断裂力学
材料的断裂力学分析

材料的断裂力学分析在材料科学和工程领域中,断裂力学是一门研究材料在外力作用下如何发生破坏的学科。
通过断裂力学的分析,我们可以了解材料在正常使用条件下的破坏原因,以及如何提高材料的断裂韧性和强度。
本文将对材料的断裂力学进行详细分析。
1. 断裂力学的基本概念在了解材料的断裂力学之前,我们需要了解几个基本概念。
1.1 断裂断裂是指材料在外部应力作用下发生破坏、分离的过程。
断裂可以分为韧性断裂和脆性断裂两种类型。
韧性断裂是指材料在破坏之前会出现塑性变形,具有一定的延展性;而脆性断裂是指材料在外力作用下迅速发生破坏而不发生明显的塑性变形。
1.2 断裂韧性断裂韧性是指材料抵抗断裂破坏的能力。
一个具有高断裂韧性的材料可以在外力作用下发生一定程度的塑性变形,从而使其拉伸长度增加。
1.3 断裂强度断裂强度是指材料在破坏前能够承受的最大应力。
断裂强度可以通过拉伸实验等方式进行测定。
2. 断裂力学的分析方法断裂力学的分析方法主要有线弹性断裂力学和非线弹性断裂力学两种。
2.1 线弹性断裂力学线弹性断裂力学假设材料在破坏前的行为是线弹性的,并且材料的破坏是由于应力达到了一定的临界值所引起的。
在线弹性断裂力学中,断裂过程可以通过应力强度因子和断裂韧性来描述。
2.2 非线弹性断裂力学非线弹性断裂力学考虑了材料在破坏前的非线性行为,如塑性变形、蠕变等。
非线弹性断裂力学可以更准确地预测材料的破坏行为,但其计算复杂度较高。
3. 断裂力学的应用断裂力学在材料科学和工程中具有广泛的应用。
3.1 破坏分析通过断裂力学的分析,我们可以确定材料在受力状态下的破坏原因,从而改进材料的设计和制备工艺。
例如,在航空航天领域,对材料的断裂力学进行精确分析可以提高飞行器的安全性和可靠性。
3.2 材料评估通过断裂力学的测试和分析,我们可以评估材料的断裂韧性和强度,为材料的选择和应用提供依据。
这对于许多行业来说是至关重要的,如汽车制造、建筑工程等。
3.3 研发新材料断裂力学的理论和实验研究对于开发新的高性能材料具有重要意义。
断裂力学与断裂韧度

断裂力学的研究 方法包括实验、 数值模拟和理论 分析等。
断裂力学在工程 领域中广泛应用 于结构安全评估、 材料设计、机械 部件的寿命预测 等方面。
断裂力学的应用领域
航空航天:分析飞行器的结构强度和疲劳寿命 机械工程:评估机械部件的可靠性、优化设计 土木工程:研究建筑结构的稳定性、抗震性能 生物医学:分析骨骼、牙齿等生物材料的力学性能
韧性。
材料的温度与环境
温度:随着温度的升高, 材料的断裂韧度降低
环境:在腐蚀、氧化等 恶劣环境下,材料的断 裂韧度会降低
材料的加载速率
加载速率越高,断裂韧度值越低 加载速率的变化对断裂韧度的影响与材料的种类有关 加载速率的增加会使裂纹扩展速度加快,从而提高断裂的危险性 在实际应用中,需要根据材料的种类和断裂韧度要求合理选择加载速率
断裂力学与断裂韧度
汇报人:
目录
添加目录标题
01
断裂力学的概念
02
断裂韧度的基本原理
03
断裂韧度的影响因素
04
断裂韧度在工程中的 应用
05
断裂韧度与其他力学 性能的关系
06
添加章节标题
断裂力学的概念
断裂力学的定义
断裂力学是研究 材料或结构在受 到外力作用时发 生断裂的规律和 机理的学科。
断裂力学主要关 注材料或结构的 脆性、韧性、延 展性和耐久性等 性能指标。
断裂力学的研究目的
预测材料的断裂行为
优化材料的设计和制造过程
添加标题
添加标题
评估材料的断裂韧度
添加标题
添加标题
提高工程结构的可靠性和安全性
断裂韧度的基本 原理
断裂韧度的定义
断裂韧度是材料 抵抗裂纹扩展的 能力,是材料的 重要力学性能指
断裂力学概述

断裂力学是近几十年才发展起来的一支新兴学科 ,它从宏观的连续介质力学角度出发 ,研究含缺陷或裂纹的物体在外界条件(荷载、温度、介质腐蚀、中子辐射等)作用下宏观裂纹的扩展、失稳开裂、传播和止裂规律。
