自动控制原理C作业(第二章)答案

合集下载

自动控制理论第二章习题答案

自动控制理论第二章习题答案
Q=K P
式中 K 为比例常数, P 为阀门前后的压差。若流量 Q 与压差 P 在其平衡点 (Q0 , P0 ) 附近作微小变化,试导出线性化
方程。 解:
设正常工作点为 A,这时 Q0 = K P0
在该点附近用泰勒级数展开近似为:
y
=
f
(
x0
)
+

df (x) dx

x0
(
x

x0
)
即 Q − Q0 = K1 (P − P0 )
其中 K1
= dQ dP P=P0
=
1K 2
1 P0
2-7 设弹簧特性由下式描述:
F = 12.65 y1.1
其中,是弹簧力;是变形位移。若弹簧在变形位移附近作微小变化,试推导的线性化方程。 解:
设正常工作点为 A,这时 F0
=
12.65
y1.1 0
在该点附近用泰勒级数展开近似为:
2-3 试证明图2-58(a)的电网络与(b)的机械系统有相同的数学模型。
2
胡寿松自动控制原理习题解答第二章
图 2-58 电网络与机械系统
1
解:(a):利用运算阻抗法得: Z1
=
R1
//
1 C1s
=
R1 C1s
R1
+
1 C1s
=
R1 = R1 R1C1s + 1 T1s + 1
Z2
=
R2
+
1 C2s
(C2
+
2C1 )
du0 dt
+ u0 R
=
C1C2 R
d 2ui dt 2

自动控制原理_王万良(课后答案2

自动控制原理_王万良(课后答案2

第2章习题2.1 列写如图题2.1所示电路中以电源电压U 作为输入,电容1C ,2C 上的电压1c U 和2c U 作为输出的状态空间表达式。

图题2.1答案:X L R LL M C R M C M C R M C C X ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−−−−+−=211321321100)(& X y ⎥⎦⎤⎢⎣⎡=010001其中)(3221311C C C C C C R M ++=2.2 如图题2.2所示为RLC 网络,有电压源s e 及电流源s i 两个输入量。

设选取状态变量23121,,C C L u x u x i x ===;输出量为y 。

建立该网络动态方程,并写出其向量-矩阵形式(提示:先列写节点a ,b 的电流方程及回路电势平衡方程)。

图题2.2*答案:⎥⎦⎤⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−+⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡−−+−=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡s s e i C L L R C C L L L RR 0001100100111x x x 12121321&&&U 3+-se[]111−−−=R y ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321x x x +[]⎥⎦⎤⎢⎣⎡s s e i R 11 2.3 列写图题2.3所示RLC 网络的微分方程。

其中,r u 为输入变量,c u 为输出变量图题2.3答案:r c cc u u dt du RC dtu d LC =++22 2.4 列写图题2.4所示RLC 网络的微分方程,其中r u 为输入变量,c u 为输出变量。

图题2.4答案:r c cc uu dt du R L dtu d LC =++22 2.5 图题2.5所示为一弹簧—质量—阻尼器系统,列写外力)(t F 与质量块位移)(t y 之间)(t图题2.5答案:)()()()(22t f t ky dt t dy f dtt y d m =++ 2.6 列写图题2.6所示电路的微分方程,并确定系统的传递函数,其中r u 为输入变量,cu 为输出变量。

