应用人因可靠性模型分析一个人因事件

合集下载

应用人因可靠性模型分析一个人因事件解读

应用人因可靠性模型分析一个人因事件解读

建模与计算
a1 A1 a2 b1 B1 b2 S B2 b3 B3 F2 图1 操纵员启动低压安注和开启GCTa 阀HRA 事件树 F1 A2 a3 A3
• 其中:a1—操纵员成功完成安注; A1—操纵员未成功完成安注; b1—操纵员成功完成GCTa 打开; B1—操纵员未成功完成GCTa 打开;
-0.22 0.00 0.44 0.78 0.92
建模与计算
行为类型
技术型
0.407
1.2
0.7
规则型
0.601
0.9
0.6
知识型
0.791
0.8
0.5
建模与计算
• T1/2=T1/2,n× (1+K1) × (1+K2) × (1+K3)=5.12 min • α=0.601,β=0.9,γ=0.6 (规则型) • 将上述数据代入P2计算式,得P2=3.66×10-4
建模与计算
操作员经验(K1) 1.专家,受过很好训练 2.平均训练水平 3.新手,最小训练水平 心理压力(K2) 1.严重应激情景 2.潜在应激情景/高工作负荷 3.最佳应激情况/正常 4.低度应激/放松情况
人机界面(K3)
-0.22 0.00 0.44 0.44 0.28 0.00 0.28
1.优秀 2.良好 3.中等(一般) 4.较差 5.极差
应用人因可靠性模型分析一个 人因事件
——核电站系统回路的小破口
事件名称及成功准则:
• C工况下回路产生一小破口,操作员未及时启动 低压安注且打开所有GCTa阀。 • 在事故发生后41 分钟内启动两列低压安注且成功 打开三个控制器GCT131,132,133VV 中的至 少两个。

《人因可靠性分析》课件

《人因可靠性分析》课件

目的与意义
目的
HRA的目的是识别和减少人为错误,从而提高系统的可靠性、安全性和有效性。
意义
通过HRA,可以更好地理解人为因素在系统中的影响,为系统设计、培训、操作和维护提供依据,减少人为错误 导致的损失和风险。
发展历程与现状
发展历程
HRA起源于20世纪70年代,随着人们对人为因素在系统中的重要性的认识不断提高,HRA逐渐成为 可靠性工程和人为因素学科的重要分支。
交通领域应用
交通领域也是人因可靠性分析应用的重要领域之一,涉及铁路、公路、水路等多个方面。在交通领域 中,操作人员的失误可能导致交通事故和人员伤亡。人因可靠性分析可以帮助企业评估操作人员在列 车驾驶、船舶驾驶等过程中的失误概率,进而优化交通管理和调度计划。
例如,在铁路运输过程中,人因可靠性分析可以帮助企业评估列车驾驶员在列车控制和驾驶过程中的 失误概率,进而优化列车控制和调度系统,提高铁路运输的安全性和效率。
03
人因可靠性分析应用
工业领域应用
工业领域是人因可靠性分析应用的重 要领域之一,涉及化工、电力、钢铁 等多个行业。通过人因可靠性分析, 可以评估操作人员在实际操作过程中 的失误概率,进而优化操作流程和降 低事故风险。
VS
例如,在化工行业中,人因可靠性分 析可以帮助企业评估操作人员在生产 过程中的失误率,进而优化工艺流程 和操作规程,提高生产安全性和产品 质量。
人的可靠性分析方法(HRA)
总结词
综合运用多种方法和技术,全面评估人在完成特定任务时的可靠性。
详细描述
HRA是一种综合性的可靠性分析方法,它综合运用多种方法和技术,包括FMEA、 HEPASIM等,全面评估人在完成特定任务时的可靠性。HRA不仅关注人的失误率,还 考虑了人的适应性、培训情况、工作负荷等因素,能够提供更为全面的可靠性分析结果

人因可靠性分析(最新版)

人因可靠性分析(最新版)

( 安全技术 )单位:_________________________姓名:_________________________日期:_________________________精品文档 / Word文档 / 文字可改人因可靠性分析(最新版)Technical safety means that the pursuit of technology should also include ensuring that peoplemake mistakes人因可靠性分析(最新版)第一节人因可靠性研究一、人因可靠性分析的研究背景随着科技发展,系统及设备自身的安全与效益得到不断提高,人-机系统的可靠性和安全性愈来愈取决于人的可靠性。

