下:(3)该校学生人数为1250人,选择A 、B 、C 三种学习方式大约共有: 1250×(60%+10%+20%)=1125(人).答:选择A 、B 、C 三种学习方式大约共有1125人. 五.折线统计图(共1小题)10.【解答】解:A .数据10出现的次数最多,即众数是10,故本选项错误; B .排序后的数据中,最中间的数据为9,即中位数为9,故本选项错误; C .平均数为:17(7+8+9+9+10+10+10)=9,故本选项正确;D .方差为17[(7﹣9)2+(8﹣9)2+(9﹣9)2+(9﹣9)2+(10﹣9)2+(10﹣9)2+(10﹣9)2]=87,故本选项错误; 故选:C .六.加权平均数(共2小题) 11.【解答】解:根据题意得: 95×40%+90×60%=92(分). 答:她的最终得分是92分. 故选:C .12.【解答】解:这个公司平均每人所创年利润是:110(10+2×8+7×5)=6.1(万).故答案为:6.1. 七.中位数(共2小题)13.【解答】解:一组数据1,4,4,6,8,8的中位数是4+62=5,故选:B .14.【解答】解:将这组数据从小到大排列为﹣2、1、3、3、4, 则这组数据的中位数为3, 故选:D . 八.众数(共9小题)15.【解答】解:共有16个数,最中间两个数的平均数是(14+15)÷2=14.5,则中位数是14.5;15出现了6次,出现的次数最多,则众数是15; 故选:D .16.【解答】解:众数:一组数据中出现次数最多的数据为这组数据的众数,这组数据中300出现了3次,次数最多,所以众数是300;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,6个数据按顺序排列之后,处于中间的数据是300,300,所以中位数是300+3002=300;平均数是x =16(200+200+300+300+300+500)=300, 故选:D .17.【解答】解:本题中数据1出现了2次,出现的次数最多,所以本组数据的众数是1. 故选:A .18.【解答】解:共7天,中位数应该是排序后的第4天, 则中位数为:27, 28℃的有3天,最多, 所以众数为:28. 故选:B .19.【解答】解:由表可知,2.05出现次数最多,所以众数为2.05; 由于一共调查了30人,所以中位数为排序后的第15人和第16人的平均数,即:2.10. 故选:C .20.【解答】解:由表可知,5出现次数最多,所以众数为5; 由于一共调查了44人,所以中位数为排序后的第22和第23个数的平均数,即:5. 故选:A .21.【解答】解:因为五个整数从小到大排列后,其中位数是2,这组数据的唯一众数是4. 所以这5个数据分别是x ,y ,2,4,4,且x <y <2,当这5个数的和最大时,整数x ,y 取最大值,此时x =0,y =1, 所以这组数据可能的最大的和是0+1+2+4+4=11. 故选:A .22.【解答】解:设被污损的数据为x , 则4+x +2+5+5+4+3=4×7, 解得x =5,∴这组数据中出现次数最多的是5,即众数为5篇/周, 将这7个数据从小到大排列为2、3、4、4、5、5、5, ∴这组数据的中位数为4篇/周, 故选:A .23.【解答】解:∵这组数据中15出现5次,次数最多, ∴众数为15岁,中位数是第6、7个数据的平均数, ∴中位数为15+152=15岁,故选:C .九.方差(共7小题)24.【解答】解:∵四人的平均成绩相同,而观察图形可知,乙和丙的波动较大, ∴应在丁和甲中做出选择. ∵丁有两次成绩恰好为平均成绩,∴丁比甲稳定.故选:D .25.【解答】解:∵s 甲2=3.6,s 乙2=4.6,s 丙2=6.3,s 丁2=7.3,且平均数相等, ∴s 甲2<s 乙2<s 丙2<s 丁2,∴这4名同学3次数学成绩最稳定的是甲, 故选:A .26.【解答】解:∵S 甲2=0.075,S 乙2=0.04 ∴S 甲2>S 乙2∴乙的波动比较小,乙比较稳定 故答案为:乙.27.【解答】解:∵s 甲2=6.67,s 乙2=2.50, ∴s 甲2>s 乙2,∴这6次比赛成绩比较稳定的是乙, 故答案为:乙.28.【解答】解:∵x 甲=7=x 乙,S 甲2=2.9,S 乙2=1.2, ∴S 甲2>S 乙2, ∴乙的成绩比较稳定, 故答案为:乙. 29.【解答】解:∵x 乙=2+3+5+7+85=5,∴S 乙2=15×[(2﹣5)2+(3﹣5)2+(5﹣5)2+(7﹣5)2+(8﹣5)2]=265, ∵S 甲2=5<S 乙2,∴成绩较稳定的是甲, 故答案为:甲.30.【解答】解:∵平均成绩都是87.9分,S 甲2=3.83,S 乙2=2.71,S 丙2=1.52, ∴S 丙2<S 乙2<S 甲2, ∴丙选手的成绩更加稳定, ∴适合参加比赛的选手是丙, 故答案为:丙.一十.统计量的选择(共1小题)31.【解答】解:对这个商场的经理来说,最关注的是哪一型号的卖得最多,即是这组数据故选:A .一十一.随机事件(共2小题)32.【解答】解:A 、从一个只有白球的盒子里摸出一个球是白球,是必然事件; B 、任意买一张电影票,座位号是3的倍数,是随机事件; C 、掷一枚质地均匀的硬币,正面向上,是随机事件;D 、汽车走过一个红绿灯路口时,前方正好是绿灯,是随机事件; 故选:A .33.【解答】解:A 、方差越大,数据波动越大,故本选项错误; B 、了解辽宁省初中生身高情况适合采用抽样调查,故本选项错误; C 、抛掷一枚硬币,正面向上是不确定事件,故本选项错误;D 、用长为3cm ,5cm ,9cm 的三条线段围成一个三角形是不可能事件,故本选项正确; 故选:D .一十二.概率公式(共5小题)34.【解答】解:∵掷质地均匀硬币的试验,每次正面向上和向下的概率相同, ∴再次掷出这枚硬币,正面朝下的概率是12.故选:D .35.【解答】解:根据题意可得:袋子中有3个白球,4个红球,共7个, 从袋子中随机摸出一个球,它是红球的概率47.故选:D .36.【解答】解:根据题意可得:袋中有4个红球、2个白球,共6个, 从袋子中随机摸出1个球,则摸到红球的概率是46=23.故选:D .37.【解答】解:∵从这4张卡片中任意抽取一张共有4种等可能结果,其中抽到的卡片正面是中心对称图形的是圆、平行四边形、正六边形这3种结果, ∴抽到的卡片正面是中心对称图形的概率是34,故选:C .38.【解答】解:根据题意,得:aa+4=23,。
统计与概率汇总

统计与概率汇总一、数据的收集与整理数据是统计与概率的基础,它可以是数字、文字、图像等形式。
收集和整理数据是进行统计分析的第一步。
1.数据的收集:数据可以通过实地调查、问卷调查、观察等方式收集。
在收集数据时,应注意数据的质量和样本的代表性。
2.数据的整理:将收集到的数据进行分类、排序和编码等操作,使数据更加有序和易于分析。
二、描述统计学描述统计学是统计学的一个重要分支,通过对数据进行总结和揭示,以便更好地理解和运用数据。
1.中心趋势度量:中心趋势度量反映了一组数据的集中情况。
常见的中心趋势度量有平均值、中位数和众数。
-平均值:一组数据的平均值是指所有数据的总和除以数据的个数。
平均值具有良好的代表性,但对极端值敏感。
-中位数:一组数据按升序排列,中间位置的数即为中位数。
中位数对极端值不敏感,更能反映数据的集中程度。
-众数:一组数据中出现次数最多的数即为众数。
众数可以用来描述数据的特点,但不能代表全部数据。
2.离散程度度量:离散程度度量反映了一组数据的分散程度。
常见的离散程度度量有极差、方差和标准差。
-极差:一组数据中最大值与最小值的差称为极差。
极差可以直观地反映数据的离散程度,但不考虑中间值的差异。
-方差:方差是数据与其平均值的差的平方的平均值。
方差越大,数据越分散。
-标准差:标准差是方差的平方根。
标准差可以衡量数据的波动性,广泛应用于金融学、自然科学等领域。
三、概率论概率论是统计与概率的核心内容之一,研究随机事件的可能性和规律。
1.随机试验与样本空间:随机试验是指具有随机性质的试验,其结果不完全可预测。
样本空间是随机试验所有可能结果的集合。
2.事件与事件的概率:事件是样本空间的子集,表示其中一种感兴趣的结果。
概率是事件发生的可能性,用一个介于0和1之间的数值表示。
3.概率的计算:-古典概型:指的是样本空间有限且每个结果的概率相等的情况。
在古典概型中,事件的概率等于事件中有利结果的个数除以样本空间中结果的个数。
2021年中考数学真题分类汇编--统计与概率的综合运用(学生版)