断裂力学应用力学成就研究含缺陷材料和结构的破坏问题 ,由于它与材料或结构的安全问题直接相关 ,因此它虽然起步晚 ,但实验与理论均发展迅速 ,并在工程上得到了广泛应用。
例如断裂力学技术已被应用于估算各种条件下的疲劳裂纹增长率、环境问题和应力腐蚀问题、动态断裂以及确定试验中高温和低温的影响 ,并且由于有了这些进展 ,在设计有断裂危险性的结构时 ,利用断裂力学对设计结果有较大把握。
断裂力学研究的方法是:从弹性力学方程或弹塑性力学方程出发 ,把裂纹作为一种边界条件 ,考察裂纹顶端的应力场、应变场和位移场 ,设法建立这些场与控制断裂的物理参量的关系和裂纹尖端附近的局部断裂条件。
用弹性力学的线性理论研究含裂纹体在荷载作用下的力学行为和失效准则的工程学科成为线弹性断裂力学。
在分析中,可认为材料是线弹性的,并且不考虑裂纹尖端极小范围内的屈服问题。
研究含裂纹体的力学行为可以从两种观点出发,即从能量平衡观点和从裂纹尖端应力场强度的观点进行研究。
按裂纹的受力特点和位移特点,可以把它们抽象化为张开型、滑移型和撕开型三种基本类型,任何形式的裂纹,都可以看成上述三种基本类型的组合。
从应力场强度的观点研究裂纹体的力学行为和失效准则。
Ⅰ型和Ⅱ型的脆断问题归结为平面问题下含裂纹的线弹性体的线弹性力学分析,先选取满足双调和方程和边界条件的应力函数,极坐标系原点选在裂纹尖端,把裂纹看作一部分边界,就可以用弹性力学的方法求得裂纹体的应力场和位移场。
求出的应力函数为Williams应力函数,得到极坐标下应力分量表达式,通过物理方程和几何方程得到几何分量表达式。
按远场的边界条件不同可分别求出Ⅰ型和Ⅱ型的裂纹尖端领域的应力场和位移场。
Ⅲ型问题为反平面应力问题,xy方向位移为零,只有z方向位移且是xy的函数,只有两个应变分量和两个应力分量,解一个平衡方程得Ⅲ型裂纹尖端领域的应力场合位移场。
断裂力学理论及应用研究

断裂力学理论及应用研究断裂是指材料在外部加载下受到破坏产生裂纹或破片分离的物理过程,是所有材料科学中重要的研究领域之一。
断裂力学理论涉及力学、物理、化学等学科,是从宏观探讨结构构件断裂行为规律的一门学科。
本文主要从断裂力学理论的基本概念、发展历程、应用研究等方面进行探讨。
一、断裂力学理论的基本概念断裂力学理论的基本概念包括断裂韧性、应力场、应变场等。
1. 断裂韧性断裂韧性是材料断裂过程中抵抗裂纹扩展的能力。
对于材料强度越高的材料,其断裂韧性一般也越高。
一个材料的断裂韧性大小可以通过测量其断裂过程中断裂面上的裂纹扩展能量来确定。
当裂纹扩展时,其边缘会释放出能量,断裂韧性就是指在裂纹在材料中传播的过程中能够消耗这些能量的材料性质。
2. 应力场在载荷下,一个构件内的所有部分都会承受不同的应力。
应力场指的是构件内各点的应力分布状态。
应力场是描述材料内部应力状态的最基本模型。
例如,当一个材料受到拉压载荷时,其内部就会产生相应的拉伸和压缩应力。
3. 应变场应变是指材料受到外力后的形变程度,是衡量材料变形能力的重要指标。
与应力场类似,应变场指的是材料内部各点的应变状态。
例如,在机械制造过程中,材料会受到剪切应力,这会导致材料存在剪切应变。
二、断裂力学理论的发展历程断裂力学理论的发展历程可以简单划分为以下阶段:经验试验阶段、线弹性断裂力学阶段、实验与理论相结合阶段、转捩点理论阶段以及非线性断裂力学阶段。
1. 经验试验阶段经验试验阶段是断裂力学理论的雏形阶段。
在这个阶段,人们通过实验来探究材料的断裂行为,并总结出了一些经验规律。
例如,在实验中,人们发现时强度与应力之间成正比关系,这就为后来的弹性断裂力学理论的发展提供了依据。
2. 线弹性断裂力学阶段线弹性断裂力学阶段是断裂力学理论的基础阶段。
这个阶段出现了很多具有代表性的理论,例如弹性理论、能量释放率理论以及裂纹扩展跟踪技术等。
在这个阶段中,人们主要依靠线弹性理论来探究材料断裂规律。
理论与应用断裂力学

理论与应用断裂力学断裂力学是研究材料在外部载荷作用下发生裂纹和断裂的科学,它涉及材料的断裂行为、裂纹扩展规律、断裂韧性等内容,具有广泛的理论与应用价值。
