电液伺服阀论述

合集下载

注塑机电液伺服系统介绍

注塑机电液伺服系统介绍

注塑机电液伺服系统介绍首先,注塑机电液伺服系统的核心部件是电液伺服阀。

电液伺服阀是一种能够精确控制液压流量和压力的装置,可以根据注塑机的工作需求精确调整液压系统的工作参数。

通过控制电液伺服阀的开启和关闭,可以实现注塑机对模具的开合和产品的注射。

其次,注塑机电液伺服系统采用了闭环控制的方式。

在注塑过程中,系统会实时监测注塑过程中的温度、压力、位移等参数,并通过反馈信号将这些参数传递给控制器。

控制器会根据这些反馈信号对电液伺服阀进行控制,从而精确地调整液压系统的工作参数,实现注塑过程中的自动化控制。

注塑机电液伺服系统具有较高的控制精度和灵活性。

传统的注塑机通常采用油压比例控制系统,但由于液压流量和压力难以精确调节,不能满足高精度注塑的需求。

而电液伺服系统采用了电液伺服阀控制液压流量和压力,具有更高的控制精度,能够满足复杂模具和高精度产品的注塑需求。

另外,注塑机电液伺服系统还具有快速响应和能耗低的优点。

电液伺服阀的响应速度快,可以在极短的时间内对液压系统的工作参数进行调整,实现更快的注塑速度和更精确的注塑过程控制。

另外,电液伺服系统采用了先进的能量回收技术,在注塑过程中能够将部分能量回收利用,减少能源消耗。

此外,注塑机电液伺服系统还具有自诊断和故障检测功能。

系统可以实时监控注塑过程中的各种参数,并且能够通过自主诊断和故障检测功能判断液压系统是否出现故障,并提供相应的报警和保护措施,保证操作人员的安全和设备的正常运行。