中考真题分类汇编(统计与概率)----统计与概率的综合运用一、选择题1. (2021•湖南省衡阳市)下列说法正确的是( )A .为了解我国中学生课外阅读情况,应采取全面调查方式B .某彩票的中奖机会是1%,买100张一定会中奖C .从装有3个红球和4个黑球的袋子里摸出1个球是红球的概率是D .某校有3200名学生,为了解学生最喜欢的课外体育运动项目,随机抽取了200名学生,其中有85名学生表示最喜欢的项目是跳绳,估计该校最喜欢的课外体育运动项目为跳绳的有1360人2. (2021•湖北省江汉油田)下列说法正确的是( )A. “打开电视机,正在播放《新闻联播》”是必然事件B. “明天下雨概率为0.5”,是指明天有一半的时间可能下雨C. 一组数据“6,6,7,7,8”的中位数是7,众数也是7D. 甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同.方差分别是20.2s =甲,20.4s =乙,则甲的成绩更稳定 二.解答题1. (2021•黑龙江省大庆市)某校要从甲,乙两名学生中挑选一名学生参加数学竞赛,在最近的8次选拔赛中,他们的成績(成绩均为整数,单位:分)如下:甲:92,95,96,88,92,98,,99,100乙:100,87,92,93, 9 ,95,92,98由于保存不当,学生乙有一次成绩的个位数字模糊不清,(1)求甲成绩的平均数和中位数;(2)求事件“甲成绩的平均数大于乙成绩的平均数”的概率;(3)当甲成绩的平均数与乙成绩的平均数相等时,请用方差大小说明应选哪个学生参加数学竞赛.2.(2021•山东省济宁市)某校为了解九年级学生体质健康情况,随机抽取了部分学生进行体能测试,并根据测试结果绘制了不完整的条形统计图和扇形统计图,请回答下列问题.(1)在这次调查中,“优秀”所在扇形的圆心角的度数是;(2)请补全条形统计图;(3)若该校九年级共有学生1200人,则估计该校“良好”的人数是;(4)已知“不及格”的3名学生中有2名男生、1名女生,如果从中随机抽取两名同学进行体能加试,请用列表法或画树状图的方法,求抽到两名男生的概率是多少?3.(2021•湖南省常德市)我市华恒小区居民在“一针疫苗一份心,预防接种尽责任”的号召下,积极联系社区医院进行新冠疫苗接种.为了解接种进度,该小区管理人员对小区居民进行了抽样调查,按接种情况可分如下四类:A类——接种了只需要注射一针的疫苗:B 类——接种了需要注射二针,且二针之间要间隔一定时间的疫苗;C类——接种了要注射三针,且每二针之间要间隔一定时间的疫苗;D类——还没有接种,图1与图2是根据此次调查得到的统计图(不完整).请根据统计图回答下列问题.(1)此次抽样调查的人数是多少人?(2)接种B类疫苗的人数的百分比是多少?接种C类疫苗的人数是多少人?(3)请估计该小区所居住的18000名居民中有多少人进行了新冠疫苗接种.(4)为了继续宣传新冠疫苗接种的重要性,小区管理部门准备在已经接种疫苗的居民中征集2名志愿宣传者,现有3男2女共5名居民报名,要从这5人中随机挑选2人,求恰好抽到一男和一女的概率是多少.4.(2021•湖南省衡阳市)“垃圾分类工作就是新时尚”,为了改善生态环境,有效利用垃圾剩余价值,2020年起,我市将生活垃圾分为四类:厨余垃圾、有害垃圾、可回收垃圾、其他垃圾.某学习研究小组在对我市垃圾分类实施情况的调查中,绘制了生活垃圾分类扇形统计图,如图所示.(1)图中其他垃圾所在的扇形的圆心角度数是度;(2)据统计,生活垃圾中可回收物每吨可创造经济总价值约为0.2万元.若我市某天生活垃圾清运总量为500吨,请估计该天可回收物所创造的经济总价值是多少万元?(3)为了调查学生对垃圾分类知识的了解情况,某校开展了相关知识竞赛,要求每班派2名学生参赛.甲班经选拔后,决定从2名男生和2名女生中随机抽取2名学生参加比赛,求所抽取的学生中恰好一男一女的概率.5.(2021•怀化市)某校开展了“禁毒”知识的宣传教育活动.为了解这次活动的效果,现随机抽取部分学生进行知识测试,并将所得数据绘制成不完整的统计图表.频率等级频数(人数)优秀600.6良好a0.25合格10b基本合格50.05合计c1根据统计图表提供的信息,解答下列问题:(1)a=,b=,c=;(2)补全条形统计图;(3)该学校共有1600名学生,估计测试成绩等级在合格以上(包括合格)的学生约有多少人?(4)在这次测试中,九年级(3)班的甲、乙、丙、丁四位同学的成绩均为“优秀”,现班主任准备从这四名同学中随机选取两名同学出一期“禁毒”知识的黑板报,请用列表法或画树状图法求甲、乙两名同学同时被选中的概率.6.(2021•山东省泰安市)为庆祝中国共产党成立100周年,落实教育部《关于在中小学组织开展“从小学党史,永远跟党走”主题教育活动的通知》要求,某学校举行党史知识竞赛,随机调查了部分学生的竞赛成绩,绘制成两幅不完整的统计图表.根据统计图表提供的信息,解答下列问题:(1)本次共调查了名学生;C组所在扇形的圆心角为度;(2)该校共有学生1600人,若90分以上为优秀,估计该校优秀学生人数为多少?(3)若E组14名学生中有4人满分,设这4名学生为E1,E2,E3,E4,从其中抽取2名学生代表学校参加上一级比赛,请用列表或画树状图的方法求恰好抽到E1,E2的概率.竞赛成绩统计表(成绩满分100分)组别分数人数4A组75<x≤80B组80<x≤8510C组85<x≤90D组90<x≤9514E组95<x≤100合计7.(2021•广西玉林市)2021年是中国共产党建党100周年华诞.“五一”后某校组织了八年级学生参加建党100周年知识竞赛,为了了解学生对党史知识的掌握情况,学校随机抽取了部分同学的成绩作为样本,把成绩按不及格、合格、良好、优秀四个等级分别进行统计,并绘制了如下不完整的条形统计图与扇形统计图:请根据图中提供的信息解答下列问题:(1)根据给出的信息,将这两个统计图补充完整(不必写出计算过程);(2)该校八年级有学生650人,请估计成绩未达到“良好”及以上的有多少人?(3)“优秀”学生中有甲、乙、丙、丁四位同学表现突出,现从中派2人参加区级比赛,求抽到甲、乙两人的概率.8.(2021•四川省达州市)为庆祝中国共产党成立100周年,在中小学生心中厚植爱党情怀,我市开展“童心向党”教育实践活动,舞蹈,书法,为了解学生的参与情况,该校随机抽取了部分学生进行“你愿意参加哪一项活动”(必选且只选一种),部分信息如下:(1)这次抽样调查的总人数为人,扇形统计图中“舞蹈”对应的圆心角度数为;(2)若该校有1400名学生,估计选择参加书法的有多少人?(3)学校准备从推荐的4位同学(两男两女)中选取2人主持活动,利用画树状图或表格法求恰为一男一女的概率.9.(2021•四川省广元市)“此生无悔入华夏,来世再做中国人!”自疫情暴发以来,我国科研团队经过不懈努力,成功地研发出了多种“新冠”疫苗,并在全国范围内免费接种.截止2021年5月18日16:20,全球接种“新冠”疫苗的比例为18.29%;中国累计接种4.2亿剂,占全国人口的29.32%.以下是某地甲、乙两家医院5月份某天各年龄段接种疫苗人数的频数分布表和接种总人数的扇形统计图:甲医院乙医院年龄段频数频率频数频率18-29周岁900 0.15 400 0.130-39周岁 a 0.25 1000 0.2540-49周岁2100 b c 0.22550-59周岁1200 0.2 1200 0.360周岁以上300 0.05 500 0.125(1)根据上面图表信息,回答下列问题:①填空:a=_________,b=_________,c=_________;②在甲、乙两医院当天接种疫苗的所有人员中,40-49周岁年龄段人数在扇形统计图中所占圆心角为_________;(2)若A、B、C三人都于当天随机到这两家医院接种疫苗,求这三人在同一家医院接种的概率.10. (2021•呼和浩特市))某大学为了解大学生对中国共产党党史识的学习情况,在大学一年级和二年级举行有关党史知识测试活动,现从一二两个年级中各随机抽取20名学生的测试成绩(满分50分,30分及30分以上为合格:40分及40分以上为优秀)进行整理、描述和分析,给出了下面的部分信息.大学一年级20名学生的测试成绩为:39,50,39,50,49,30,30,49,49,4,43,43,43,37,37,37,43,43,37,25.大学二年级20名学生的测试成绩条形统计图如下图所示;两个年级抽取的学生的测试成绩的平均数、众数、中位数、优秀率如下表所示:年级平均数众数中位数优秀率大一 a b 43 m大二39.5 44 c n请你根据上面提供的所有信息,解答下列问题:(1)上表中a=__________,b=__________,c=__________,m=__________,n__________;根据样本统计数据,你认为该大学一、二年级中哪个年级学生掌握党史知识较好?并说明理由(写出一条理由即可);(2)已知该大学一、二年级共1240名学生参加了此次测试活动,通过计算,估计参加此次测试活动成绩合格的学生人数能否超过1000人;(3)从样本中测试成绩为满分的一、二年级的学生中随机抽取两名学生,用列举法求两人在同一年级的概率.11.(2021•贵州省铜仁市)某校开展主题为“防疫常识知多少”的调查活动,抽取了部分学生进行调查,调查问卷设置了A:非常了解、B:比较了解、C:基本了解、D:不太了解四个等级,要求每个学生填且只能填其中的一个等级,采取随机抽样的方式,并根据调查结果绘制成如图所示不完整的频数分布表和频率直方图,根据以上信息回答下列问题:等级频数频率A20 0.4B15 bC10 0.2D a0.1(1)频数分布表中a=____________,b=____________,将频数分布直方图补充完整;(2)若该校有学生1000人,请根据抽样调查结果估算该校“非常了解”和“比较了解”防疫常识的学生共有多少人?(3)在“非常了解”防疫常识的学生中,某班有5个学生,其中3男2女,计划在这5个学生中随机抽选两个加入防疫志愿者团队,请用列表或画树状图的方法求所选两个学生中至少有一个女生的概率.12.(2021•湖北省黄石市)黄石是国家历史文化名城,素有“青铜故里、矿冶之都”的盛名.区域内矿冶文化旅游点有:A.铜绿山古铜矿遗址,B.黄石国家矿山公园,C.湖北水泥遗址博物馆,D.黄石园博园、矿博园.我市八年级某班计划暑假期间到以上四个地方开展研学旅游,学生分成四个小组,根据报名情况绘制了两幅不完整的统计图.请根据图中信息,解答下列问题:(1)全班报名参加研学旅游活动的学生共有______人,扇形统计图中A部分所对应的扇形圆心角是______;(2)补全条形统计图;(3)该班语文、数学两位学科老师也报名参加了本次研学旅游活动,他们随机加入A、B 两个小组中,求两位老师在同一个小组的概率.13.(2021•辽宁省本溪市)为迎接建党100周年,某校组织学生开展了党史知识竞赛活动.竞赛项目有:A.回顾重要事件;B.列举革命先烈;C.讲述英雄故事;D.歌颂时代精神.