断裂力学不仅是材料科学与工程的重要组成部分,还在实际工程中起着重要的作用。
在航空航天、汽车工业、建筑工程、能源领域等各个领域,断裂力学都被广泛应用,并为材料设计与结构可靠性提供了重要的理论指导。
一、断裂力学的基本原理1. 断裂力学的基本概念断裂力学是研究材料在外部载荷作用下发生裂纹和断裂的科学。
断裂是指材料在外部力作用下发生的破坏过程,其本质是裂纹的生成、扩展和相互作用。
断裂行为受到外部载荷、裂纹形态、材料性能等多种因素的影响。
2. 裂纹力学与断裂韧性裂纹力学是断裂力学的基础理论,它描述了裂纹在材料中的行为。
裂纹尖端附近的应力场具有奇异性,裂纹尖端处的应力集中导致材料发生拉伸和剪切破坏,从而导致裂纹的扩展。
断裂韧性是衡量材料抗裂纹扩展能力的参数,它描述了材料在裂纹扩展过程中所能吸收的能量大小。
3. 断裂力学的应用范围断裂力学不仅涉及金属材料、混凝土、陶瓷材料等传统材料,还包括了纳米材料、复合材料等新型材料。
它在制造领域、材料科学、产品设计等领域都有重要的应用价值。
二、断裂力学的研究方法1. 实验方法实验是研究断裂力学的重要手段。
通过拉伸试验、冲击试验、疲劳试验等实验方法,可以获得材料的断裂行为、裂纹扩展规律、断裂韧性等重要参数。
实验结果可以验证理论模型的准确性,为理论研究提供数据支持。
2. 数值模拟方法数值模拟是断裂力学研究的重要手段之一。
有限元分析、分子动力学模拟等数值方法可以模拟材料的断裂过程,揭示裂纹扩展的规律,预测材料的断裂行为。
数值模拟方法在工程设计和材料优化中具有重要的应用价值。
3. 理论分析方法理论分析是断裂力学研究的基础。
裂纹力学理论、断裂力学理论等提供了描述裂纹扩展规律、预测裂纹扩展速率、计算断裂韧性等重要方法。
理论分析方法为工程实践提供了重要的指导,为材料设计提供了理论基础。
断裂力学

断裂是材料在外力作用下的分离过程,主要有脆性断裂和延性断裂延性断裂:有许多的 被称为韧窝的微型空洞组成,韧窝的形状因应力大小而定,韧窝的大小和深浅取决于第二相的数量分部以及基体塑性变形能力。
韧性断裂过程可以概括为微孔成核,微孔长大和微孔长大三个阶段。
内因 :材料本身的性质。
厚度,冶金因素。
脆断裂的转变:内因和外因 应力状态:斜率 外因 温度加载速率1,应力状态:TK 是剪切盈利的剪断极限,Tt 是屈服极限,SOT 是正断应力。
斜率即载荷的加载方式影响较大。
2,温度:温度对剪切极限的影响远远比对正断极限大,所以当温度降低是,同样的加载方式下,更先达到的是正断的极限,对于一定的加载方式有一个温度临界值有延性断裂转化脆性断裂。
面心立方点阵金属在低温下也不易发生脆性断裂。
3,加载速率:加载速率的影响方式同温度相似,随着加载速率的增大材料的剪切显著提高而正断极限变化不大,所以加载速率的增大是材料有延性断裂变为脆性断裂。
O T TS t d dtεd d t临界O T TS t TT 临界maxτm axσ0断裂机制:第一类是由材料屈服为主的塑性破坏,第二类是一裂纹失稳扩展的断裂破坏。
缺陷对两类破坏都有重要影响,但是机制不同。
塑性破坏而言缺陷主要影响了结构的有效承载面积,破坏的临界条件主要有塑性极限载荷控制。
裂纹失稳扩展的断裂而言缺陷引起的局部应力应变场对结构强度起主导作用。
高强材料:断裂时,裂纹端部发生很小的的屈服:线弹性断裂力学理论。
含有裂纹的材料 延性材料:断裂时裂纹端部发生很大的屈服:弹塑性断裂力学理论。
完全塑性材料:断裂时构件整体发生均匀屈服:塑性材料断裂力学。
剩余强度:含有裂纹的结构在使用过程中任意时刻所具有的承载能力就被称为剩余强度。
所有的断裂理论的落脚点都是比较剩余强度和设计强度的大小。
能量分析:英国物理学家Griffith,在1921年首次提出了裂纹扩展时能量释放的概念。
找他的理论解释,裂纹的上下表面形成导致了应变能的释放。
断裂力学精品文档
一、引例
第一章 绪 论
s
s s [s ]
s
2a
2b
s
2a
s
s max
s
1
2
a b
Inglis(1913)
s
?