总之,注塑机电液伺服系统是一个高度自动化、精确控制的系统,通过电液伺服阀控制液压流量和压力,实现对注塑机的精确控制。

该系统具有控制精度高、灵活性强、响应速度快、能耗低、自诊断和故障检测等优点,能够满足高精度注塑的需求,提高注塑过程的效率和质量。

电液伺服阀工作原理_电液伺服阀技术参数

电液伺服阀工作原理_电液伺服阀技术参数

电液伺服阀工作原理_电液伺服阀技术参数嘿,朋友们!今天咱们来唠唠电液伺服阀这个超酷的玩意儿。

你要是搞机械或者液压方面的工作,那肯定对它不陌生。

要是不太了解呢,也没关系,听我一一道来,保证你会觉得这东西特别有趣。

先来说说电液伺服阀的工作原理吧。

想象一下,电液伺服阀就像是一个超级智能的交通指挥官。

它有两个主要的输入信号,一个是电信号,就好比是交通指挥中心发来的指令;另一个是液压油,这就像是路上的车辆。

电信号一过来,就像指挥中心下达了特定的命令,比如说要让哪条路的车流量增大或者减小。

这个电信号作用在电液伺服阀内部的电磁部分。

这电磁部分就像是一个魔法棒,它能把电信号转化为机械运动。

你看啊,电磁力根据电信号的大小和方向,推动一个小阀芯或者挡板之类的部件。

这就好比魔法棒一挥,小木偶就开始动起来了。

这个小阀芯或者挡板的移动可不得了,它直接影响着液压油的流向和流量。

就像交通指挥官改变了路口的信号灯和道路的通行规则,液压油就得按照新的规则流动。

液压油通过电液伺服阀内部精心设计的通道,这些通道就像城市里规划好的道路一样,有进有出。

当阀芯或者挡板改变位置的时候,液压油通往不同的出口,从而驱动外部的液压执行机构,像液压缸或者液压马达。

这就像车辆根据新的交通规则到达不同的目的地,去完成各种各样的工作,比如举起一个很重的物体或者转动一个大轮子。

再说说电液伺服阀的技术参数,这可都是它的“身份证”信息呢。

其中一个重要的参数就是额定流量。

这额定流量就像一个人的饭量一样,告诉我们这个电液伺服阀在正常工作情况下能够允许通过多少液压油。

如果超过了这个额定流量,就好比一个人吃太多撑着了,电液伺服阀可能就会出问题,工作就不正常了。

还有一个参数叫响应频率。

这个怎么理解呢?就好比一个运动员的反应速度。

如果响应频率高,那就意味着电液伺服阀能够快速地根据电信号做出反应,就像一个反应超快的运动员,能迅速改变液压油的流动状态。

相反,如果响应频率低,那就像一个反应迟钝的人,在需要快速动作的时候就跟不上节奏了。

电液伺服阀的发展历史、研究现状及发展趋势

电液伺服阀的发展历史、研究现状及发展趋势

电液伺服阀的发展历史、研究现状及发展趋势一、电液伺服阀的发展历史电液伺服阀是电气信号控制液压执行元件的一种装置,它的历史可以追溯到20世纪50年代。

起初,电液伺服阀主要应用于导弹制导系统、火箭发动机控制系统等高端军事领域,其功用是将电信号转换为液压信号,驱动液压执行元件执行动作。

随着工业自动化和现代工程技术的不断发展,电液伺服阀已经广泛应用于各类液压传动系统中,成为自动化系统控制领域重要的元器件之一。

二、电液伺服阀的研究现状在广泛应用的同时,电液伺服阀的研究也在不断发展。

当前,主要研究方向包括电磁阀技术、增量式数字伺服技术、膜片式伺服技术、高动态特性伺服技术以及基于智能算法的控制策略等。

电磁阀技术是当前电液伺服阀的核心技术之一,它的改进可以有效提高该类产品的性能和可靠性。

增量式数字伺服技术是新近出现的伺服技术,具有高精度、高速度的特点,性能更为优越。

另外,基于智能算法的控制策略运用较广泛,它可以优化电液伺服阀的控制性能,提高系统的自适应能力等。

三、电液伺服阀的发展趋势未来,电液伺服阀仍将朝着更加高端、多样化的方向发展。

首先,随着制造业的不断升级和发展,对工业自动化设备的要求也将越来越高,即对电液伺服阀的性能要求也越来越高。

其次,综合应用多种新技术,如高速差动式伺服阀,普通增量式伺服阀和高速可变式数字伺服阀等结合,可以实现多静态特性、高动态性能的电液伺服阀技术。

再次,现如今智能化制造飞速发展,电液伺服阀也将随之演进,如引入新型材料、新型工艺,使其具备更高的智能化水平,以适应不断变化的市场需求。

以上是电液伺服阀的发展历史、研究现状及发展趋势的相关内容。

动圈式电液伺服阀工作原理

动圈式电液伺服阀工作原理

动圈式电液伺服阀工作原理嘿,咱今天就来好好唠唠动圈式电液伺服阀的工作原理!你说这动圈式电液伺服阀啊,就像是一个特别厉害的指挥官!它能精准地控制液压油的流向和流量,就好像是一个超级交通警察,指挥着来来往往的车流。

它里面有个动圈,就跟个活力满满的小马达似的。

这个动圈可是很关键的部分哦!当电流通过的时候,它就开始活跃起来啦。

然后呢,还有阀芯,就像是一扇门,通过动圈的带动,能巧妙地开关,让液压油乖乖地按照要求流动。

这就好比你家的水龙头,你拧开它,水就流出来了,拧得大小不同,水流量也就不一样。

想象一下,在各种机械设备里,动圈式电液伺服阀就像一个默默工作的小英雄。

它要保证机器能正常运转,动作精准无误。

要是它稍微出点差错,那可不得了啊,机器可能就会闹脾气,不好好工作啦!比如说在一些大型工业设备里,它得时刻保持警惕,不能有一丝马虎。

它得快速响应各种指令,及时调整液压油的流向和流量,就像一个反应迅速的运动员,随时准备冲刺。

而且哦,动圈式电液伺服阀的工作可稳定啦!不管是遇到恶劣的工作环境,还是长时间的工作压力,它都能稳稳地坚守岗位。

这一点是不是特别让人佩服呢?你看啊,这么一个小小的东西,却有着大大的能量。

它能让那些庞大的机械设备乖乖听话,按照我们的要求来工作。

这难道不神奇吗?咱再想想,如果没有动圈式电液伺服阀,那很多工业生产不就乱套了吗?那些需要精确控制的机器可能就会变得笨手笨脚的,没法好好干活啦!所以说啊,动圈式电液伺服阀真的是太重要啦!它就像一个幕后英雄,默默地为我们的生产生活贡献着力量。