学校要求学生全员参加且每人只能参加一项,为了解学生参加竞赛情况,随机调查了部分学生,并将调查结果绘制成如下两幅不完整的统计图,请你根据图中信息解答下列问题:(1)本次被调查的学生共有________名;(2)在扇形统计图中“B项目”所对应的扇形圆心角的度数为________,并把条形统计图补充完整;(3)从本次被调查的小华、小光、小艳、小萍这四名学生中,随机抽出2名同学去做宣讲员,请用列表或画树状图的方法求出恰好小华和小艳被抽中的概率.14.(2021•四川省乐山市)某中学全校师生听取了“禁毒”宣传报告后,对禁毒人员肃然起敬.学校德育处随后决定在全校1000名学生中开展“我为禁毒献爱心”的捐款活动.张老师在周五随机调查了部分学生随身携带零花钱的情况,并将收集的数据进行整理,绘制了如图所示的条形统计图.(1)求这组数据的平均数和众数;(2)经调查,当学生身上的零花钱多于15元时,都到出零花钱的20%,其余学生不参加捐款.请你估计周五这一天该校可能收到学生自愿捐款多少元?(3)捐款最多的两人将和另一个学校选出的两人组成一个“禁毒”知识宣讲小组,若从4人中随机指定两人担任正、副组长,求这两人来自不同学校的概率.15.(2021•四川省凉山州)随着手机的日益普及,学生使用手机给学校管理和学生发展带来诸多不利影响,为了保护学生视力,防止学生沉迷网络和游戏,让学生在学校专心学习,促进学生身心健康发展,教育部办公厅于2021年1月15日颁发了《教育部办公厅关于加强中小学生手机管理工作的通知》,为贯彻《通知》精神、某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图.(其中A表示“一等奖”,B表示“二等奖”,C表示“三等奖”,D表示“优秀奖”)请你根据统计图中所提供的信息解答下列问题:(1)获奖总人数为______人,m _______;(2)请将条形统计图补充完整;(3)学校将从获得一等奖的4名同学(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.16.(2021•四川省眉山市))吸食毒品极易上瘾,不但对人的健康危害极大,而且严重影响家庭和社会的稳定.为了解同学们对禁毒知识的掌握情况,从我市某校1000名学生中随机抽取部分学生进行问卷调查,调查评价结果分为:“了解较少”,“基本了解”,“了解较多”,“非常了解”四类,并根据调查结果绘制出如图所示的两幅不完整的统计图.请根据统计图回答下列问题:(1)本次抽取调查的学生共有人,其中“了解较多”的占%;(2)请补全条形统计图;(3)估计此校“非常了解”和“了解较多”的学生共有人;(4)“了解较少”的四名学生中,有3名学生A1,A2,A3是初一学生,1名学生B为初二学生,为了提高学生对禁毒知识的认识,对这4人进行了培训,然后从中随机抽取2人对禁毒知识的掌握情况进行检测.请用画树状图或列表的方法,求恰好抽到初一、初二学生各1名的概率.17.(2021•遂宁市)我市于2021年5月22-23日在遂宁观音湖举行了“龙舟赛”,吸引了全国各地选手参加.现对某校初中1000名学生就“比赛规则”的了解程度进行了抽样调查(参与调查的同学只能选择其中一项),并将调查结果绘制出以下两幅不完整的统计图表,请根据统计图表回答下列问题:类别频数频率不了解10 m了解很少16 0.32基本了解 b很了解 4 n合计 a 1(1)根据以上信息可知:a=,b=,m=,n=;(2)补全条形统计图;(3)估计该校1000名初中学生中“基本了解”的人数约有人;(4)“很了解”的4名学生是三男一女,现从这4人中随机抽取两人去参加全市举办的“龙舟赛”知识竞赛,请用画树状图或列表的方法说明,抽到两名学生均为男生和抽到一男一女的概率是否相同.18. 2021•四川省自贡市)为了弘扬爱国主义精神,某校组织了“共和国成就”知识竞赛,将成绩分为:A(优秀)、B(良好)、C(合格)、D(不合格)四个等级.小李随机调查了部分同学的竞赛成绩,绘制了如下统计图.(1)本次抽样调查的样本容量是_________,请补全条形统计图;(2)已知调查对象中只有两位女生竞赛成绩不合格,小李准备随机回访两位竞赛成绩不合格的同学,请用树状图或列表法求出恰好回访到一男一女的概率;(3)该校共有2000名学生,请你估计该校竞赛成绩“优秀”的学生人数.19.(2021•青海省)为了倡导“节约用水,从我做起”,某市政府决定对该市直属机关200户家庭用水情况进行调查.市政府调查小组随机抽查了其中部分家庭一年的月平均用水量(单位:吨),调查中发现,每户家庭月平均用水量在3~7吨范围内,并将调查结果制成了如下尚不完整的统计表:34567月平均用水量(吨)4a9107频数(户数)频率0.080.40b c0.14请根据统计表中提供的信息解答下列问题:(1)填空:a=,b=,c=.(2)这些家庭中月平均用水量数据的平均数是,众数是,中位数是.(3)根据样本数据,估计该市直属机关200户家庭中月平均用水量不超过5吨的约有多少户?(4)市政府决定从月平均用水量最省的甲、乙、丙、丁四户家庭中,选取两户进行“节水”经验分享.请用列表或画树状图的方法,求出恰好选到甲、丙两户的概率,并列出所有等可能的结果.20. (2021•湖北省荆门市)为庆祝中国共产党建党100周年,某校拟举办主题为“学党史跟党走”的知识竞赛活动.某年级在一班和二班进行了预赛,两个班参加比赛的人数相同,成绩分为A 、B 、C 、D 四个等级,其等级对应的分值分别为100分、90分、80分、70分,将这两个班学生的最后等级成绩分析整理绘制成了如图的统计图.(1)这次预赛中,二班成绩在B 等及以上的人数是多少?(2)分别计算这次预赛中一班成绩的平均数和二班成绩的中位数;(3)已知一班成绩A 等的4人中有两个男生和2个女生,二班成绩A 等的都是女生,年级要求从这两个班A 等的学生中随机选2人参加学校比赛,若每个学生被抽取的可能性相等,求抽取的2人中至少有1个男生的概率.21. (2021•湖北省十堰市)为庆祝中国共产党成立100周年,某校举行党史知识竞赛活动.赛后随机抽取了部分学生的成绩,按得分划分为A 、B 、C 、D 四个等级,并绘制了如下不完整的统计表和统计图. 等级 成绩(x )人数 A90100x ≤≤ 15 B8090x ≤< a C7080x ≤< 18 D 70x <7根据图表信息,回答下列问题:(1)表中a __________;扇形统计图中,C 等级所占的百分比是_________;D 等级对应的扇形圆心角为________度;若全校共有1800名学生参加了此次知识竞赛活动,请估计成绩为A 等级的学生共有_______人.(2)若95分以上的学生有4人,其中甲、乙两人来自同一班级,学校将从这4人中随机选出两人参加市级比赛,请用列表或树状图法求甲、乙两人至少有1人被选中的概率22. (2021•湖南省张家界市))为了积极响应中共中央文明办关于“文明用餐”的倡议,某校开展了“你的家庭使用公筷了吗?”的调查活动,并随机抽取了部分学生,对他们家庭用餐使用公筷情况进行统计,统计分类为以下四种:A (完全使用)、B (多数时间使用)、C (偶尔使用)、D (完全不使用),将数据进行整理后,绘制了两幅不完整的统计图.公筷使用情况条形统计图 使用公筷情况扇形统计图根据以上信息,解答下列问题:(1)本次抽取的学生总人数共有 .(2)补全条形统计图;(3)扇形统计图中A 对应的扇形的圆心角度数是 .(4)为了了解少数学生完全不使用公筷的原因,学校决定从D 组的学生中随机抽取两位进行回访,若D 组中有3名男生,其余均为女生,请用列表法或画树状图的方法,求抽取的两位学生恰好是一男一女的概率.C A BD 201610O 使用公筷情况人数5101516D B 40%C A。
2022年上海市高三数学一模分类汇编:概率、统计

6(2022金山一模). 某小区共有住户2000人,其中老年人600人,中年人1000人,其余为青少年等人群,为了调查该小区的新冠疫苗接种情况,现采用分层抽样的方法从中抽取一个容量为400的样本,则样本中中年人的人数为
9(2022金山一模). 有身高全不相同的6位同学一起拍毕业照,若6人随机排成两排,每排3人,则后排每人都比前排任意一位同学高的概率是 (结果用最简分数表示) 10(2022闵行一模). 某学校为落实“双减”政策,在每天放学后开设拓展课程供学生自愿选择,开学第一周的安排见下表,小明同学要在这一周内选择编程、书法、足球三门课,不同的选课方案共 种
10一人参加,其中志愿者甲第一天不能参加,则不同的安排方法一共有 种(结果用数值表示)
10(2022浦东一模). 某学校要从6名男生和4名女生中选出3人担任进博会志愿者,则所选3人中男女生都有的概率为 (用数字作答)
14(2022长宁一模). 给定一组数据15、17、14、10、12、17、17、16、14、12,设这组数据的平均数为a ,中位数为b ,众数为c ,则( )
A. a b c >>
B. c b a >>
C. c a b >>
D. b c a >>
14(2022松江一模).某校有高一学生390人,高二学生360人,高三学生345人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取部分学生作为样本.若从高二学生中抽取的人数为24人,则高一学生和高三学生应抽取的人数分别为( )
(A )高一学生26人、高三学生23人
(B )高一学生28人、高三学生21人
(C )高一学生多于24人、高三学生少于24人即可
(D )高一、高三学生人数都不限。
2024_2025年高考数学真题分类汇编专题14概率与统计填空题文