自动控制原理第二章习题课答案

自动控制原理第二章习题课答案

第二章习题课
(2-8)
2-8 设有一个初始条件为零的系统,系 统的输入、输出曲线如图,求G(s)。
δ (t)
c(t)
T
解: t
δ (t)
c(t)
T
K 0
K 0
t
-TS K K K c(t)= T t- T (t-T) C(s)= Ts2 (1-e ) C(s)=G(S)
第二章习题课
(2-9)
2-9 若系统在单位阶跃输入作用时,已 知初始条件为零的条件下系统的输出响 应,求系统的传递函数和脉冲响应。 -t 1 -2t R ( s )= c(t)=1-e +e r(t)=I(t) s 2+4s+2) (s 1 1 1 解: C(s)= s - s+2 + s+1 = s(s+1)(s+2) 2+4s+2) ( s G(S)=C(s)/R(s) = (s+1)(s+2)
第二章习题课
(2-1b)
2-1(b) 试建立图所示电路的动态微分方 程。 duc CL d2uo duo du L ic= = +C o L 2 R 1 uL= dt R2 dt dt R2 dt + + 2 uo C CL d uoR2 duo uo u u + +C i1= i o i2= R ui=u1+uo 2 dt - R2 R2 dt - 2 输入量为ui,输出量为uo。 duc d(ui-uo) u1=i1R1 ic=C dt = dt diL uo u =L L dt iL=i2= i1=iL+ic R2
2-11(b) 求系统的 传递函数
G3(s) R(s)

(完整版)自动控制原理课后习题及答案

(完整版)自动控制原理课后习题及答案

第一章绪论1-1 试比较开环控制系统和闭环控制系统的优弊端.解答: 1 开环系统(1)长处 :构造简单,成本低,工作稳固。

用于系统输入信号及扰动作用能早先知道时,可获得满意的成效。

(2)弊端:不可以自动调理被控量的偏差。

所以系统元器件参数变化,外来未知扰动存在时,控制精度差。

2闭环系统⑴长处:不论因为扰乱或因为系统自己构造参数变化所惹起的被控量偏离给定值,都会产生控制作用去消除此偏差,所以控制精度较高。

它是一种按偏差调理的控制系统。

在实质中应用宽泛。

⑵弊端:主要弊端是被控量可能出现颠簸,严重时系统没法工作。

1-2什么叫反应?为何闭环控制系统常采纳负反应?试举例说明之。

解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反应。

闭环控制系统常采纳负反应。

由1-1 中的描绘的闭环系统的长处所证明。

比如,一个温度控制系统经过热电阻(或热电偶)检测出目前炉子的温度,再与温度值对比较,去控制加热系统,以达到设定值。

1-3试判断以下微分方程所描绘的系统属于何种种类(线性,非线性,定常,时变)?2 d 2 y(t)3 dy(t ) 4y(t ) 5 du (t ) 6u(t )(1)dt 2 dt dt(2) y(t ) 2 u(t)(3)t dy(t) 2 y(t) 4 du(t) u(t ) dt dtdy (t )u(t )sin t2 y(t )(4)dtd 2 y(t)y(t )dy (t ) (5)dt 2 2 y(t ) 3u(t )dt(6)dy (t ) y 2 (t) 2u(t ) dty(t ) 2u(t ) 3du (t )5 u(t) dt(7)dt解答: (1)线性定常(2)非线性定常 (3)线性时变(4)线性时变(5)非线性定常(6)非线性定常(7)线性定常1-4 如图 1-4 是水位自动控制系统的表示图, 图中 Q1,Q2 分别为进水流量和出水流量。

控制的目的是保持水位为必定的高度。

自动控制原理第二章习题答案详解

自动控制原理第二章习题答案详解

习题习题2-1 列写如图所示系统的微分方程习题2-1附图习题2-2 试建立如图所示有源RC网络的动态方程习题2-2附图习题2-3 求如图所示电路的传递函数, 并指明有哪些典型环节组成(a)(b)(c)习题2-3附图习题2-4 简化如图所示方块图, 并求出系统传递函数习题2-4附图习题2-5 绘制如下方块图的等效信号流图, 并求传递函数图(a)图(b)习题2-5附图习题2-6 系统微分方程组如下, 试建立对应信号流图, 并求传递函数。

),(d )(d )(),(d )(d ),()()()(),()(),(d )(d )(),()()(54435553422311121t y tt y T t x k t x k tt x t y k t x t x t x t x k t x t x k tt x t x t y t r t x +==--==+=-=τ习题2-7 利用梅逊公式直接求传递函数。