我们可得好好珍惜它,好好了解它的工作原理,让它更好地为我们服务呀!总之,动圈式电液伺服阀就是这么神奇,这么厉害,这么不可或缺!原创不易,请尊重原创,谢谢!。

各类型电液伺服阀的优势与不足

各类型电液伺服阀的优势与不足

各类型电液伺服阀的优势与不足电液伺服阀是一种广泛应用于自动化控制领域的阀门,它通过电信号驱动,实现液压油的流量、压力和方向的控制。

电液伺服阀具有多种类型,根据其工作原理和结构特点,可以分为以下几种:电磁阀、电动阀、气动阀和液动阀。

下面,我们将分别介绍这些类型电液伺服阀的优势与不足。

一、电磁阀优势:1. 响应速度快:电磁阀的驱动信号为电信号,传输速度快,因此响应速度极快,可达毫秒级别。

2. 控制简便:电磁阀可以通过简单的电信号进行控制,实现远程、集中、自动控制。

3. 耐高压:电磁阀的密封性能好,可承受高压,适用于高压系统。

4. 耐腐蚀:电磁阀的材料选择多样,可适用于各种腐蚀性介质。

不足:1. 电压依赖性:电磁阀需要依赖电源,一旦电源故障,阀门无法正常工作。

2. 温升问题:电磁阀在工作过程中会产生热量,长时间工作可能导致温升过高,影响阀门的性能和寿命。

3. 液压冲击:电磁阀的快速开关可能会引起液压系统的冲击和振动。

二、电动阀优势:1. 控制精度高:电动阀通过电动执行器进行控制,可以实现较高的控制精度。

2. 可靠性高:电动阀的驱动部分为电动执行器,故障率较低,可靠性较高。

3. 功耗低:电动阀的驱动方式为电动,功耗较低,有利于节能。

4. 安装方便:电动阀的安装不受介质流动方向的影响,安装方便。

不足:1. 响应速度相对较慢:与电磁阀相比,电动阀的响应速度较慢,适用于对响应速度要求不高的场合。

2. 维护成本较高:电动阀的电动执行器部分较为复杂,维护成本较高。

3. 电动执行器故障:电动阀的电动执行器故障时,可能导致阀门无法正常工作。

三、气动阀优势:1. 响应速度快:气动阀的驱动信号为压缩空气,传输速度快,响应速度快。

2. 控制简便:气动阀可以通过简单的气信号进行控制,实现远程、集中、自动控制。

3. 耐高压:气动阀的密封性能好,可承受高压,适用于高压系统。

4. 耐腐蚀:气动阀的材料选择多样,可适用于各种腐蚀性介质。

电液伺服阀工作原理

电液伺服阀工作原理

电液伺服阀一般是指双喷嘴挡板电液伺服阀。

工作原理如下:
该阀前置放大级采用双喷嘴挡板结构,功率级采用力反馈滑阀结构。

输入指令信号给力矩马达的线圈将会产生电磁力作用于衔铁的两端,这使衔铁组件(由衔铁、挡板及弹簧管组成)发生偏转。

而挡板的偏转将减少某一个喷嘴的流量,进而改变了与该喷嘴相通的阀芯一侧的压力,推动阀芯朝一边移动。

阀芯的位移打开了进油口(J)与一个负载口之间的油路,沟通了回油口(H)与另一负载口之间的通道。

同时阀芯的位移对反馈杆产生一个作用力,此作用力形成了对衔铁组件的回复力矩。

当此回复力矩与力矩马达的电磁力矩相平衡时,衔铁挡板组件回到零位,阀芯保持在这一平衡状态的开启位置,直到输入的给定信号又发生变化。

电液伺服阀的原理分类和应用简介

电液伺服阀的原理分类和应用简介

电液伺服阀的原理分类和应用简介一.电液伺服阀的工作原理电液伺服阀由力矩马达和液压放大器组成。

力矩马达工作原理磁铁把导磁体磁化成N、S极,形成磁场。

衔铁和挡板固连由弹簧支撑位于导磁体的中间。

挡板下端球头嵌放在滑阀中间凹槽内;线圈无电流时,力矩马达无力矩输出,挡板处于两喷嘴中间;当输入电流通过线圈使衔铁3左端被磁化为N极,右端为S极,衔铁逆时针偏转。

弹簧管弯曲产生反力矩,使衔铁转过θ角。

电流越大θ角就越大,力矩马达把输入电信号转换为力矩信号输出。

前置放大级工作原理压力油经滤油器和节流孔流到滑阀左、右两端油腔和两喷嘴腔,由喷嘴喷出,经阀9中部流回油箱力矩马达无输出信号时,挡板不动,滑阀两端压力相等。

当力矩马达有信号输出时,挡板偏转,两喷嘴与挡板之间的间隙不等,致使滑阀两端压力不等,推动阀芯移动。

功率放大级工作原理当前置放大级有压差信号使滑阀阀芯移动时,主油路被接通。

滑阀位移后的开度正比于力矩马达的输入电流,即阀的输出流量和输入电流成正比;当输入电流反向时,输出流量也反向。

滑阀移动的同时,挡板下端的小球亦随同移动,使挡板弹簧片产生弹性反力,阻止滑阀继续移动;挡板变形又使它在两喷嘴间的位移量减小,实现了反馈。

当滑阀上的液压作用力和挡板弹性反力平衡时,滑阀便保持在这一开度上不再移动。

二.电液伺服阀的分类1 按液压放大级数可分为单级电液伺服阀,两级电液伺服阀,三级电液伺服阀。

2 按液压前置级的结构形式,可分为单喷嘴挡板式,双喷嘴挡板式,滑阀式,射流管式和偏转板射流式。

3 按反馈形式可分为位置反馈式,负载压力反馈式,负载流量反馈式,电反馈式等。

4 按电机械转换装置可分为动铁式和动圈式。

5 按输出量形式可分为流量伺服阀和压力控制伺服阀。