专题14概率与统计(填空题)近三年高考真题1.(2024•上海)现有某地一年四个季度的GDP (亿元),第一季度GDP 为232(亿元),第四季度GDP 为241(亿元),四个季度的GDP 逐季度增长,且中位数与平均数相同,则该地一年的GDP 为 (亿元) .【答案】946(亿元).【解析】设其次季度GDP 为x 亿元,第三季度GDP 为y 亿元,则232241x y <<<,中位数与平均数相同, ∴23224124x y x y ++++=, 473x y ∴+=,∴该地一年的GDP 为232241946x y +++=(亿元).故答案为:946(亿元).2.(2024•上海)某校抽取100名学生测身高,其中身高最大值为186cm ,最小值为154cm ,依据身高数据绘制频率组距分布直方图,组距为5,且第一组下限为153.5,则组数为 .【答案】7.【解析】极差为18615432-=,组距为5,且第一组下限为153.5,32 6.45=,故组数为7组, 故答案为:7.3.(2024•天津)甲、乙、丙三个盒子中装有肯定数量的黑球和白球,其总数之比为5:4:6.这三个盒子中黑球占总数的比例分别为40%,25%,50%.现从三个盒子中各取一个球,取到的三个球都是黑球的概率为 ;将三个盒子混合后任取一个球,是白球的概率为 . 【答案】120;35. 【解析】设盒子中共有球15n 个,则甲盒子中有黑球2n 个,白球3n 个,乙盒子中有黑球n 个,白球3n 个,丙盒子中有黑球3n 个,白球3n 个, 从三个盒子中各取一个球,取到的三个球都是黑球的概率为23154620n n n n n n ⨯⨯=; 将三个盒子混合后任取一个球,是白球的概率93155n n =.故答案为:120;35.4.(2024•乙卷(文))从甲、乙等5名同学中随机选3名参与社区服务工作,则甲、乙都入选的概率为.【答案】3 10【解析】设5人为甲、乙、丙、丁、戊,从5人中选3人有以下10个基本领件:甲乙丙,甲乙丁,甲乙戊,甲丙丁,甲丙戊,甲丁戊,乙丙丁、乙丙戊,乙丁戊,丙丁戊;甲、乙被选中的基本领件有3个:甲乙丙,甲乙丁,甲乙戊;故甲、乙被选中的概率为310.。
2024年高考数学大题--概率统计题型分类汇编(学生版)

概率统计概率统计是是高考数学的热点之一,概率统计大题是新高考卷及多省市高考数学的必考内容。
回顾近几年的高考试题,主要考查古典概型、相互独立事件、条件概率、超几何分布、二项分布、正态分布、统计图表与数字特征、回归分析、离散型随机变量的分布列、期望与方差等内容,多与社会实际紧密结合,以现实生活为背景设置试题,注重知识的综合应用与实际应用。
重点考察考生读取数据、分析数据和处理数据的能力。
题型一:离散型随机变量及其分布列题型二:超几何分布与二项分布题型三:均值与方差的实际应用题型四:正态分布与标准正态分布题型五:线性回归与非线性回归题型六:独立性检验及应用题型七:条件概率/全概率公式/贝叶斯公式题型八:概率与统计图表的综合应用题型九:概率与其他知识的交汇应用题型十:利用概率解决决策类问题题型一:离散型随机变量及其分布列1(2023·广东肇庆·高三广东肇庆中学校考阶段练习)为弘扬中华优秀传统文化,荣造良好的文化氛围,某高中校团委组织非毕业年级开展了“我们的元宵节”主题知识竞答活动,该活动有个人赛和团体赛,每人只能参加其中的一项,根据各位学生答题情况,获奖学生人数统计如下:奖项组别个人赛团体赛获奖一等奖二等奖三等奖高一20206050高二162910550(1)从获奖学生中随机抽取1人,若已知抽到的学生获得一等奖,求抽到的学生来自高一的概率;(2)从高一和高二获奖者中各随机抽取1人,以X表示这2人中团体赛获奖的人数,求X的分布列和数学期望;求离散型随机变量的分布列及期望的一般步骤:(1)根据题中条件确定随机变量的可能取值;(2)求出随机变量所有可能取值对应的概率,即可得出分布列;(3)根据期望的概念,结合分布列,即可得出期望(在计算时,要注意随机变量是否服从特殊的分布,如超几何分布或二项分布,可结合其对应的概率计算公式及期望计算公式,简化计算。
)1(2024·四川成都·成都七中模拟预测)甲、乙两人进行羽毛球比赛,比赛采取七局四胜制.已知甲每局比赛获胜的概率为23,输掉的概率为13,每局的比赛结果互不影响.(1)求甲最终获胜的概率;(2)记总共的比赛局数为X,求X的分布列与数学期望.2(2024·云南德宏·高三统考期末)设有甲、乙、丙三个不透明的箱子,每个箱中装有除颜色外都相同的4个球,其中甲箱有2个蓝球和2个黑球,乙箱有3个红球和1个白球,丙箱有2个红球和2个白球.摸球规则如下:先从甲箱中一次摸出2个球,若从甲箱中摸出的2个球颜色相同,则从乙箱中摸出1个球放入丙箱,再从丙箱中一次摸出2个球;若从甲箱中摸出的2个球颜色不同,则从丙箱中摸出1个球放入乙箱,再从乙箱中一次摸出2个球.(1)若最后摸出的2个球颜色不同,求这2个球是从丙箱中摸出的概率;(2)若摸出每个红球记2分,每个白球记1分,用随机变量X表示最后摸出的2个球的分数之和,求X的分布列及数学期望.题型二:超几何分布与二项分布2(2024·广东广州·广州市培正中学校考二模)某校高二(1)班的元旦联欢会设计了一项抽奖游戏:准备了10张相同的卡片,其中只在6张卡片上印有“奖”字.(1)采取放回抽样方式,从中依次抽取3张卡片,求抽到印有“奖”字卡片张数X的分布列、数学期望及方差;(2)采取不放回抽样方式,从中依次抽取3张卡片,求第一次抽到印有“奖”字卡片的条件下,第三次抽到未印有“奖”字卡片的概率.1、独立重复试验与二项分布(1)定型:“独立”“重复”是二项分布的基本特征,“每次试验事件发生的概率都相等”是二项分布的本质特征.判断随机变量是否服从二项分布,要看在一次试验中是否只有两种试验结果,且两种试验结果发生的概率分别为p,1-p,还要看是否为n次独立重复试验,随机变量是否为某事件在这n次独立重复试验中发生的次数.(2)定参,确定二项分布中的两个参数n和p,即试验发生的次数和试验中事件发生的概率.(3)列表,根据离散型随机变量的取值及其对应的概率,列出分布列.(4)求值,根据离散型随机变量的期望和方差公式,代入相应数据求值.相关公式:已知X~B(n,p),则P(X=k)=C k n p k(1-p)n-k(k=0,1,2,⋯,n),E(X)=np,D(X)=np(1-p).2、超几何分布的适用范围及本质(1)适用范围:考察对象分两类;已知各类对象的个数;从中抽取若干个个题,考察某一类个题个数的概率分布;(2)本质:超几何分布是不放回抽样问题,在每次试验中某一事件发生的概率是不相同的。
上海市2024年高考二模分类汇编:概率统计与统计初步

概率统计汇编一、题型一:统计1.(2024·上海黄浦·二模)某学校为了解学生参加体育运动的情况,用分层抽样的方法作抽样调查,拟从初中部和高中部两层共抽取40名学生,已知该校初中部和高中部分别有500和300名学生,则不同的抽样结果的种数为()A .2515500300C C +B .2515500300C C ⋅C .2020500300C C +D .2020500300C C ⋅2.(2024·上海虹口·二模)给出下列4个命题:①若事件A 和事件B 互斥,则()()()P A B P A P B ⋂=;②数据2,3,6,7,8,10,11,13的第70百分位数为10;③已知y 关于x 的回归方程为0.50.7y x =-+,则样本点()2,1-的离差为0.7-;④随机变量X 的分布为01230.20.20.30.3⎛⎫ ⎪⎝⎭,则其数学期望[] 1.6E X =.其中正确命题的序号为()A .①②B .①③C .②③D .②④3.(2024·上海金山·二模)下列说法不正确的是().A .一组数据10,11,11,12,13,14,16,18,20,22的第60百分位数为14B .若随机变量X 服从正态分布2(3,)N σ,且(4)0.7P X ≤=,则(34)0.2P X <<=C .若线性相关系数r 越接近1,则两个变量的线性相关程度越高D .对具有线性相关关系的变量x 、y ,且回归方程为0.3y x m =-,若样本点的中心为(,2.8)m ,则实数m 的值是4-4.(2024·上海普陀·二模)为了提高学生参加体育锻炼的积极性,某校本学期依据学生特点针对性的组建了五个特色运动社团,学校为了了解学生参与运动的情况,对每个特色运动社团的参与人数进行了统计,其中一个特色运动社团开学第1周至第5周参与运动的人数统计数据如表所示.周次x 12345参与运动的人数y3536403945若表中数据可用回归方程 2.3(118,N)y x b x x =+≤≤∈来预测,则本学期第11周参与该特色运动社团的人数约为.(精确到整数)5.(2024·上海嘉定·二模)数据1、2、3、4、5的方差为21s ,数据3、6、9、12、15的方差为22s ,则2221s s =.6.(2024·上海奉贤·二模)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级[]0,200(]200,400(]400,6001(优)318252(良)6x143(轻度污染)5564(中度污染)63(1)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(2)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的22⨯列联表,请根据表中的数据判断:一天中到该公园锻炼的人次是否与该市当天的空气质量有关?(规定显著性水平0.05α=)人次≤400人次>400总计空气质量好空气质量不好总计附:()()()()()22n ad bc a b c d a c b d χ-=++++,()2 3.8410.05P χ≥≈.7.(2024·上海虹口·二模)某企业监控汽车零件的生产过程,现从汽车零件中随机抽取100件作为样本,测得质量差(零件质量与标准质量之差的绝对值)的样本数据如下表:质量差(单位:mg )5457606366件数(单位:件)52146253(1)求样本质量差的平均数x ;假设零件的质量差()2,X N μσ ,其中216σ=,用x 作为μ的近似值,求()5668P X <<的值;(2)已知该企业共有两条生产汽车零件的生产线,其中全部零件的34来自第1条生产线.