第一章 绪论
用分子论观点计算出绝大部分固体材 料的强度103MPa,而实际断裂强度 100MPa?
裂力学,断裂动力学和界面断裂力学。
五、断裂力学的任务
第一章 绪论
1.研究裂纹体的应力场、应变场与位移场,寻 找控制材料开裂的物理参量;
2.研究材料抵抗裂纹扩展的能力——韧性指标 的变化规律,确定其数值及测定方法;
3.建立裂纹扩展的临界条件——断裂准则;
4.含裂纹的各种几何构形在不同载荷作用下, 控制材料开裂物理参量的计算。
一、Griffith理论
3.Griffith理论
s
1) b厚度板开裂前后应变能增量
V
s 2 πa2b A2ab πs 2 A2
E
4Eb
A:裂纹单侧自由表面面积
2a
2)表面自由能
ES 4ab 2A
s
V ES πs 2 A 2
A A 2Eb
2.2 断裂力学的能量方法
一、Griffith理论
4.1954年1月10日英国大型喷气民航客机彗星号坠 落,同时期共三架坠落;
第一章 绪论
二、工程中的断裂事故
5.1958美国北极星号导弹固体燃料发动机壳体爆 炸;
6.1969年11月美国F3左翼脱落; 7.1972年我国歼5坠毁; 8.近年来桥梁、房屋、锅炉和压力容器、汽车等
材料力学断裂力学知识点总结
材料力学断裂力学知识点总结材料力学是研究材料的力学性质和变形行为的学科,而断裂力学则是其中的重要分支。
断裂力学主要研究材料在外界作用下的破坏过程和断裂特性,对于了解材料的强度、可靠性和耐久性具有重要意义。
本文将对材料力学断裂力学的主要知识点进行总结。
1. 断裂力学基础概念1.1 断裂断裂是材料由于内外力作用下发生破裂的现象。
断裂过程包括初期损伤、裂纹扩展和断裂破坏三个阶段。
1.2 断裂韧性断裂韧性是材料在断裂过程中所吸收的能量的量度。
韧性高的材料能够在断裂前吸收大量能量,具有较好的抗断裂能力。
1.3 断裂强度断裂强度是材料在断裂破坏前所能承受的最大拉应力,是衡量材料抗断裂性能的重要指标。
2. 断裂模式2.1 纯拉伸断裂纯拉伸断裂是指材料在纯拉伸作用下破裂的模式。
在该模式下,裂纹往往呈现沿拉伸方向延伸的条状。
2.2 剪切断裂剪切断裂是指材料在剪切载荷作用下破裂的模式。
在该模式下,裂纹往往呈现锯齿状。
2.3 压缩断裂压缩断裂是指材料在压缩载荷作用下破裂的模式。
在该模式下,裂纹多呈现垂直于压缩方向的半环形状。
3. 断裂韧性的评价方法3.1 线性弹性断裂力学线性弹性断裂力学是最早用于断裂韧性评价的方法,其基本假设为材料在破裂前仍满足线性弹性行为。
3.2 弹塑性断裂力学弹塑性断裂力学是考虑了材料的塑性行为。
该方法应用广泛,能较好地描述材料的耐久性和断裂韧性。
3.3 细观断裂力学细观断裂力学是以材料微观层面的裂纹损伤为基础的断裂力学模型,通过对材料中裂纹数量和尺寸的分析,预测材料的断裂韧性。
4. 断裂的影响因素4.1 材料性质材料的力学性质直接影响了其断裂行为,例如强度、韧性、硬度等。
4.2 外界加载条件外界加载条件如载荷类型、载荷大小和加载速率等都会对材料的断裂行为产生重要影响。
4.3 温度和湿度温度和湿度的变化能够引起材料的热膨胀和水分吸附,进而影响材料的断裂性能。
5. 断裂力学应用5.1 材料设计通过对材料的断裂性能研究,可以为材料设计提供依据,提高材料在特定工况下的抗断裂能力。
断裂力学及其工程应用
断裂力学及其工程应用概述断裂力学是研究材料在外界加载下发生断裂的力学学科,它研究材料的断裂机理、断裂过程以及预测和评估断裂行为。