三.电液伺服阀的发展趋势1/新型结构的设计在20 世纪90 年代,国外研制直动型电液伺服阀获得了较大的成就.现形成系列产品的有Moog 公司的D633,D634 系列的直动阀,伊顿威格士(EatonVickers)公司的LFDC5V 型,德国Bosch 公司的NC10 型,日本三菱及KYB 株式会社合作开发的MK 型阀及Moog 公司与俄罗期沃斯霍得工厂合作研制的直动阀等.该类型的伺服阀去掉了一般伺服阀的前置级, 利用一个较大功率的力矩马达直接拖动阀芯, 并由一个高精度的阀芯位移传感器作为反馈.该阀的最大特点是无前置级,提高了伺服阀的抗污染能力.同时由于去掉了许多难加工零件,降低了加工成本,可广泛使用于工业伺服控制的场合.国内有些单位如中国运载火箭技术研究院第十八研究所, 北京机床研究所, 浙江工业大学等单位也研制出了相关产品的样机. 特别是北京航空航天大学研制出转阀式直动型电液伺服阀. 该伺服阀通过将普通伺服阀的滑阀滑动结构转变为滑阀的转动, 并在阀芯与阀套上相应开了几个与轴向有一定倾角的斜槽.阀芯阀套相互转动时,斜槽相互开通或相互封闭,从而控制输出压力或流量.由于在工作时阀芯阀套是相互转动的,降低了阀工作时的摩擦阻力,同时污染物不容易在转动的滑阀内堆积,提高了抗污染性能.此外,Park 公司开发了"音圈驱动(Voice Coil Drive)"技术(VCD),以及以此技术为基础开发的DFplus 控制阀.所谓音圈驱动技术, 顾名思义, 即是类似于扬声器的一种驱动装置, 其基本结构就是套在固定的圆柱形永久磁铁上的移动线圈,当信号电流输入线圈时,在电磁效应的作用下,线圈中产生与信号电流相对应的轴向作用力,并驱动与线圈直接相连的阀芯运动,驱动力很大.线圈上内置了位移反馈传感器,因此,采用VCD 驱动的DFplus 阀本质上是以闭环方式进行控制的,线性度相当好.此外,由于VCD 驱动器的运动零件只是移动线圈,惯量极小,相对运动的零件之间也没有任何支承,DFplus 阀的全部支承就是阀芯和阀体间的配合面,大大减小了摩擦这一非线性因素对控制品质的影响.综合上述的技术特点,配合内置的数字控制模块,使DFplus 阀的控制性能佳,尤其在频率响应方面更是优越,可达400Hz.从发展趋势来看,新型直动型电液伺服阀在某些行业有替代传统伺服阀特别是喷嘴挡板式伺服阀的趋向, 但它的最大问题在于体积大, 重量重, 只适用于对场地要求较低的工业伺服控制场合. 如能减轻其重量, 减小其体积,在航空,航天等军工行业亦具有极大的发展潜力.另外,近年来伺服阀新型的驱动方式除了力矩马达直接驱动外,还出现了采用步进电机,伺服电机,新型电磁铁等驱动结构以及光-液直接转换结构的伺服阀.这些新技术的应用不仅提高了伺服阀的性能, 而且为伺服阀发展开拓了思路, 为电液伺服阀技术注入了新的活力.2/新型材料的采用当前在电液伺服阀研制领域的新型材料运用,主要是以压电元件,超磁致伸缩材料及形状记忆合金等为基础的转换器研制开发.它们各具有其自己的优良特性.2.1 压电元件压电元件的特点是"压电效应":在一定的电场作用下会产生外形尺寸的变化,在一定范围内,形变与电场强度成正比.压电元件的主要材料为压电陶瓷(PZT),电致伸缩材料(PMN)等.比较典型的压电陶瓷材料有日本TOKIN 公司的叠堆型压电伸缩陶瓷等.PZT 直动式伺服阀的原理是: 在阀芯两端通过钢球分别与两块多层压电元件相连. 通过压电效应, 使压电材料产生伸缩驱动阀芯移动.实现电-机械转换.PMN 喷嘴挡板式伺服阀则在喷嘴处设置一与压电叠堆固定连接的挡板,由压电叠堆的伸,缩实现挡板与喷嘴间的间隙增减,使阀芯两端产生压差推动阀芯移动.目前压电式电-机械转换器的研制比较成熟并已得到较广泛的应用.它具有频率响应快的特点,伺服阀频宽甚至能达到上千赫兹,但亦有滞环大,易漂移等缺点,制约了压电元件在电液伺服阀上的进一步应用.2.2 超磁致伸缩材料液压与电气论坛超磁致伸缩材料(GMM)与传统的磁致伸缩材料相比,在磁场的作用下能产生大得多的长度或体积变化. 利用GMM 转换器研制的直动型伺服阀是把GMM 转换器与阀芯相连,通过控制驱动线圈的电流,驱动GMM 的伸缩,带动阀芯产生位移从而控制伺服阀输出流量.该阀与传统伺服阀相比不仅有频率响应高的特点,而且具有精度高,结构紧凑的优点.目前,在GMM 的研制及应用方面,美国,瑞典和日本等国处于领先水平.国内浙江大学利用GMM 技术对气动喷嘴挡板阀和内燃机燃料喷射系统的高速强力电磁阀, 进行了结构设计和特性研究.从目前情况来看GMM 材料与压电材料和传统磁致伸缩材料相比,具有应变大,能量密度高,响应速度快,输出力大等特点.世界各国对GMM 电-机械转换器及相关的技术研究相当重视,GMM 技术水平快速发展,已由实验室研制阶段逐步进入市场开发阶段.今后还需解决GMM 的热变形,磁晶各向异性,材料腐蚀性及制造工艺, 参数匹配等方面的问题,以利于在高科技领域得到广泛运用.2.3 形状记忆合金形状记忆合金(SMA)的特点是具有形状记忆效应.将其在高温下定型后,冷却到低温状态,对其施加外力.一般金属在超过其弹性变形后会发生永久变形,而SMA 却在将其加热到某一温度之上后, 会恢复其原来高温下的形状. 利用其特性研制的伺服阀是在阀芯两端加一组由形状记忆合金绕制的SMA 执行器, 通过加热和冷却的方法来驱动SMA 执行器, 使阀芯两端的形状记忆合金伸长或收缩, 驱动阀芯作用移动, 同时加入位置反馈来提高伺服阀的控制性能.从该阀的情况来看,SMA 虽变形量大,但其响应速度较慢,且变形不连续, 也限制了其应用范围.与传统伺服阀相比,采用新型材料的电-机械转换器研制的伺服阀,普遍具有高频响, 高精度,结构紧凑的优点.虽然目前还各自呈在某些关键技术需要解决,但新型功能材料的应用和发展,给电液伺服阀的技术发展发展提供了新的途径.3/电子化,数字化技术的运用液压与电气论坛目前电子化, 数字化技术在电液伺服阀技术上的运用主要有两种方式: 其一,在电液伺服阀模拟控制元器件上加入D/A 转换装置来实现其数字控制.随着微电子技术的发展,可把控制元器件安装在阀体内部,通过计算机程序来控制阀的性能,实现数字化补偿等功能.但存在模拟电路容易产生零漂,温漂,需加D/A 转换接口等问题.其二, 为直动式数字控制阀. 通过用步进电机驱动阀芯, 将输入信号转化成电机的步进信号来控制伺服阀的流量输出.该阀具有结构紧凑,速度及位置开环可控及可直接数字控制等优点,被广泛使用.但在实时性控制要求较高的场合,如按常规的步进方法,无法兼顾量化精度及响应速度的要求.浙江工业大学采用了连续跟踪控制的办法,消除了两者之间的矛盾,获得了良好的动态特性. 