若两条生产线的废品率分别为0.016和0.012,且这两条生产线是否产出废品是相互独立的.现从该企业生产的汽车零件中随机抽取一件.(i )求抽取的零件为废品的概率;(ii )若抽取出的零件为废品,求该废品来自第1条生产线的概率.参考数据:若随机变量()2,X N μσ ,则()()()0.6827,220.9545,330.9973P X P X P X μσμσμσμσμσμσ-<≤+≈-<≤+≈-<≤+≈.8.(23-24高三下·上海浦东新·期中)某商店随机抽取了当天100名客户的消费金额,并分组如下:[)0,200,[)200,400,[)400,600,…,[]1000,1200(单位:元),得到如图所示的频率分布直方图.(1)若该店当天总共有1350名客户进店消费,试估计其中有多少客户的消费额不少于800元;(2)若利用分层随机抽样的方法从消费不少于800元的客户中共抽取6人,再从这6人中随机抽取2人做进一步调查,则抽到的2人中至少有1人的消费金额不少于1000元的概率是多少;(3)为吸引顾客消费,该商店考虑两种促销方案.方案一:消费金额每满300元可立减50元,并可叠加使用;方案二:消费金额每满1000元即可抽奖三次,每次中奖的概率均为13,且每次抽奖互不影响.中奖1次当天消费金额可打9折,中奖2次当天消费金额可打6折,中奖3次当天消费金额可打3折.若两种方案只能选择其中一种,小王准备购买的商品又恰好标价1000元,请帮助他选择合适的促销方案并说明理由.二、题型二:统计案例9.(2024·上海徐汇·二模)为了研究y 关于x 的线性相关关系,收集了5组样本数据(见下表):x 12345y0.50.911.11.5若已求得一元线性回归方程为 0.34y ax=+,则下列选项中正确的是()A . 0.21a=B .当8x =时,y 的预测值为2.2C .样本数据y 的第40百分位数为1D .去掉样本点(3,1)后,x 与y 的样本相关系数r 不会改变10.(2024·上海闵行·二模)某疾病预防中心随机调查了339名50岁以上的公民,研究吸烟习惯与慢性气管炎患病的关系,调查数据如下表:不吸烟者吸烟者总计不患慢性气管炎者121162283患慢性气管炎者134356总计134205339假设0H :患慢性气管炎与吸烟没有关系,即它们相互独立.通过计算统计量2χ,得27.468χ≈,根据2χ分布概率表:2( 6.635)0.01P χ≥≈,2( 5.024)0.025P χ≥≈,2( 3.841)0.05P χ≥≈,2( 2.706)0.1P χ≥≈.给出下列3个命题,其中正确的个数是()①“患慢性气管炎与吸烟没有关系”成立的可能性小于5%;②有99%的把握认为患慢性气管炎与吸烟有关;③2χ分布概率表中的0.05、0.01等小概率值在统计上称为显著性水平,小概率事件一般认为不太可能发生.A .0个B .1个C .2个D .3个11.(23-24高三下·上海浦东新·期中)通过随机抽样,我们绘制了如图所示的某种商品每千克价格(单位:百元)与该商品消费者年需求量(单位:千克)的散点图.若去掉图中右下方的点A 后,下列说法正确的是()A .“每千克价格”与“年需求量”这两个变量由负相关变为正相关B .“每千克价格”与“年需求量”这两个变量的线性相关程度不变C .“每千克价格”与“年需求量”这两个变量的线性相关系数变大D .“每千克价格”与“年需求量”这两个变量的线性相关系数变小12.(2024·上海金山·二模)为了考察某种药物预防疾病的效果,进行动物试验,得到如下图所示列联表:药物疾病合计未患病患病服用m 50m-50未服用80m-30m -50合计8020100取显著性水平0.05α=,若本次考察结果支持“药物对疾病预防有显著效果”,则m (40,m m ≥∈N )的最小值为.(参考公式:22()()()()()n ad bc a b c d a c b d χ-=++++;参考值:2( 3.841)0.05P χ≥≈)13.(2024·上海长宁·二模)收集数据,利用22⨯列联表,分析学习成绩好与上课注意力集中是否有关时,提出的零假设为:学习成绩好与上课注意力集中(填:有关或无关)14.(2024·上海徐汇·二模)为了解中草药甲对某疾病的预防效果,研究人员随机调查了100名人员,调查数据如表.(单位:个)未患病者患病者合计未服用中草药甲291645服用中草药甲46955合计7525100(1)若规定显著性水平0.05α=,试分析中草药甲对预防此疾病是否有效;(2)已知中草药乙对该疾病的治疗有效率数据如下:对未服用过中草药甲的患者治疗有效率为12,对服用过中草药甲的患者治疗有效率为34.若用频率估计概率,现从患此疾病的人员中随机选取2人(分两次选取,每次1人,两次选取的结果独立)使用中草药乙进行治疗,记治疗有效的人数为X ,求X 的分布和数学期望.附:()()()()()22n ad bca b c d a c b dχ-=++++,n a b c d=+++.α0.1000.0500.0100.001xα 2.706 3.841 6.63510.82815.(2024·上海青浦·二模)垃圾分类能减少有害垃圾对环境的破坏,同时能提高资源循环利用的效率.目前上海社区的垃圾分类基本采用四类分类法,即干垃圾,湿垃圾,可回收垃圾与有害垃圾.某校为调查学生对垃圾分类的了解程度,随机抽取100名学生作为样本,按照了解程度分为A等级和B等级,得到如下列联表:男生女生总计A等级402060B等级202040总计6040100(1)根据表中的数据回答:学生对垃圾分类的了解程度是否与性别有关(规定:显著性水平0.05α=)?附:()()()()()22n ad bca b c d a c b dχ-=++++,其中n a b c d=+++,()2 3.8410.05Pχ≥≈.(2)为进一步加强垃圾分类的宣传力度,学校特举办垃圾分类知识问答比赛.每局比赛由二人参加,主持人A和B轮流提问,先赢3局者获得奖项并结束比赛.甲,乙两人参加比赛,已知主持人A提问甲赢的概率为23,主持人B提问甲赢的概率为12,每局比赛互相独立,且每局都分输赢.现抽签决定第一局由主持人A提问.(i)求比赛只进行3局就结束的概率;(ii)设X为结束比赛时甲赢的局数,求X的分布和数学期望()E X.16.(2024·上海崇明·二模)某疾病预防中心随机调查了340名50岁以上的公民,研究吸烟习惯与慢性气管炎患病的关系,调查数据如表所示.不吸烟者吸烟者总计不患慢性气管炎者120160280患慢性气管炎者154560总计135205340(1)是否有95%的把握认为患慢性气管炎与吸烟有关?(2)常用()(|)|(|)P B A L B A P B A =表示在事件A 发生的条件下事件B 发生的优势,在统计中称为似然比.现从340人中任选一人,A 表示“选到的人是吸烟者”,B 表示“选到的人患慢性气管炎者”请利用样本数据,估计()|L B A 的值;(3)现从不患慢性气管炎者的样本中,按分层抽样的方法选出7人,从这7人里再随机选取3人,求这3人中,不吸烟者的人数X 的数学期望.附:22()()()()()n ad bc a b c d a c b d χ-=++++,2( 3.841)0.05P χ≥≈.17.(2024·上海嘉定·二模)据文化和旅游部发布的数据显示,2023年国内出游人次达48.91亿次,总花费4.91万亿元.人们选择的出游方式不尽相同,有自由行,也有跟团游.为了了解年龄因素是否影响出游方式的选择,我们按年龄将成年人群分为青壮年组(大于等于14岁,小于40岁)和中老年组(大于等于40岁).现在S 市随机抽取170名成年市民进行调查,得到如下表的数据:青壮年中老年合计自由行6040跟团游2050合计(1)请补充22⨯列联表,并判断能否有95%的把握认为年龄与出游方式的选择有关;(2)用分层抽样的方式从跟团游中抽取14个人,再从14个人中随机抽取7个人,用随机变量X 表示这7个人中中老年与青壮年人数之差的绝对值,求X 的分布和数学期望.α0.100.050.025P2.7063.8415.024三、题型三:概率18.(2024·上海普陀·二模)从放有两个红球、一个白球的袋子中一次任意取出两个球,两个红球分别标记为A 、B ,白球标记为C ,则它的一个样本空间可以是()A .{},AB BC B .{},,AB AC BC C .{},,,AB BA BC CB D .{},,,,AB BA AC CA CB 19.(2024·上海长宁·二模)某运动员8次射击比赛的成绩为:9.6、9.7、9.5、9.9、9.4、9.8、9.3、10.0;已知这组数据的第x 百分位为m ,若从这组数据中任取一个数,这个数比m 大的概率为0.25,则x 的取值不可能是()A .65B .70C .75D .8020.(2024·上海黄浦·二模)某校高三年级举行演讲比赛,共有5名选手参加.若这5名选手甲、乙、丙、丁、戊通过抽签来决定上场顺序,则甲、乙两位选手上场顺序不相邻的概率为.21.(2024·上海嘉定·二模)小张、小王两家计划假期来嘉定游玩,他们分别从“古猗园,秋霞圃,州桥老街”这三个景点中随机选择一个游玩,记事件A 表示“两家至少有一家选择古猗园”,事件B 表示“两家选择景点不同”,则概率()P B A =.22.(2024·上海崇明·二模)某学习小组共有10名学生,其中至少有2名学生在同一月份的出生的概率是.(默认每月天数相同,结果精确到0.001)23.(2024·上海闵行·二模)ChatGPT 是OpenAI 研发的一款聊天机器人程序,是人工智能技术驱动的自然语言处理工具,它能够基于在预训练阶段所见的模式和统计规律来生成回答,但它的回答可能会受到训练数据信息的影响,不一定完全正确.