核电厂操纵员可靠性研究是“核电厂人因工程安全”的主要组成部分。

在核电厂发生的重大事件和事故中,由人因引起的已占到一半以上,震惊世界的三里岛和切尔诺贝利核电厂事故清楚地表明,人因是导致严重事故发生的主要原因。

据统计,(20~90)%的系统失效与人有关,其中直接或间接引发事故的比率为(70~90)%,这其中包括许多重大灾难事故,如:l印度Bhopal化工厂毒气泄漏l切尔诺贝利核电站事故l三里岛核电站事故l挑战者航天飞机失事因此,如何把人的失误对于风险的后果考虑进去,以及如何揭示系统的薄弱环节,在事故发生之前加以防范,便成为亟待解决的重要问题。

而这些都以详尽和准确的人因可靠性分析(HumanReliabilityAnalysis,HRA)为基础。

对人因加以研究,在核电厂各个阶段应用人因工程的原则来防止和减少人的失误,已成为国际上核电事业发展所面临的重大课题。

目前,我国核电厂操纵员的可靠性研究还处于起步阶段。

在理论方面,以往的研究主要停留在利用国外较成熟的理论模型阶段,对理论模型的深入研究较为缺乏;在实际方面,所进行的研究还未能与我国的核电厂实际运行紧密配合。

因此,对我国核电厂操纵员进行可靠性研究有着重要的意义:第一,填补在高风险情况下人对事故响应的可靠性数据的空白;第二,了解操纵员或其他电厂人员如何对事故进行响应,改进核电厂的操作规程;第三,为改善安全管理系统提供建议;第四,为提高操纵员的技术与素质培训提供条件。

典型人因可靠性分析方法评述[1]

典型人因可靠性分析方法评述[1]

国防科技大学学报第29卷第2期JOURNAL OF NATIONAL UNIVERSITY OF DEFENSE TECHNOLOGY VoI.29No.22007文章编号:1001-2486(2007)02-0101-07典型人因可靠性分析方法评述*谢红卫,孙志强,李欣欣,李政仪,张明,史秀建,李龙(国防科技大学机电工程与自动化学院,湖南长沙410073)摘要:对比较典型的第一代和第二代人因可靠性分析方法进行综述。

首先讨论人因可靠性的基本定义;然后选取几种比较有代表意义的第一代方法进行对比分析,以此为基础介绍第一代方法的基本思想和特征;接下来分析第二代人因可靠性分析方法中两种典型方法,讨论它们的基本特点,并分析它们相对于第一代人因可靠性分析方法的优势以及自身的一些问题;最后展望人因可靠性分析方法的发展趋势。

关键词:人因可靠性分析;HRA方法;性能形成因子;认知模型;事件树中图分类号:TP307 文献标识码:AAn Overview of Typical Methods for Human Reliability AnalysisXIE Hong-wei,SUN Zhi-giang,LI Xin-xin,LI Zheng-yi,ZHANG Ming,SHI Xiu-jian,LI Long (CoIIege of Mechatronic Engineering and Automation,NationaI Univ.of Defense TechnoIogy,Changsha410073,China)Abstract:Some typicaI methods for human reIiabiIity anaIysis are surveyed.FirstIy,the definition of human reIiabiIity is discussed.SecondIy,severaI typicaI methods are chosen from the first generation methods for comparison and review.Their basic characters and Iimitations are discussed.ThirdIy,two typicaI methods of the second generation are anaIyzed in detaiI.The comparison between the above and the preceding methods is carried out whiIe their advantages and drawbacks are presented. FinaIIy,further research suggestion is proposed.Key words:Human ReIiabiIity AnaIysis(HRA);HRA method;Performance Shaping Factor(PSF);cognitive modeI;event tree人因可靠性分析HRA(Human ReIiabiIity AnaIysis)的研究开始于20世纪50年代。