习题2-7附图习题2-8 求如图所示闭环传递函数, 并求(b)中)(s H x 的表达式, 使其与(a)等效。

图(a )图(b)习题2-8附图习题2-9 求如下各图的传递函数(a)(b)(c)习题2-9附图习题2-10 已知某些系统信号流图如图所示, 求对应方块图(a )(b)(c)(d)习题2-10附图习题答案习题2-1答案:解:设外加转矩M 为输入量,转角θ为输出量,转动惯量J 代表惯性负载,根据牛顿定律可得:θθθ1122d d d d k t f M tJ --=式中,1,1,k f 分别为粘性阻尼系数和扭转弹性系数,整理得:M k t f tJ =++θθθ1122d d d d习题2-2答案:解: 设r u 为输入量,c u 为输出量,,,,21i i i 为中间变量,根据运算放大器原理可得:1221d d R u i R u i t u c i r c c ===消去中间变量可得: r c c u R Ru t u C R 122d d -=+ 习题2-3答案: 解: (a)11111111221212211121121120++=+++=+++=+++=Ts Ts s R R R C R s C R R sC R sC R sC sC R R sC R u u i β其中:221121,R R R C R T +==β, 一阶微分环节,惯性环节.(b)21121212111221122011//1R R s C R R R s C R R R sC R R R sC R R u u i+++=++=+= 11111111212121221121111++=+∙++∙+=+++=Ts Ts s C R R R R s C R R R R R R s C R R s C R αα其中 α=+=21211,R R R T C R , 一阶微分环节,惯性环节.(c)s C R s C R s C R s C R s C R sC R R sC sC R u u i 21221122112211220)1)(1()1)(1(1//11+++++=+++= 由微分环节,二阶振荡环节组成。

自动控制原理作业题(后附答案)

自动控制原理作业题(后附答案)

自动控制原理作业题(后附答案)-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII自动控制原理作业题第一章基本概念一、简答题1 简述自动控制的基本概念2 简述自动控制系统的基本组成3 简述控制系统的基本控制过程4 简述自动控制系统的基本分类5 试比较开环控制和闭环控制的特点6 简述自动控制系统的性能评价指标二、分析计算题1 液位自动控制系统如图所示。

试分析该系统工作原理,画出系统原理框图,指出被控对象、被控参量和控制量2 发动机电压调节系统如图所示,试分析其工作原理,画出系统原理框图,指出其特点。

3液面控制系统如图所示。

试分析该系统的工作原理,指出系统中的干扰量、被控制量及被控制对象,并画出系统的方框图。

4控制系统如图所示。

简述该系统的工作原理,说明该系统的给定值、被控制量和干扰量,并画出该系统的方块图。

图1-7发电机-电动机调速系统操纵电位计发电机伺服电机减速器负载Θr给定值Ur 前置放大器功放执行元件被控量Wm这是一个开环控制的例子+E-EUr操纵电位计R1R2R3R4放大器直流发电机伺服电机Wd Wm发电机-电动机调速系统减速器负载5火炮随动控制系统如图所示。

简述该系统的工作原理,并画出该系统的原理框图。

第二章 线性控制系统的数学模型一、简答题1 简述建立控制系统数学模型的方法及其数学表示形式2 简述建立微分方程的步骤3 简述传递函数的基本概念及其特点4 给出组成控制系统典型基本环节二、分析计算题1 有源电网络如图所示,输入量为)(1t u ,输出量为)(2t u ,试确定该电网络的传递函数2 电枢控制式直流电动机原理图如图所示,输入量为)(1t e ,输出量为)(t o θ,试确定其微分方程。

图中,电动机电枢输入电压;电动机输出转角;电枢绕组的电阻;电枢绕组的电感;流过电枢绕组的电流;电动机感应电势;电动机转矩;电动机及负载这和到电动机轴上的转动惯量;电动机及负载这和到电动机轴上的粘性摩擦系数。