某科技公司在使用ChatGPT 对某一类问题进行测试时发现,如果输入的问题没有语法错误,它回答正确的概率为0.98;如果出现语法错误,它回答正确的概率为0.18.假设每次输入的问题出现语法错误的概率为0.1,且每次输入问题,ChatGPT 的回答是否正确相互独立.该公司科技人员小张想挑战一下ChatGPT ,小张和ChatGPT 各自从给定的10个问题中随机抽取9个作答,已知在这10个问题中,小张能正确作答其中的9个.(1)求小张能全部回答正确的概率;(2)求一个问题能被ChatGPT 回答正确的概率;(3)在这轮挑战中,分别求出小张和ChatGPT 答对题数的期望与方差.24.(2024·上海静安·二模)某高中随机抽取100名学生,测得他们的身高(单位:cm ),按照区间[)160,165,[)165,170,[)170,175,[)175,180,[]180,185分组,得到样本身高的频率分布直方图(如下图所示).(1)求身高不低于170cm 的学生人数;(2)将身高在[)170,175,[)175,180,[]180,185区间内的学生依次记为A ,B ,C 三个组,用分层抽样的方法从三个组中抽取6人.①求从这三个组分别抽取的学生人数;②若要从6名学生中抽取2人,求B 组中至少有1人被抽中的概率.25.(2024·上海杨浦·二模)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.完成生产任务的工作时间不超过70分钟的工人为“优秀”,否则为“合格”.根据工人完成生产任务的工作时间(单位:分钟)绘制了如下茎叶图:(1)求40名工人完成生产任务所需时间的第75百分数;(2)独立地从两种生产方式中各选出一个人,求选出的两个人均为优秀的概率;(3)根据工人完成生产任务的工作时间,两种生产方式优秀与合格的人数填入下面的2×2列联表:第一种生产方式第二种生产方式总计优秀合格总计根据上面的2×2列联表,判断能否有95%的把握认为两种生产方式的工作效率有显著差异?(22()()()()()n ad bc a b c d a c b d χ-=++++.其中n a b c d =+++,()2 3.8410.05P χ≥≈).四、题型四:随机变量及其分布26.(2024·上海奉贤·二模)有6个相同的球,分别标有数字1,2,3,4,5,6从中有放回地随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是5”,丁表示事件“两次取出的球的数字之和是6”,则().A .甲与乙相互独立B .乙与丙相互独立C .甲与丙相互独立D .乙与丁相互独立27.(2024·上海杨浦·二模)某区高三年级3200名学生参加了区统一考试.已知考试成绩X 服从正态分布()2100,N σ(试卷满分为150分).统计结果显示,考试成绩在80分到120分之间的人数约为总人数的34,则此次考试中成绩不低于120分的学生人数约为()A .350B .400C .450D .50028.(2024·上海松江·二模)已知随机变量X 服从正态分布()23,N σ,且(35)0.3P X ≤≤=,则(5)P X >=.29.(2024·上海普陀·二模)已知()2~4,2X N ,若(0)0.02P X <=,则(48)P X <<=.30.(2024·上海徐汇·二模)同时抛掷三枚相同的均匀硬币,设随机变量1X =表示结果中有正面朝上,X 0=表示结果中没有正面朝上,则[]D X =.31.(23-24高三下·上海浦东新·期中)某校面向高一全体学生共开设3门体育类选修课,每人限选一门.已知这三门体育类选修课的选修人数之比为6:3:1,考核优秀率分别为20%、16%和12%,现从该年级所有选择体育类选修课的同学中任取一名,其成绩是优秀的概率为.32.(2024·上海静安·二模)某工厂生产的产品以100个为一批.在进行抽样检查时,只从每批中抽取10个来检查,如果发现其中有次品,则认为这批产品是不合格的.假定每一批产品中的次品最多不超过2个,并且其中恰有i (i =0,1,2)个次品的概率如下:一批产品中有次品的个数i012概率0.30.50.2则各批产品通过检查的概率为.(精确到0.01)33.(2024·上海静安·二模)某地区高三年级2000名学生参加了地区教学质量调研测试,已知数学测试成绩X 服从正态分布2(100,)N σ(试卷满分150分),统计结果显示,有320名学生的数学成绩低于80分,则数学分数属于闭区间[80,120]的学生人数约为.34.(2024·上海虹口·二模)已知随机变量()50,X B p ~,且[]20E X =,则[]D X =.35.(2024·上海黄浦·二模)随机变量X 服从正态分布2(2,)N σ,若()2 2.50.36P X <≤=,则()|2|0.5P X ->=.36.(2024·上海青浦·二模)从1,2,3,4,5中任取2个不同的数字,设“取到的2个数字之和为偶数”为事件A ,“取到的2个数字均为奇数”为事件B ,则(|)P B A =.37.(2024·上海青浦·二模)设随机变量ξ服从正态分布(21)N ,,若(3)(12)P a P a ξξ<-=>-,则实数=a .38.(23-24高三下·上海浦东新·期中)已知随机变量X 服从正态分布()295,N σ,若(75115)0.4P X ≤≤=,则()115P X >=.39.(2024·上海松江·二模)某素质训练营设计了一项闯关比赛.规定:三人组队参赛,每次只派一个人,且每人只派一次:如果一个人闯关失败,再派下一个人重新闯关;三人中只要有人闯关成功即视作比赛胜利,无需继续闯关.现有甲、乙、丙三人组队参赛,他们各自闯关成功的概率分别为1p 、2p 、3p ,假定1p 、2p 、3p 互不相等,且每人能否闯关成功的事件相互独立.(1)计划依次派甲乙丙进行闯关,若13p 4=,223p =,312p =,求该小组比赛胜利的概率;(2)若依次派甲乙丙进行闯关,则写出所需派出的人员数目X 的分布,并求X 的期望()E X ;(3)已知1231p p p >>>,若乙只能安排在第二个派出,要使派出人员数目的期望较小,试确定甲、丙谁先派出.40.(2024·上海普陀·二模)张先生每周有5个工作日,工作日出行采用自驾方式,必经之路上有一个十字路口,直行车道有三条,直行车辆可以随机选择一条车道通行,记事件A 为“张先生驾车从左侧直行车道通行”.(1)某日张先生驾车上班接近路口时,看到自己车前是一辆大货车,遂选择不与大货车从同一车道通行.记事件B 为“大货车从中间直行车道通行”,求()P A B ⋂;(2)用X 表示张先生每周工作日出行事件A 发生的次数,求X 的分布及期望[]E X .41.(2024·上海黄浦·二模)某社区随机抽取200个成年市民进行安全知识测试,将这200人的得分数据进行汇总,得到如下表所示的统计结果,并规定得分60分及以上为合格.组别[0,20)[20,40)[40,60)[60,80)[80,100]频数926655347(1)该社区为参加此次测试的成年市民制定了如下奖励方案:①合格的发放2个随机红包,不合格的发放1个随机红包;②每个随机红包金额(单位:元)的分布为20500.80.2⎛⎫⎪⎝⎭.若从这200个成年市民中随机选取1人,记X (单位:元)为此人获得的随机红包总金额,求X 的分布及数学期望;(2)已知上述抽测中60岁以下人员的合格率约为56%,该社区所有成年市民中60岁以下人员占比为70%.假如对该社区全体成年市民进行上述测试,请估计其中60岁及以上人员的合格率以及成绩合格的成年市民中60岁以下人数与60岁及以上人数之比.42.(2024·上海金山·二模)有标号依次为1,2,…,n (2n ≥,n ∈N )的n 个盒子,标号为1号的盒子里有3个红球和3个白球,其余盒子里都是1个红球和1个白球.现从1号盒子里取出2个球放入2号盒子,再从2号盒子里取出2个球放入3号盒子,…,依次进行到从n 1-号盒子里取出2个球放入n 号盒子为止.(1)当2n =时,求2号盒子里有2个红球的概率;(2)设n 号盒子中红球个数为随机变量n X ,求3X 的分布及()3E X ,并猜想()n E X 的值(无需证明此猜想).43.(2024·上海长宁·二模)盒子中装有大小和质地相同的6个红球和3个白球;(1)从盒子中随机抽取出1个球,观察其颜色后放回,并同时放入与其颜色相同的球3个,然后再从盒子随机取出1个球,求第二次取出的球是红球的概率;(2)从盒子中不放回地依次随机取出2个球,设2个球中红球的个数为X ,求X 的分布、期望与方差;参考答案一、题型一:统计1.(2024·上海黄浦·二模)某学校为了解学生参加体育运动的情况,用分层抽样的方法作抽样调查,拟从初中部和高中部两层共抽取40名学生,已知该校初中部和高中部分别有500和300名学生,则不同的抽样结果的种数为()A .2515500300C C +B .2515500300C C ⋅C .2020500300C C +D .2020500300C C ⋅【答案】B【分析】由分层抽样先求出初中部和高中部应抽取的学生,再由组合数公式和分步计数原理即可得出答案.【详解】该校初中部和高中部分别有500和300名学生,所以初中部应抽取50054040258008⨯=⨯=名学生,高中部应抽取30034040158008⨯=⨯=名学生,所以不同的抽样结果的种数为2515500300C C ⋅.故选:B.2.(2024·上海虹口·二模)给出下列4个命题:①若事件A 和事件B 互斥,则()()()P A B P A P B ⋂=;②数据2,3,6,7,8,10,11,13的第70百分位数为10;③已知y 关于x 的回归方程为0.50.7y x =-+,则样本点()2,1-的离差为0.7-;④随机变量X 的分布为01230.20.20.30.3⎛⎫ ⎪⎝⎭,则其数学期望[] 1.6E X =.