此外还有通过直流力矩电机直接驱动阀芯来实现数字控制等多种控制方式或伺服阀结构改变等方法来形成众多的数字化伺服阀产品.随着各项技术水平的发展,通过采用新型的传感器和计算机技术研制出机械,电子, 传感器及计算机自我管理(故障诊断,故障排除)为一体的智能化新型伺服阀.该类伺服阀可按照系统的需要来确定控制目标:速度,位置,加速度,力或压力.同一台伺服阀可以根据控制要求设置成流量控制伺服阀, 压力控制伺服阀或流量/ 压力复合控制伺服阀. 并且伺服阀的控制参数,如流量增益,流量增益特性,零点等都可以根据控制性能最优化原则进行设置.伺服阀自身的诊断信息,关键控制参数(包括工作环境参数和伺服阀内部参数)可以及时反馈给主控制器;可以远距离对伺服阀进行监控,诊断和遥控.在主机调试期间,可以通过总线端口下载或直接由上位机设置伺服阀的控制参数, 使伺服阀与控制系统达到最佳匹配,优化控制性能.而伺服阀控制参数的下载和更新,甚至在主机运转时也能进行.而在伺服阀与控制系统相匹配的技术应用发展中, 嵌入式技术对于伺服阀已经成为现实. 按照嵌入式系统应定义为:"嵌入到对像体系中的专用计算机系统"."嵌入性","专用性"与"计算机系统"是嵌入式系统的三个基本要素.它是在传统的伺服阀中嵌入专用的微处理芯片和相应的控制系统, 针对客户的具体应用要求而构建成具有最优控制参数的伺服阀并由阀自身的控制系统完成相应的控制任务(如各控制轴同步控制),再嵌入到整个的大控制系统中去.从目前的技术发展和控制系统对伺服阀的要求看, 伺服阀的自诊断和自检测功能应该有更大的发展. 结束语当前的液压伺服控制技术已经能将自动控制技术, 液压技术与微电子有机的结合起来, 形成新一代的伺服阀产品.而随着电子设备,控制策略,软件及材料等方面的发展与进步, 电液控制技术及伺服阀产品将在机,电,液一体化获得长足的进步.四 .电液伺服阀的发展历程液压控制技术的历史最早可追溯到公元前240 年,当时一位古埃及人发明了人类历史上第一个液压伺服系统――水钟. 然而在随后漫长的历史阶段, 液压控制技术一直裹足不前, 直到18 世纪末19 世纪初,才有一些重大进展.在二战前夕,随着工业发展的需要,液压控制技术出现了突飞猛进地发展,许多早期的控制阀原理及专利均是这一时代的产物.如: Askania 调节器公司及Askania-Werke 发明及申请了射流管阀原理的专利.同样, Foxboro 发明了喷嘴挡板阀原理的专利.而德国Siemens 公司发明了一种具有永磁马达及接收机械及电信号两种输入的双输入阀,并开创性地使用在航空领域.在二战末期,伺服阀是用螺线管直接驱动阀芯运动的单级开环控制阀.然随着控制理论的成熟及军事应用的需要, 伺服阀的研制和发展取得了巨大成就. 1946 年, 英国Tinsiey 获得了两级阀的专利;Raytheon 和Bell 航空发明了带反馈的两级阀;MIT 用力矩马达替代了螺线管使马达消耗的功率更小而线性度更好.1950 年,W.C.Moog 第一个发明了单喷嘴两级伺服阀.1953 年至1955 年间,T.H.Carson发明了机械反馈式两级伺服阀; W.C.Moog 发明了双喷嘴两级伺服阀; Wolpin 发明了干式力矩马达, 消除了原来浸在油液内的力矩马达由油液污染带来的可靠性问题.1957 年R.Atchley 利用Askania 射流管原理研制了两级射流管伺服阀.并于1959 年研制了三级电反馈伺服阀.1959 年 2 月国外某液压与气动杂志对当时的伺服阀情况作了12 页的报道, 显示了当时伺服阀蓬勃发展的状况.那时生产各种类型的伺服阀的制造商有20 多家.各生产厂家为了争夺伺服阀生产的霸权地位展开了激烈地竞争. 回顾历史, 可以看到最终取胜的几个厂家, 大多数生产具有反馈及力矩马达的两级伺服阀.我们可以看到, 1960 年的伺服阀已具有现代伺服阀的许多特点.如:第二级对第一级反馈形成闭环控制;采用干式力矩马达;前置级对功率级的压力恢复通常可达到50%;第一级的机械对称结构减小了温度,压力变化对零位的影响. 同时, 由早期的直动型开环控制阀发展变化而来的直动型两级闭环控制伺服阀也已出现.当时的伺服阀主要用于军事领域,随着太空时代的到来,伺服阀又被广泛用于航天领域,并研制出高可靠性的多余度伺服阀等尖端产品.与此同时,随着伺服阀工业运用场合的不断扩大,某些生产厂家研制出了专门使用于工业场合的工业伺服阀. Moog 公司就在1963 年推出了第一款专为工业场合使用的73 如系列伺服阀产品.随后,越来越多的专为工业用途研制的伺服阀出现了.它们具有如下的特征:较大的体积以方便制造;阀体采用铝材(需要时亦可采用钢材);独立的第一级以方便调整及维修;主要使用在14MPa 以下的低压场合;尽量形成系列化,标准化产品.然而Moog 公司在德国的分公司却将其伺服阀的应用场合主要集中在高压场合, 一般工作压力在21MPa,有的甚至到35MPa,这就使阀的设计专重于高压下的使用可靠性.而随着伺服阀在工业场合的广泛运用, 各公司均推出了各自的适合工业场合用的比例阀. 其特点为低成本, 控制精度虽比不上伺服阀, 但通过先进的控制技术和先进的电子装置以弥补其不足, 使其性能和功效逼近伺服阀.1973 年,Moog 公司按工业使用的需要,把某些伺服阀转换成工业场合的比例阀标准接口.Bosch 研制出了其标志性的射流管先导级及电反馈的平板型伺服阀.1974 年,Moog 公司推出了低成本,大流量的三级电反馈伺服阀.Vickers 公司研制了压力补偿的KG 型比例阀.Rexroth,Bosch 及其他公司研制了用两个线圈分别控制阀芯两方向运动的比例阀等等五. 电液伺服阀运转不良引起的故障1 油动机拒动在机组启动前做阀门传动试验时,有时出现个别油动机不动的现象,在排除控制信号故障的前提下,造成上述现象的主要原因是电液伺服阀卡涩。