自动控制原理课后习题答案第二章

自动控制原理课后习题答案第二章
图2-6控制系统模拟电路
解:由图可得
联立上式消去中间变量U1与U2,可得:
2-8某位置随动系统原理方块图如图2-7所示。已知电位器最大工作角度,功率放大级放大系数为K3,要求:
(1) 分别求出电位器传递系数K0、第一级与第二级放大器得比例系数K1与K2;
(2) 画出系统结构图;
(3) 简化结构图,求系统传递函数。
证明:(a)根据复阻抗概念可得:
即 取A、B两点进行受力分析,可得:
整理可得:
经比较可以瞧出,电网络(a)与机械系统(b)两者参数得相似关系为
2-5 设初始条件均为零,试用拉氏变换法求解下列微分方程式,并概略绘制x(t)曲线,指出各方程式得模态。
(1)
(2)
2-7由运算放大器组成得控制系统模拟电路如图2-6所示,试求闭环传递函数Uc(s)/Ur(s)。
2-10试简化图2-9中得系统结构图,并求传递函数C(s)/R(s )与C(s)/N(s)。
图2-9 题2-10系统结构图
分析:分别假定R(s)=0与N(s)=0,画出各自得结构图,然后对系统结构图进行等效ቤተ መጻሕፍቲ ባይዱ换,将其化成最简单得形式,从而求解系统得传递函数。
解:(a)令N(s)=0,简化结构图如图所示:
可求出:
令R(s)=0,简化结构图如图所示:
所以:
(b)令N(s)=0,简化结构图如下图所示:
所以:
令R(s)=0,简化结构图如下图所示:
2-12 试用梅逊增益公式求图2-8中各系统信号流图得传递函 数C(s)/R(s)。
图2-11 题2-12系统信号流图
解:
(a)存在三个回路:
存在两条前向通路:
所以:
(3)简化后可得系统得传递函数为

自动控制原理第二章课后习题答案(免费)

自动控制原理第二章课后习题答案(免费)

⾃动控制原理第⼆章课后习题答案(免费)⾃动控制原理第⼆章课后习题答案(免费)离散系统作业注明:*为选做题2-1 试求下列函数的Z 变换(1)()E z L =();n e t a = 解:01()[()]1k k k z E z L e t a z z z aa∞-=====--∑ (2) ();at e t e -= 解:12211()[()][]1...1atakT k aT aT aTaT k z E z L e t L ee z e z e z z e e z∞----------=====+++==--∑2-2 试求下列函数的终值:(1)112();(1)Tz E z z --=-解: 11111()(1)()1lim lim lim t z z Tz f t z E z z---→∞→→=-==∞- (2)2()(0.8)(0.1)z E z z z =--。

解:211(1)()(1)()0(0.8)(0.1)lim lim lim t z z z z f t z E z z z →∞→→-=-==--2-3* 已知()(())E z L e t =,试证明下列关系成⽴:(1)[()][];n z L a e t E a=证明:()()nn E z e nT z∞-==∑00()()()()[()]n n n n n n z z E e nT e nT a z L a e t a a ∞∞--=====∑∑ (2)()[()];dE z L te t TzT dz=-为采样周期。

证明:11100[()]()()()()()()()()()nn n n n n n n n n L te t nT e nT zTz ne nT z dE z de nT z dz dz e nT n zne nT z ∞∞---==∞-=∞∞----======-=-∑∑∑∑∑所以:()[()]dE z L te t Tzdz=- 2-4 试求下图闭环离散系统的脉冲传递函数()z Φ或输出z 变换()C z 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4 3
0.1
图 3-1 二阶控制系统的单位阶跃响应
解 在单位阶跃作用下响应的稳态值为 3,故此系统的增益不是 1,而是 3。系统模型为
(s)
s2
3
2 n
2n s
2 n
然后由响应的 p % 、 t p 及相应公式,即可换算出 、 n 。
p%
c(t p ) c() c()
4
3
3
33%
t p 0.1(s)
P1 G1G2
1 1
P2 G2G4
2 1
因此,传递函数为
C(s) P11 P2 2
R(s)
G2G1 G4G2 1 G1G2G3
3
自动控制原理 C 习题答案(第二章)
2.4 用梅森公式求系统传递函数。
R(S)