其中正确命题的序号为()A .①②B .①③C .②③D .②④【答案】C【分析】根据互斥事件的定义判断A ;根据百分位数的定义判断B ;根据离差的定义判断C ;根据期望公式判断D.【详解】对于①:因为事件A 和事件B 互斥,所以()0P A B = ,故①错误;对于②:因为870% 5.6⨯=,所以第70百分位数为从小到大排列的第6个数,即可为10,故②正确;对于③:因为0.50.7y x =-+,当2x =时0.520.70.3y =-⨯+=-,所以样本点()2,1-的离差为()10.30.7---=-,故③正确;对于④:[]00.210.220.330.3 1.7E X =⨯+⨯+⨯+⨯=,故④错误.故选:C3.(2024·上海金山·二模)下列说法不正确的是().A .一组数据10,11,11,12,13,14,16,18,20,22的第60百分位数为14B .若随机变量X 服从正态分布2(3,)N σ,且(4)0.7P X ≤=,则(34)0.2P X <<=C .若线性相关系数r 越接近1,则两个变量的线性相关程度越高D .对具有线性相关关系的变量x 、y ,且回归方程为0.3y x m =-,若样本点的中心为(,2.8)m ,则实数m 的值是4-4.(2024·上海普陀·二模)为了提高学生参加体育锻炼的积极性,某校本学期依据学生特点针对性的组建了五个特色运动社团,学校为了了解学生参与运动的情况,对每个特色运动社团的参与人数进行了统计,其中一个特色运动社团开学第1周至第5周参与运动的人数统计数据如表所示.周次x 12345参与运动的人数y3536403945若表中数据可用回归方程 2.3(118,N)y x b x x =+≤≤∈来预测,则本学期第11周参与该特色运动社团的人数约为.(精确到整数)【答案】57【分析】由已知求出样本点的中心的坐标,代入线性回归方程,再取11x =求解.【详解】1234535x ++++==,3536403945395y ++++==,把(3,39)代入 2.3y x b =+,得39 2.3332.1b =-⨯=.可得线性回归方程为 2.332.1y x =+.把11x =代入 2.332.1y x =+,可得 2.31132.157.457y =⨯+=≈.故答案为:57.5.(2024·上海嘉定·二模)数据1、2、3、4、5的方差为21s ,数据3、6、9、12、15的方差为22s ,则2221s s =.【答案】9【分析】由两组数据满足的一次函数关系,得方差间的关系,即可得结果.【详解】数据1、2、3、4、5依次记为()1,2,3,4,5i x i =,数据3、6、9、12、15依次记为()1,2,3,4,5i y i =,则有3i i y x =,所以22219s s =,即22219s s =.故答案为:96.(2024·上海奉贤·二模)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级[]0,200(]200,400(]400,6001(优)318252(良)6x143(轻度污染)5564(中度污染)63(1)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(2)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的22⨯列联表,请根据表中的数据判断:一天中到该公园锻炼的人次是否与该市当天的空气质量有关?(规定显著性水平0.05α=)人次≤400人次>400总计空气质量好空气质量不好总计附:()()()()()22n ad bca b c d a c b dχ-=++++,()2 3.8410.05Pχ≥≈.7.(2024·上海虹口·二模)某企业监控汽车零件的生产过程,现从汽车零件中随机抽取100件作为样本,测得质量差(零件质量与标准质量之差的绝对值)的样本数据如下表:质量差(单位:mg )5457606366件数(单位:件)52146253(1)求样本质量差的平均数x ;假设零件的质量差()2,X N μσ ,其中216σ=,用x 作为μ的近似值,求()5668P X <<的值;(2)已知该企业共有两条生产汽车零件的生产线,其中全部零件的34来自第1条生产线.若两条生产线的废品率分别为0.016和0.012,且这两条生产线是否产出废品是相互独立的.现从该企业生产的汽车零件中随机抽取一件.(i )求抽取的零件为废品的概率;(ii )若抽取出的零件为废品,求该废品来自第1条生产线的概率.参考数据:若随机变量()2,X N μσ ,则()()()0.6827,220.9545,330.9973P X P X P X μσμσμσμσμσμσ-<≤+≈-<≤+≈-<≤+≈.【答案】(1)60x =,()56680.8186P X <<≈(2)(i )0.015;(ii )0.8【分析】(1)先求出x ,再利用正态曲线的对称性求解;(2)(i )利用全概率公式求解;(ii )利用条件概率公式求解.【详解】(1)由题意可知54557216046632566360100x ⨯+⨯+⨯+⨯+⨯==,则~(60,16)X N ,所以()()56686046042P X P X <<=-<<+⨯()()112222P X P X μσμσμσμσ=-<≤++-<≤+110.68270.95450.818622≈⨯+⨯=;(2)(i )设事件A 表示“随机抽取一件该企业生产的该零件为废品”,事件1B 表示“随机抽取一件零件为第1条生产线生产”,事件2B 表示“随机抽取一件零件为第2条生产线生产”,则13()4P B =,21()4P B =,1(|)0.016P A B =,2(|)0.012P A B =,8.(23-24高三下·上海浦东新·期中)某商店随机抽取了当天100名客户的消费金额,并分组如下:[)0,200,[)200,400,[)400,600,…,[]1000,1200(单位:元),得到如图所示的频率分布直方图.(1)若该店当天总共有1350名客户进店消费,试估计其中有多少客户的消费额不少于800元;(2)若利用分层随机抽样的方法从消费不少于800元的客户中共抽取6人,再从这6人中随机抽取2人做进一步调查,则抽到的2人中至少有1人的消费金额不少于1000元的概率是多少;(3)为吸引顾客消费,该商店考虑两种促销方案.方案一:消费金额每满300元可立减50元,并可叠加使用;方案二:消费金额每满1000元即可抽奖三次,每次中奖的概率均为13,且每次抽奖互不影响.中奖1次当天消费金额可打9折,中奖2次当天消费金额可打6折,中奖3次当天消费金额可打3折.若两种方案只能选择其中一种,小王准备购买的商品又恰好标价1000元,请帮助他选择合适的促销方案并说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013中考全国100份试卷分类汇编统计与概率综合1、(2013达州)下列说法正确的是( )A .一个游戏中奖的概率是1100,则做100次这样的游戏一定会中奖 B .为了了解全国中学生的心理健康状况,应采用普查的方式C .一组数据0,1,2,1,1的众数和中位数都是1D .若甲组数据的方差20.2S =甲,乙组数据的方差20.5S =乙,则乙组数据比甲组数据稳定答案:C解析:由概率的意义,知A 错;全国中学生较多,应采用抽样调查,故B 也错;经验证C 正确;方差小的稳定,在D 中,应该是甲较稳定,故D 错。
2、(2013•嘉兴)下列说法:①要了解一批灯泡的使用寿命,应采用普查的方式;②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖;③甲、乙两组数据的样本容量与平均数分别相同,若方差=0.1,=0.2,则甲组数据比乙组数据稳定;④“掷一枚硬币,正面朝上”是必然事件.甲、乙两组数据的样本容量与平均数分别相同,若方差=0.1=0.2=0.24,乙组数据的方差=0.03”、甲组数据的方差=0.24,乙组数据的方差”若甲组数据的方差,乙组数据的方差=0.255、(2013•宁夏)小明对自己所在班级的50名学生平均每周参加课外活动的时间进行了调查,由调查结果绘制了频数分布直方图,根据图中信息回答下列问题:(1)求m的值;(2)从参加课外活动时间在6~10小时的5名学生中随机选取2人,请你用列表或画树状图的方法,求其中至少有1人课外活动时间在8~10小时的概率.名学生为小时的两名学生为=6、(2013•衡阳)目前我市“校园手机”现象越来越受到社会关注,针对这种现象,我市某中学九年级数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的看法,统计整理并制作了如下的统计图:(1)这次调查的家长总数为600.家长表示“不赞同”的人数为80;(2)从这次接受调查的家长中随机抽查一个,恰好是“赞同”的家长的概率是60%;(3)求图②中表示家长“无所谓”的扇形圆心角的度数.×7、(2013•孝感)如图,暑假快要到了,某市准备组织同学们分别到A,B,C,D四个地方进行夏令营活动,前往四个地方的人数.(1)去B地参加夏令营活动人数占总人数的40%,根据统计图求去B地的人数?(2)若一对姐弟中只能有一人参加夏令营,姐弟俩提议让父亲决定.父亲说:现有4张卡片上分别写有1,2,3,4四个整数,先让姐姐随机地抽取一张后放回,再由弟弟随机地抽取一张.若抽取的两张卡片上的数字之和是5的倍数则姐姐参加,若抽取的两张卡片上的数字之和是3的倍数则弟弟参加.