电液伺服阀的应用及发展趋势

电液伺服阀的应用及发展趋势

电液伺服阀的应用及发展趋势摘要:电液伺服阀是电液伺服控制系统中的重要控制元件,在系统中起着电业转换和功率放大作用。

具体地说,系统工作时,他直接接收系统传递来的电信号,并把电信号转换成具有相应极性的、成比例的、能够控制电液伺服阀的负载流量或负载压力的信号,从而使系统输出较大的液压功率,用以驱动相应的执行机构。

电液伺服阀的性能和可靠性可以直接影响系统的性能和可靠性,是电液伺服控制系统中引人注目的关键元件。

关键字:电液伺服阀;现状;发展趋势;应用;展望引言:电液伺服阀是一种变电气信号为液压信号以实现流量或压力控制的转换装置。

它充分发挥了电气信号传递快、线路连接方便,适于远距离控制,易于测量、比较和校正的有点,和液压输出力大、惯性小、反应快的优点。

这两者的结合使电液伺服阀成为一种反应灵活、精度高、快速性好、输出功率大的控制元件。

[1]一、电液伺服阀研究现状群控系统(DNC)和柔性制造系统(FMS)等新工艺装备的使用,计算机辅助设计(CAD)和计算机辅助测试(CAT)的广泛应用,为我们进一步简化伺服阀结构,完善设计,降低工艺制造成本和管理费用,提高产品性能,稳定产品质量,增加产品可靠性和延长使用寿命创造了极其有利的条件。