《人因可靠性分析》课件

《人因可靠性分析》课件

人的认知可靠性与失误率
人的认知可靠性:人的认知能力、注意力、记忆力等对任务完成的影响 失误率:人在执行任务时可能出现的错误率 影响因素:疲劳、压力、情绪、环境等对失误率的影响 提高认知可靠性的方法:培训、休息、改善工作环境等
人误分类与原因分析
人误分类:操作失误、判断失误、决策失误等 操作失误原因:技能不足、注意力不集中、疲劳等 判断失误原因:信息不足、经验不足、情绪影响等 决策失误原因:信息不足、经验不足、情绪影响等 人误预防措施:提高技能、加强培训、改善工作环境等
07
总结与展望
人因可靠性分析的总结
人因可靠性分析的重要性:确保 系统安全、提高工作效率
人因可靠性分析的应用领域:航 空、航天、核能、医疗等
添加标题
添加标题
添加标题
添加标题
人因可靠性分析的方法:定性分 析、定量分析、综合分析
人因可靠性分析的发展趋势:智 能化、自动化、集成化
人因可靠性分析的发展趋势与展望
确保宇航员和地面人员的 安全
提高航天器的可靠性和性 能
优化航天器的设计和操作 流程
提高航天任务的成功率和 效率
人因可靠性分析在交通运输领域的应用
驾驶员疲劳监测: 通过分析驾驶员 的行为和生理数 据,预测驾驶员 的疲劳程度,及 时提醒驾驶员休 息。
交通信号控制: 通过分析交通流 量和驾驶员行为 数据,优化交通 信号控制策略, 提高交通效率和 安全性。
人因可靠性分析的模型
添加标题
人因可靠性分析模型:包括人因可靠性模型、任务可 靠性模型和系统可靠性模型
添加标题
人因可靠性模型:包括人的生理、心理、行为等方面 的因素
添加标题
任务可靠性模型:包括任务难度、任务复杂度、任务 环境等方面的因素

人因可靠性分析(最新版)

人因可靠性分析(最新版)

( 安全技术 )单位:_________________________姓名:_________________________日期:_________________________精品文档 / Word文档 / 文字可改人因可靠性分析(最新版)Technical safety means that the pursuit of technology should also include ensuring that peoplemake mistakes人因可靠性分析(最新版)第一节人因可靠性研究一、人因可靠性分析的研究背景随着科技发展,系统及设备自身的安全与效益得到不断提高,人-机系统的可靠性和安全性愈来愈取决于人的可靠性。

核电厂操纵员可靠性研究是“核电厂人因工程安全”的主要组成部分。

在核电厂发生的重大事件和事故中,由人因引起的已占到一半以上,震惊世界的三里岛和切尔诺贝利核电厂事故清楚地表明,人因是导致严重事故发生的主要原因。

据统计,(20~90)%的系统失效与人有关,其中直接或间接引发事故的比率为(70~90)%,这其中包括许多重大灾难事故,如:l印度Bhopal化工厂毒气泄漏l切尔诺贝利核电站事故l三里岛核电站事故l挑战者航天飞机失事因此,如何把人的失误对于风险的后果考虑进去,以及如何揭示系统的薄弱环节,在事故发生之前加以防范,便成为亟待解决的重要问题。

而这些都以详尽和准确的人因可靠性分析(HumanReliabilityAnalysis,HRA)为基础。

对人因加以研究,在核电厂各个阶段应用人因工程的原则来防止和减少人的失误,已成为国际上核电事业发展所面临的重大课题。

目前,我国核电厂操纵员的可靠性研究还处于起步阶段。

在理论方面,以往的研究主要停留在利用国外较成熟的理论模型阶段,对理论模型的深入研究较为缺乏;在实际方面,所进行的研究还未能与我国的核电厂实际运行紧密配合。

因此,对我国核电厂操纵员进行可靠性研究有着重要的意义:第一,填补在高风险情况下人对事故响应的可靠性数据的空白;第二,了解操纵员或其他电厂人员如何对事故进行响应,改进核电厂的操作规程;第三,为改善安全管理系统提供建议;第四,为提高操纵员的技术与素质培训提供条件。

人因工程学案例分析

人因工程学案例分析

可靠性因素
人性化设计考虑的因素

需求因素:
生理需求是人们本身的器官、感官必要的需 求,心理需求要求产品不仅能用,而且好用, 使人感到极大的舒适和方便

人因工程学因素: 人机工程学应用人体测量学、人体力 学、生理学和心理学等学科的研究方 法 可靠性因素:

没有可靠性或可靠性过低的 工业产品在使用中因容易失效而经常出现 故障,甚至带来不安全因素
牙齿患病的原因统统归于鬼神所起的作用用手指或柳枝揩齿来清洁牙齿英国人威廉?阿迪斯在监狱发明世界上第一支布牙刷多束软尼龙牙刷普通牙刷电动牙刷声波牙刷指套牙牙刷的历史奴隶制社会封建社会1870年左右1948年今天龋齿牙龈炎牙周炎根尖周炎牙髓炎等各种牙病龋齿牙周炎牙质磨损不干净引起其他牙病清洁不干净材质过硬坚固牙刷的设计理念企业在牙刷设计上没有充分结合工效学知识没有完全考虑到现代人对牙刷的需求人们对健康越来越关注由此对牙刷的要求也越来越高进而研究工效学在牙刷中的应用变得十分必要因此我们必须要从人性的角度出发考虑多种因素人性化设计考虑的因素需求因素可靠性因素人机工程学因素人性化设计考虑的因素生理需求是人们本身的器官感官必要的需求心理需求要求产品不仅能用而且好用使人感到极大的舒适和方便需求因素
牙刷的历史
奴隶制社会 牙齿患病的原因 统统归于鬼神所 起的作用 用手指或柳枝揩 齿来清洁牙齿 英国人威廉•阿迪斯 在监狱发明世界上第 一支布牙刷 多束软尼龙牙刷 普通牙刷、电动牙刷、 声波牙刷、指套牙 刷…… 龋齿、牙龈炎、牙周炎 根尖周炎、牙髓炎 等各种牙病 龋齿、牙周炎 牙骨疏松等牙病 牙质磨损、不干净 引起其他牙病 清洁不干净、材质过硬
封建社会
1870年固
牙刷的设计理念
企业在牙刷设计上没有充分结合工效学知 识,没有完全考虑到现代人对牙刷的需求

系统可靠性设计中的人因可靠性建模案例分享(Ⅰ)

系统可靠性设计中的人因可靠性建模案例分享(Ⅰ)

系统可靠性设计中的人因可靠性建模案例分享在工业生产中,系统可靠性设计是一项非常重要的工作。

在一个复杂的系统中,往往存在着各种各样的设备和人员。

而人因可靠性建模就是要考虑到人的因素对系统可靠性的影响,通过建模分析,找出潜在的风险和问题,从而进行有效的预防和管理。

下面我们就来分享一些系统可靠性设计中的人因可靠性建模案例。

案例一:医疗设备使用中的人因可靠性建模在医疗设备的设计中,人的因素是至关重要的。

一个优秀的医疗设备应该易于操作,并且在人员操作失误的情况下能够及时发现并纠正。

在某医疗设备设计项目中,工程师们通过对医护人员的操作习惯和使用场景进行了深入的调研和分析,结合人因可靠性建模的方法,建立了一套完整的使用案例和人员操作流程模型。

在模型中,他们考虑了不同人员的操作技能水平、注意力集中程度以及紧急情况下的反应能力等因素,从而建立了一个较为准确的人因可靠性模型。

通过模拟实验和反复测试,他们成功地发现了系统设计中的一些问题,并在最终方案中进行了相应的调整和改进。

案例二:交通设施运营中的人因可靠性建模在城市交通系统中,人的因素同样占据着重要地位。

一个好的交通系统需要充分考虑到乘客的安全、舒适和便利。

在某城市地铁建设项目中,工程师们通过人因可靠性建模,分析了不同运营场景下的乘客行为和员工操作,从而建立了一套涵盖了各种情况的模型。

通过实地观察和模拟实验,他们成功地发现了一些人为因素对系统可靠性的影响,比如站台上的拥挤情况对安全的影响、列车员的操作习惯对车辆运行的影响等。

最终,他们通过对模型结果的分析,对地铁车厢的设计和员工培训提出了一些有益的建议和改进方案。

案例三:工业生产中的人因可靠性建模在工业生产中,人因可靠性建模尤为重要。

在某汽车工厂的自动化生产线设计中,工程师们通过对员工操作流程和工艺参数的模拟实验,发现了一些潜在的人为因素导致的系统故障和事故。

比如,在某个工序中,由于工人的操作失误导致了零部件的损坏,从而影响了整个生产线的稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