用列表法或树形图分析这种方法对姐弟俩是否公平?;∴姐姐能参加的概率弟弟能参加的概率为<8、(2013•十堰)某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为40,并把条形统计图补充完整;(2)扇形统计图中m=10,n=20,表示“足球”的扇形的圆心角是72度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.)∵=.9、(2013•雅安)某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球B.乒乓球C.羽毛球D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有200人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)÷P=10、(2013•钦州)(1)我市开展了“寻找雷锋足迹”的活动,某中学为了了解七年级800名学生在“学雷锋活动月”中做好事的情况,随机调查了七年级50名学生在一个月内做好事的次数,并将所得数据绘制成统计图,请根据图中提供的信息解答下列问题:①所调查的七年级50名学生在这个月内做好事次数的平均数是 4.4,众数是5,极差是6:②根据样本数据,估计该校七年级800名学生在“学雷锋活动月”中做好事不少于4次的人数.(2)甲口袋有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3、4和5,从这两个口袋中各随机地取出1个小球.①用“树状图法”或“列表法”表示所有可能出现的结果;②取出的两个小球上所写数字之和是偶数的概率是多少?×种情况,故概率为=.11、(2013安顺)某校一课外活动小组为了解学生最喜欢的球类运动情况,随机抽查本校九年级的200名学生,调查的结果如图所示.请根据该扇形统计图解答以下问题:(1)求图中的x的值;(2)求最喜欢乒乓球运动的学生人数;(3)若由3名最喜欢篮球运动的学生,1名最喜欢乒乓球运动的学生,1名最喜欢足球运动的学生组队外出参加一次联谊活动.欲从中选出2人担任组长(不分正副),列出所有可能情况,并求2人均是最喜欢篮球运动的学生的概率.考点:扇形统计图;概率公式.专题:图表型.分析:(1)考查了扇形图的性质,注意所有小扇形的百分数和为1;(2)根据扇形图求解,解题的关键是找到对应量:最喜欢乒乓球运动的学生人数对应的百分比为x%;(3)此题可以采用列举法,注意要做到不重不漏.解答:解:(1)由题得:x%+5%+15%+45%=1,解得:x=35.(2分)(2)最喜欢乒乓球运动的学生人数为200×45%=90(人).(4分)(3)用A1,A2,A3表示3名最喜欢篮球运动的学生,B表示1名最喜欢乒乓球运动的学生,C表示1名喜欢足球运动的学生,则从5人中选出2人的情况有:(A1,A2),(A1,A3),(A1,B),(A1,C),(A2,A3),(A2,B),(A2,C),(A3,B),(A3,C),(B,C),共计10种.(6分)选出的2人都是最喜欢篮球运动的学生的有(A1,A2),(A1,A3),(A2,A3)共计3种,(7分)则选出2人都最喜欢篮球运动的学生的概率为.(9分)点评:此题考查了扇形图与概率的知识,综合性比较强,解题时要注意认真审题,理解题意;在用列举法求概率时,一定要注意不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.12、(2013•黔西南州)“五一”假期,黔西南州某公司组织部分员工分别到甲、乙、丙、丁四地考察,公司按定额购买了前往各地的车票,如图所示是用来制作完整的车票种类和相应数量的条形统计图,根据统计图回答下列问题:(1)若去丁地的车票占全部车票的10%,请求出去丁地的车票数量,并补全统计图(如图所示).(2)若公司采用随机抽取的方式发车票,小胡先从所有的车票中随机抽取一张(所有车票的形状、大小、质地完全相同、均匀),那么员工小胡抽到去甲地的车票的概率是多少?(3)若有一张车票,小王和小李都想去,决定采取摸球的方式确定,具体规则:“每人从不透明袋子中摸出分别标有1、2、3、4的四个球中摸出一球(球除数字不同外完全相同),并放回让另一人摸,若小王摸得的数字比小李的小,车票给小王,否则给小李.”试用列表法或画树状图的方法分析这个规则对双方是否公平?则员工小胡抽到去甲地的车票的概率为=13、(2013成都市)“中国梦”关乎每个人的幸福生活,为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以”梦想中国”为主题的摄影大赛,要求参赛学生每人交一件作品,现将参赛的50件作品的成绩(单位:分)进行如下统计如下:请根据上表提供的信息,解答下列问题:(1)表中x 的值为_______,y 的值为______________;(2)将本次参赛作品获得A 等级的学生一次用123,A ,,A A …表示,现该校决定从本次参赛作品获得A 等级的学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生1A 和2A 的概率。
解析:(1)x=4 ,y=0.7(2)总共有4人获得A,设1234,,,A A A A 用列表法知所有抽取可能组合为:12(,)A A13(,)A A ,14(,)A A ,23(,)A A ,24(,)A A ,34(,)A A 抽到1A 和2A 的概率为1614、(2013•铁岭)为迎接十二运,某校开设了A :篮球,B :毽球,C :跳绳,D :健美操四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校范围内随机抽取若干名学生,进行问卷调查(每个被调查的同学必须选择而且只能在4中体育活动中选择一种).将数据进行整理并绘制成以下两幅统计图(未画完整).(1)这次调查中,一共查了 200 名学生:(2)请补全两幅统计图:(3)若有3名最喜欢毽球运动的学生,1名最喜欢跳绳运动的学生组队外出参加一次联谊互活动,欲从中选出2人担任组长(不分正副),求两人均是最喜欢毽球运动的学生的概率.解:调查的总学生是=200=15、(2013•呼和浩特)某区八年级有3000名学生参加“爱我中华知识竞赛”活动.为了了解本次知识竞赛的成绩分布情况,从中抽取了200名学生的得分进行统计.(2)若将得分转化为等级,规定50≤x<60评为“D”,60≤x<70评为“C”,70≤x<90评为“B”,90≤x<100评为“A”.这次全区八年级参加竞赛的学生约有多少学生参赛成绩被评为“D”?如果随机抽查一名参赛学生的成绩等级,则这名学生的成绩等级哪一个等级的可能性大?请说明理由.的频率是=×16、(2013•烟台)今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.(1)本次参与调查的学生共有400人,m=15%,n=35%;(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是126度;(3)请补全图1示数的条形统计图;(4)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从“非常了解”态度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.;P==17、(2013•广安)6月5日是“世界环境日”,广安市某校举行了“洁美家园”的演讲比赛,赛后整理参赛同学的成绩,将学生的成绩分成A、B、C、D四个等级,并制成了如下的条形统计图和扇形图(如图1、图2).(1)补全条形统计图.(2)学校决定从本次比赛中获得A和B的学生中各选出一名去参加市中学生环保演讲比赛.已知A等中男生有2名,B等中女生有3 名,请你用“列表法”或“树形图法”的方法求出所选两位同学恰好是一名男生和一名女生的概率.解答:=18、(2013•眉山)我市某中学艺术节期间,向学校学生征集书画作品.九年级美术李老师从全年级14个班中随机抽取了A、B、C、D 4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)李老师采取的调查方式是抽样调查(填“普查”或“抽样调查”),李老师所调查的4个班征集到作品共12件,其中B班征集到作品3,请把图2补充完整.(2)如果全年级参展作品中有4件获得一等奖,其中有2名作者是男生,2名作者是女生.现在要在抽两人去参加学校总结表彰座谈会,求恰好抽中一男一女的概率.(要求用树状图或列表法写出分析过程)÷=12P=.19、(2013•攀枝花)为积极响应市委,市政府提出的“实现伟大中国梦,建设美丽攀枝花”的号召,我市某校在八,九年级开展征文活动,校学生会对这两个年级各班内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图.(1)求扇形统计图中投稿篇数为2所对应的扇形的圆心角的度数:(2)求该校八,九年级各班在这一周内投稿的平均篇数,并将该条形统计图补充完整.(3)在投稿篇数为9篇的两个班级中,八,九年级各有两个班,校学生会准备从这四个中选出两个班参加全市的表彰会,请你用列表法或画树状图的方法求出所选两个班正好不在同一年级的概率.12=20、(2013•自贡)为配合我市创建省级文明城市,某校对八年级各班文明行为劝导志愿者人数进行了统计,各班统计人数有6名、5名、4名、3名、2名、1名共计六种情况,并制作如下两幅不完整的统计图.(1)求该年级平均每班有多少文明行为劝导志愿者?并将条形图补充完整;(2)该校决定本周开展主题实践活动,从八年级只有2名文明行为劝导志愿者的班级中任选两名,请用列表或画树状图的方法,求出所选文明行为劝导志愿者有两名来自同一班级的概率.=21、(2013河南省)从2013年1月7日起,中国中东部大部分地区持续出现雾霾天气。