1、伺服阀的结构改进(1)在电液伺服阀的部分结构上,主要从余度技术、结构优化和材料的更替等方面进行改造,以提高相关性能。

采用三余度技术的电液伺服作动系统[1]将伺服阀的力矩马达、喷嘴挡板阀、系统的反馈元件等做成一式三份,若伺服阀线圈有一路断开,而系统仍能够正常工作,且有系统动态品质性能基本不变,从而提高了伺服作动系统的可靠性和容错能力。

在结构的改进上,针对阀出现的故障提出改进措施,进行结构优化,以满足其相关性能的要求。

从材料方面考虑,阀的某些元件采用了强度、塑性、韧性、硬度等机械性能优良的材料,既可以减少故障,又让阀具备良好的动态性能。

(2)从阀芯和阀套磨配加工工艺的改进上,采用不同的磨配原理,如磁力研磨法等原理来提高阀的工作性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电液伺服阀论述
1.概述
电液伺服阀是电液伺服系统中的核心元件。

它既是电液转换元件,又是功率放大元件。

在系统中将输入的小功率电信号转换为大功率的液压能(压力与能量)输出,其性能对系统特性影响很大。

电液伺服阀在电厂中被广泛使用,伺服阀是电液伺服控制系统中的重要控制元件,在系统中起着电液转换和功率放大作用。

电液伺服阀的性能和可靠性将直接影响系统的性能和安全,是电液伺服控制系统中引人瞩目的关键元件。

20 世纪70 年代以来,国内开始了对电液伺服系统的研究和应用。

近年来,随着国内机械工业的高速发展,对于高精度金属成型装备的需求大大增加,大规格电液伺服系统在锻压机械、轧钢机械、折弯机中的应用越来越广泛。

而电液伺服阀的发展可以追溯到二战末期,1940 年前后,在飞机上最早出现了电液伺服控制系统。

电液伺服阀将输入的小功率电信号转换为大功率液压输出形式( 压力和流量) ,具有控制精度高和响应速度快的特点。

电液伺服阀结构精密,对油液介质要求高,价格昂贵。

典型结构有喷嘴挡板式和射流管式,喷嘴挡板式动态响应快,灵敏度高,但是零位泄漏量大,喷嘴易堵塞。

与喷嘴挡板式电液伺服阀相比,射流管式电液伺服阀抗污染能力强,但是响应速度略慢。

为使电液伺服系统能够可靠并廉价地应用到实际工业生产中,20 世纪60 年代末,出现了电液比例阀。

电液比例阀是阀内比例电磁铁根据输入的电压信号产生相应动作,使阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例的压力、流量输出的元件。

后来又经过了一系列的发展,20 世纪末,伺服技术与比例技术相结合,伺服比例阀应运而生。

与电液伺服阀相比,电液比例阀抗污染能力强,成本低,但是其直线性和响应速度均不及电液伺服阀。

电液伺服阀和电液比例阀有其独有的特点和优势,但也因其自身结构特点的原因,有一些先天的劣势。

特别是当要求输出的液压功率较大,而电-机械转换元件输出功率较小,无法直接驱动功率级主阀时,需要增加液压先导级,无疑使阀的结构更加复杂,稳定性降低。

而电磁直驱式大规格电液伺服阀以其新的设计
思路很好地解决了这些问题,所以对电磁直驱式大规格电液伺服阀的研究有着重要的意义。

2.电液伺服阀构成及分类
2.1 电液伺服阀的构成
电液伺服阀通常由力矩马达(或力马达)、液压放大器、反馈机构(或平衡机构)三部分组成。

在电液伺服阀中力矩马达的作用是将电信号转换为机械运动,因而是一个电气——机械转换器。

电气——机械转换器是利用电磁原理工作的。

它由永久磁铁或激隘线圈产生极化磁场。

电气控制信号通过控制线圈产生控制磁场,两个磁场之间相互作用产生与控制信号成比例并能反应控制信号极性的力或力矩,从而使其运动部分产生直线位移或角位移的机械运动。

2.2电液伺服阀的分类
2.2.1 按液压放大级数分
(1)单级伺服阀
此类阀结构简单、价格低廉,但由于力矩马达或力马达输出力矩小、定位刚度低,使阀的输出流量有限,对负载动态变化敏感,阀的稳定性在很大程度上取决于负载动态,容易产生不稳定状态,只适用于低压、小流量和负载动态变化不大的场合。

(2)两级伺服阀
此类阀克服了单级伺服阀的缺点,是最常用的型式。

(3)三级伺服阀
此类阀通常是由一个两级伺服阀作前置级控制第三级功率滑阀,功率级滑阀芯位移通过电气反馈形成闭环控制,实现功率级滑阀阀芯的定位,三级伺服阀通常只用在大流量的场合。

2.2.2 按第一级阀的结构形式分
可分为:滑阀、单喷嘴挡板阀、双喷嘴挡板阀、射流管阀、偏转板射流阀。

2.2.3 按反馈形式分
可分为滑阀位置反馈、负载流量反馈和负载压力反馈三种。

2.2.4 按力矩马达是否浸泡在油中分类
湿式的可使力矩马达受到油液的冷却,但油液中存在的铁污物使力矩马达特性变坏,干式的则可使力矩马达不受油液污染的影响,目前的伺服阀都采用干式的。