事件分析
• 该事件可分为三个阶段 1. 操纵员发现“安全壳空气放射性活度高”报警 信号且进入DEC 规程; 2. 在DEC 规程的引导下,操纵员进入A10 规程作 出启动低压安注和开启GCTatm的判断; 3. 操纵员执行启动低压安注和开启GCTatm 的动 作。
建模分析
1. 根据操纵员培训情况,操纵员不能发现报警信 号且成功进入DEC 规程的概率P1 可认为非常小。 2. 操纵员进入DEC 规程后需作的诊断均按规程书 DEC、A10 作出,所以其行为为规则型,可用 HCR 模式计算其总的诊断失误概率P2。 3. 根据访谈,操纵员执行A10 规程未能作出投入 低压安注并开启GCT 阀的指令的概率非常小, 可忽略;操纵员启动低压安注和开启GCTatm, 其失败概率P3 可用THERP方法求出。
建模与计算
a2—值长成功纠正操纵员的错误完成安注; A2—值长未成功纠正操纵员的错误并完成安注; b2—值长成功纠正操纵员的错误并完成GCTa 打开; B2—值长未成功纠正操纵员的错误完成GCTa 打开; a3—安全工程师成功纠正值长失误完成安注; A3—安全工程师未成功纠正值长失误完成安注; b3—安全工程师成功纠正值长的失误完成GCTa 打开; B3—安全工程师未成功纠正值长的失误完成GCTa 打开。
1 6 10 3 5.01 10 1 2
建模与计算
• 对于B1: 认为未打开两个GCTa 阀为操作失误,由THERP 20-12(10)的描述,在异常工况下,操作一个 GCTa 阀的失误率为3×10-3,考虑对于一个人的 同一类操作之间为完全相关,则在操作一个 GCTa 失误的情况下,操作另一个GCTatm 阀失 误的概率由THERP 表20-17的10-18公式为1, 因此,操作两个GCTatm 阀均失误的概率为 3×10-3,考虑操纵员均为熟手且处于中等紧张程度, 由表20-16(4)将操作GCTatm 的失误率修正为 2×3×10-3= 6×10-3。
访谈与调查结论
• 事故发生到引发安全壳空气放射性活度高报警的 时间T2 为6 min。 • 根据电站假设,在RRA 连接情况下,操纵员进入 DEC 规程进行事故诊断的时间T3 为4 min。 • 操纵员对A10 规程较为熟悉,处理经验较丰富, 从开始执行A10 规程到作出具体操作指令的时间 很短,可忽略。 • 操纵员开启三个GCTa 阀和投入安注的时间T4 为 1 min。 • “安全壳空气放射性活度高”报警信号明确。
电站条件与边界
1. 在THERP 和HCR 方法具体应用中,有可能出 现有的事件人因失误概率非常小,几乎接近于0。 考虑到即使非常简单的工作,也不能排除万一 的失误机率,因此,在此次HRA中取10-4 为人 因失误率的最小截割值。 2. 事故后主控室有四名成员,即值长、副值长、 一回路操纵员、二回路操纵员。一回路操纵员 与二回路操纵员之间不考虑对对方操作或指令 的监督作用,只考虑值长对两操纵员的操作的 监督用,且操纵员与值长之间的相关度为低。
电站条件与边界
3. 安全工程师在使用SPI 规程期间不对主控室各人 员的具体的操作行为有监督作用,而只是按规 程对安全参数进行监测。但在RRA 连接状态下 或无相应规程使用的情况下,安全工程师则对 主控室内重要的操作有监督作用,且其相关性 为高。 4. 事故发生后对于主控室的操纵员的行为要考虑 不同事故情况下的心理压力对人员响应可靠性 的影响,并将该影响体现到对有关时间的修正 上。在C工况下发生事故时,考虑此时反应堆已 在停堆状态,紧张程度为较低,取0.28 的修正 因子。
建模与计算
• 事件总的失误率为:
P=P1+P2+P3 =1×10-4+3.66×10-4+2.02×10-4 =6.62×10-4
建模与计算
• 对于B2: 同A2有,
1 19 6 10 3 5.57 10 2 20
• 对于B3: 同A3有,
1 6 10 3 5.01 10 1 2
建模与计算
• 该事件树的失误路径有两个F1, F2,它们的失误 率分别为: PF1=PA1×PA2×PA3=1.2×10-3×5.57×102×5.01×10-1=3.35×10-5 PF2=PB1×PB2×PB3=6×10-3×5.57×102×5.01×10-1=1.68×10-4 总的操作失误为P3=PF1+PF2=2.02×10-4
应用人因可靠性模型分析一个 人因事件
——核电站系统回路的小破口
事件名称及成功准则:
• C工况下回路产生一小破口,操作员未及时启动 低压安注且打开所有GCTa阀。 • 在事故发生后41 分钟内启动两列低压安注且成功 打开三个控制器GCT131,132,133VV 中的至 少两个。
访谈与调查结论