_
+ G1(s)
- _
G2(s)
+ C(S)
+
图 2-4 解: 单独回路 5 个,即
L1
1 R
1 C1S
1 R1C1S
11
1
L2
R2
C2S
R2C2 S
L3
1 C1S
1 R2
1 R2C1S
回路相互不接触的情况只有 L1 和 L2 两个回路。则
L12
L1L2
1 R1C1R2C2S 2
由上式可写出特征式为:
1
( L1
L2
L3 )
L1 L2
1
1 R1C1S
1 R2C2 S
1 R2C1S
1 R1C1R2C2S 2
益 K1 和速度反馈系数 Kt 。同时,确定在此 K1 和 Kt 数值下系统的延迟时间、上升时间和调节时间。
R(s)
C(s)
K/s(s+1)
1+Kts
图 3-2
解 由图示得闭环特征方程为
即 由已知条件
解得 于是
s 2 (1 K1Kt )s K1 0
K1
2 n

t
1
K
t
2 n
2 n
p % e t / 1t2 0.15
2700
(2) 求幅相曲线与负实轴的交点
G
(
j
)
(82
3 - )j 10 2 (2 2 -1)2 9
-
2
1

83 - 0 2 0.125
102 -1
2 (2 2 -1)2 9 2
20.125 10.7
2需补做虚线圆弧,奈氏曲线如右图
ω=0+
-10.7 -1
Im ω=∞ 0
ω=0
零时为 2 。由于第一列变号两次,故有两个根在右半 s 平面,所以系统是不稳定的。
3.5
解;在求解系统的稳态误差前必须判定系统是否稳定; 系统特征方程为 0.1s3 1.5s2 5s 50 0 由劳斯判据判断
劳斯行列式为
s3
0.1
5
s2
1.5
50
s1
5
3
s0
50
由于特征方程式中所有系数均为正值,且劳斯行列表左端第一列的所有项均具有正号,满足系统
1 Vc2 (S ) I 2 (S ) C2s
(2) 将以上四式用方框图表示,并相互连接即得 RC 网络结构图,见图 2-1(a)。
2-1(a)。
(3) 用梅逊公式直接由图 2-1(a) 写出传递函数 Uc(s)/Ur(s) 。
G GK K 独立回路有三个:
1
自动控制原理 C 习题答案(第二章)
L1 G1G2 L2 G1G2H1
两个互不接触的回路没有,于是,得特征式为
1 La
1 G1G2 G1G2H1
从输入 R 到输出 C 的前向通路共有 1 条,其前向通路总增益以及余因子式分别为
P1 G1G2
因此,传递函数为
1 1
C(s) P11 R(s)
G1G2
1 G1G2 G1G2 H1
稳定的充分和必要条件,所以系统是稳定的。
3-4 已知系统特征方程为 s5 s4 2s3 2s2 3s 5 0试判断系统稳定性。
解 本例是应用劳斯判据判断系统稳定性的一种特殊情况。如果在劳斯行列表中某一行的第 一列项等于零,但其余各项不等于零或没有,这时可用一个很小的正数 ε 来代替为零的一项,从 而可使劳斯行列表继续算下去。 劳斯行列式为
s5
1
2
3
s4
1
2
5
s3
0
2
s2
2 2
5
s1
4 4 5 2
2 2
s0
5
9
自动控制原理 C 习题答案(第二章) 由劳斯行列表可见,第三行第一列系数为零,可用一个很小的正数 ε 来代替;第四行第一列 系数为(2ε+2/ε,当 ε 趋于零时为正数;第五行第一列系数为(-4ε-4-5ε2)/(2ε+2),当 ε 趋于
L1 G1 L2 G1G2 L3 G2 L4 G1G2 L5 G1G2
于是,得特征式为
两个互不接触的回路没有
1 La
1 G1 G2 G1G2
从输入 R 到输出 C 的前向通路共有 4 条,其前向通路总增益以及余因子式分别为
P1 G1
1 1
P2 G2 P3 G1G2
2 1 3 1
t p n
0.8
1
2 t
t 0.517 , n 4.588 s 1
K1 21.05
Kt
2
t
1 n
K1
0.178
td
1
0.6 t
0.2
2 t
n
0.297s
t
r
n
1
2 t
arccost
n
1
2 t
0.538s
8
ts
3.5 t n
1.476 s
自动控制原理 C 习题答案(第二章)
2
自动控制原理 C 习题答案(第二章)
图 2-2 系统结构图的简化
2.3 化简动态结构图,求 C(s)/R(s)
图 2-3 解: 单独回路 1 个,即
两个互不接触的回路没有 于是,得特征式为
L1 G1G2G3
1 La 1 G1G2G3
从输入 R 到输出 C 的前向通路共有 2 条,其前向通路传递函数以及余因子式分别为
ess
1 kp
kv
ka
0 2 10
, 型系统
10
自动控制原理 C 习题答案(第二章)
第五章 线性系统的频域分析法
5.1 已知系统的开环传函 G(s)H (s)
10
,用奈氏判据(画出奈氏曲线)
s(2s 1)(0.2s 1)
判别闭环系统的稳定性。
解:G( j)
10
j(2 j 1)(0.2 j 1)
(1) 确定起点和终点
初始相角为
(
k j)
0
, 2
1,故初始相角为-90,
模值为 k ( j)
0
终点:
模值为 (
k j)nm
0
, 终止相角为 (
k j)nm
(n
m)
900
2700
(2) 求幅相曲线与负实轴的交点
G(
j)
2.2 2
10 j(1
0.42 )