3.电液伺服阀的工作原理
电液伺服阀是油动机的核心部件,靠它来接收电信号并控制进入油缸油流的多少。

电液伺服阀安装在MSV,GV和ICV的阀门油动机上,RSV的油动机没有安装电液伺服阀。

通过向油动机的油缸供应高压油而将蒸汽阀门打开,而通过其将油缸的高压油泄去并靠弹簧力将蒸汽阀门关闭。

常用的伺服阀( 喷嘴挡板式) 是一个由力矩马达、两级液压放大及机械反馈所组成的系统,其中力矩马达操作第一级挡板; 喷嘴/挡板组件控制第二级即主阀芯两端的压力使该阀芯运动,主阀芯的运动产生对第一级( 先导级) 衔铁挡板组件的反馈运动。

力矩马达把输入的电信号( 电流) 转换为力矩输出。

无信号时,衔铁由弹簧管支撑在上下导磁体的中间位置,永久磁铁在四个气隙中产生的极化磁通是相同的力矩马达无力矩输出。

此时,挡板处于两个喷嘴的中间位置,喷嘴两侧的压力相等,滑阀处于中间位置,阀无液压输出; 若有信号时控制线圈产生磁通,其大小和方向由信号电流决定,磁铁两极所受的力不一样,于是,在磁铁上产生磁转矩,使衔铁绕弹簧管中心逆时针方向偏转,使挡板向右偏移,喷嘴挡板的右侧间
隙减小而左侧间隙增大,则右侧压力大于左侧压力,从而推动滑阀左移。

同时,使反馈杆产生弹性变形,对衔铁挡板组件产生一个顺时针方向的反转矩。

当作用在衔铁挡板组件上的电磁转矩,弹簧管反转矩,反馈杆反转矩等诸力矩达到平衡时,滑阀停止移动,取得一个平衡位置并有相应的流量输出。

滑阀位移,挡板位移,力矩马达输出力矩等都与输入的电信号( 电流) 成比例变化。

伺服阀在接受电信号之后各零部件动作如图1所示。

图1 伺服阀在接受电信号之后各零部件动作
4.伺服系统
4.1电液位置伺服系统
电液伺服阀控制系统将电子和液压有机结合起来,既具有快速易调和高精度的响应能力,又能控制大惯量实现大功率运动输出,因而得到广泛的应用。

其中,电液位置控制系统应用最广泛;诸如飞机与船舶的舵机控制、火炮的瞄准、雷达天线的跟踪控制、轧钢钢板厚度和带材跑偏控制、数控机床的定位及加工轨迹控制、模拟振动试验台位移控制等等。

4.2电液速度伺服系统
速度控制系统在工程控制中也是常用的一类控制系统。

如炮塔、雷达天线、
转台、平台等装备中的速度控制,邮件自动分检机的传送带以及机床的进给装置的速度控制等等。

这些系统的输出量是速度、输入及反馈信号也都是速度信号。

形成一个闭环速度控制系统。

4.3电液力伺服系统
力(或力矩)的控制是工程实践中常有的。

电液力(或力矩)控制系统具有精度高、响应快、功率大、结构紧凑和使用方便等优点,因此得到越来越广泛的应用。

例如,材料试验机、液压压机、轧机张力控制系统、车轮刹车装置等都采用了电液力控制系统。

5.结语
电液伺服阀是将小功率电流信号转换为大功率液压能(压力、流量)的电液转换元件。

可以将执行元件进行流量控制或压力控制,前者称为电液流量伺服阀,简称流量阀,如位置反馈两级伺服阀、负载流量反馈两级伺服阀;后者称电液压力伺服阀,简称压力阀,如负载压力反馈两级伺服阀。

因伺服阀的输出流量与压力之间存在一定关系,所以不存在理想的流量伺服阀和理想的压力伺服阀。

采用负载流量反馈是为了得到不受或少受负载压力影响的流量伺服阀;采用负载的压力反馈是为了得到不受或少受负载流量影响的压力伺服阀。

电液伺服阀是闭环控制系统中最重要的一种伺服控制元件,它能将微弱的电信号转换成大功率的液压信号(流量和压力)。

用它作转换元件组成的闭环系统称为电液伺服系统。

电液伺服系统用电信号作为控制信号和反馈信号,灵活、快速、方便;用液压元件作执行机构,重量轻、惯量小、响应快、精度高。

对整个系统来说,电液伺服阀是信号转换和功率放大元件;对系统中的液压执行机构来说,电液伺服阀是控制元件;阀本身也是个多级放大的闭环电液伺服系统,提高了伺服阀的控制性能。

电液伺服系统是液压伺服系统和电子技术相结合的产物,由于它具有更快的响应速度,更高的控制精度,在军事、航空、航天、机床等领域中得到广泛的应用。

目前,液压伺服系统特别是电液伺服系统己经成为武器自动化和工业自动化的一个重要方面,应用十分广泛。

相关文档
最新文档