• 根据热工水力学计算,操纵员需在T1=41 min 内 完成开启GCTa 阀和投入安注的动作。 • GCT131、132、133VV 三个控制器的开启方式 为按住按钮至要求的开度后放开,其人机界面良 好。安注按钮的标牌明确,周围有大小、形状、 操作方式相同的其它按钮,所以有选错的可能; 按钮为下压式两位置按钮,加盖保护以防止误操 作。 • 根据电站假设,操纵员在C 工况下有一定的心理 压力,其修正因子取0.28。
-0.22 0.00 0.44 0.78 0.92
建模与计算
行为类型
技术型
0.407
1.2
0.7
规则型
0.601
0.9
0.6
知识型
0.791
0.8
0.5
建模与计算
• T1/2=T1/2,n× (1+K1) × (1+K2) × (1+K3)=5.12 min • α=0.601,β=0.9,γ=0.6 (规则型) • 将上述数据代入P2计算式,得P2=3.66×10-4
建模与计算
应力水平 极低应力水平 最佳应力水平 中等应力水平 极高应力水平 PSF修正值 2HEP 1HEP 2HEP HEP=0.25 不确定边界 2倍范围 1倍范围 2倍范围 0.03到0.75
建模与计算
• 对于A1: 根据NUREG/CR―1278, 13 章中的定义, 两列安 注的操作动作为完全相关。考虑安注按钮所处控 制面板上有与其相似的按钮, 存在选择失误,其失 误率查THERP 表20-12(4)为5×10-4, 两列安注 按钮操作的失误率查THERP 表20-12(8)为 1×10-4,考虑操纵员均为熟手且处于中等紧张程 度,由表20-16(4)将操作安注按钮的失误率修正 为2×(1+5)×10-4=1.2×10-3。
建模与计算
a1 A1 a2 b1 B1 b2 S B2 b3 B3 F2 图1 操纵员启动低压安注和开启GCTa 阀HRA 事件树 F1 A2 a3 A3
• 其中:a1—操纵员成功完成安注; A1—操纵员未成功完成安注; b1—操纵员成功完成GCTa 打开; B1—操纵员未成功完成GCTa 打开;
THERP和HCR的补充规则
1. 对名义HEP 的修正:认为执行操作时操作人员 对事件的具体状态和后果已有较清楚的认识, 在对名义HEP修正时采取以下原则: ① 在全厂断电、ATWT 和执行U 规程后所进行的 操作失误概率,取其名义值的5倍,其它事故状 况下取名义值的2 倍。 ② 有监督作用的人员对操作人员的行为结果进行 监督,有可能通过模拟盘的信号灯、降温速率、 阀门开度指示装置、流量显示等多种途径得, 并据此发现操作人员的失误。由于获取该信息 的途径较多,因此监督人员未发现操作人员的 操作失误的概率可依据THERP 手册附表20―10 (1)取定为3×10-3。
建模与计算
操作员经验(K1) 1.专家,受过很好训练 2.平均训练水平 3.新手,最小训练水平 心理压力(K2) 1.严重应激情景 2.潜在应激情景/高工作负荷 3.最佳应激情况/正常 4.低度应激/放松情况
人机界面(K3)
-0.22 0.00 0.44 0.44 0.28 0.00 0.28
1.优秀 2.良好 3.中等(一般) 4.较差 5.极差
建模与计算
• 该事件失误概率P=P1+P2+P3
t / T 1 / 2
① 根据建模分析中第1条,可令P1=1.00×1进行诊断的时间 t=T1-T2-T4×(1+0.28)=41-6-1×1.28=33.72 min 一般诊断时间T1/2,n =T3=4 min, K1=0(平价训练水平),K2=0.28(一定的心理压 力),K3=0(人机界面良好)
建模与计算
• 相关系数的计算公式如下: 1.CD,P(B/A) =1 2.HD,P(B/A) =[1+P(B)]/2 3. MD,P(B/A) =[1+6P(B)]/7 4. LD,P(B/A) =[1+19P(B)]/20 5. ZD,P(B/A) =P(B)
建模与计算
• 对于A2: 根据电站假设,再考虑值长的紧张因子(补充规 则第①、②条),值长操作失误的概率为 2×3×10-3=6×10-3;根据《电站条件与边界》 第2条,值长对操纵员的行为有监督作用,且两者 之间的相关度为低,查THERP 表20-17公式10 -15 可得在操纵员失误的情况下值长未发现操纵 员失误的概率为:
1 19 6 10 3 5.57 10 2 20
建模与计算
• 对于A3: 根据电站假设,再考虑安全工程师的紧张因子 (补充规则第①、②条),安全工程师操作失误 的概率为2×3×10-3=6×10-3;根据《电站条件 与边界》第③条,安全工程师对值长的行为有监 督作用,且两者之间的相关度为高,查THERP 表20—17 公式10—15 可得在值长失误的情况下 STA 未发现值长失误的概率为:
相关文档
最新文档