1 0.42 0 2 2.5
稳定的充分和必要条件,所以系统是稳定的。
G(s)
50
10
可知 v=1,K=10
s(0.1s 1)(s 5) s(0.1s 1)(0.2s 1)
ess
1 kp
kv
ka
0 k
, 型系统

r(t) 2t

ess kv
k
2 10
0.2
当 r(t) 2 2t t 2
仅考虑输入 N(S)作用系统时,单独回路 2 个,即
L1 G1G2 L2 G1G2H1
两个互不接触的回路没有,于是,得特征式为
1 La
1 G1G2 G1G2H1
从输入 N 到输出 C 的前向通路共有 2 条,其前向通路总增益以及余因子式分别为
P1 1
1 1 G1G2 H1
P2 G2G3
如果二端元件是电阻 R、电容 C 或电感 L,则复阻抗 Z(s)分别是 R、1/C s 或 L s 。
(1) 用复阻抗写电路方程式:
I1(S)
[U
r
(S)
U C1 (S )]
1 R1
U
c1 ( S
)
[
I1
(S
)
I
2
(S
)]
1 C1s
1 I 2 (S ) [U c1(S ) U c2 (S )] R2
L1 L2 两 个 互 不 接 触 的 回 路 , 于 是 , 得 特 征 式 为
1 La LbLc
1 G1H1 G3H2 G1G2G3H1H2 G1G3H1H2
从输入 R 到输出 E 的前向通路共有 2 条,其前向通路总增益以及余因子式分别为
P1 1
1 1 G3H 2
6
自动控制原理 C 习题答案(第二章)
P2 G3G4 H1H 2
因此,传递函数为
E(s) P11 P22
R(s)
2 1
1 G3H 2 G3G4 H1H 2
1 G1H1 G3H 2 G1G2G3H1H 2 G1G3H1H 2
第三章 线性系统的时域分析法
3-1 设二阶控制系统的单位阶跃响应曲线如图 3-1 所示。试确定系统的传递函数。
G(
j)
10 2.22
10 2.2 * 2.5
相关文档
最新文档