在工程应用方面,断裂力学为我们提供了对结构材料的强度和可靠性进行评估的依据。
断裂理论基础断裂分类1.脆性断裂:材料在加载情况下突然断裂,没有明显的塑性变形。
2.韧性断裂:材料在加载情况下发生明显的塑性变形后才发生断裂。
断裂模式1.剪切断裂:沿一个平面发生剪切破坏。
2.弯曲断裂:材料在受到弯曲力作用下发生断裂。
3.拉伸断裂:材料在受到拉力作用下发生断裂。
断裂力学的应用断裂评估断裂力学可以用于评估材料的强度和可靠性,为工程结构的设计提供依据。
通过对材料的本构关系、断裂韧度等参数的计算和预测,可以预防工程结构的断裂失效。
断裂预测断裂力学可以通过对材料的试验研究和模型建立,预测材料在不同加载情况下的断裂性能。
这对于材料选择、设计优化以及工程结构的安全性评估非常重要。
断裂控制利用断裂力学的理论和方法,可以通过控制和改善材料的断裂性能,提高工程结构的抗断裂能力。
例如,在航空航天工程中,采用了各种断裂控制技术来提升飞机的安全性能。
断裂分析通过断裂力学的分析方法,可以对已发生断裂的材料进行破坏模式分析和失效原因分析。
这有助于我们总结经验教训,改进设计和制造工艺,减少事故的发生。
断裂力学研究的挑战断裂力学的研究面临着许多挑战,其中主要包括以下几个方面: 1. 多尺度效应:材料的断裂行为在不同尺度下表现出不同的特性,从宏观到微观的转换是一个难点。
2. 多物理场耦合:许多工程应用中,断裂问题往往与温度、湿度、电磁场等物理场耦合,这给研究带来了复杂性。
3. 断裂预测精度:目前断裂力学的预测精度仍有待提高,特别是在复杂载荷和多尺度情况下。
结语断裂力学是一个综合性学科,它对材料的强度和可靠性评估以及工程结构的设计和安全性评估起着重要作用。
尽管面临许多挑战,但随着科学技术的不断进步,断裂力学将在未来发挥更重要的作用,并为工程领域的发展做出更大贡献。
材料力学中的断裂力学
材料力学中的断裂力学材料力学是研究物质在外力作用下变形、损伤和破坏行为的一门学科。
断裂力学是材料力学中的一个重要分支,研究的是材料在受到外力作用时出现破坏的现象及其规律。
断裂力学对于理解和预测材料破坏行为,具有重要的理论和实践意义,本文将就此展开讨论。
一、破坏的基本形式材料的破坏可分为两种基本形式:拉伸断裂和压缩断裂。
拉伸断裂是指在材料受到拉伸作用时,断口发生的破坏行为;压缩断裂是指在材料受到压缩作用时,断口发生的破坏行为。
除此之外,还有剪切断裂、扭转断裂、弯曲断裂等不同的破坏形式。
二、断裂力学的基本概念1.断裂应力材料在破坏前,能够承受的最大应力称为断裂应力。
断裂应力的大小与材料的强度、形状、尺寸、载荷方向等因素有关。
2.断裂韧性材料在破坏前能够吸收的最大能量称为断裂韧性。
断裂韧性的大小与材料的抗裂性能有关。
3.断裂强度材料在破坏前实际承受的最大应力称为断裂强度。
断裂强度与断裂应力的概念相似,但断裂强度是在材料实际破坏后测定得出的。
4.断裂韧度材料在破坏前能够吸收的最大能量密度称为断裂韧度。
断裂韧度与断裂韧性的概念类似。
三、断裂表征参数1.伸长率材料在破坏前拉伸变形的程度,也称为材料的变形量。
伸长率是指材料在拉伸断裂前的额定延长量比上原长度所得的比值。
2.缩颈率在材料拉伸断裂时,当材料的横截面积开始缩小,称为缩颈。
缩颈率是指材料在拉断时的截面积缩小量比上原截面积所得的比值。
3.断口形貌材料断口的形态与破坏机理有密切关系,通过观察断口形貌,可以较为直观地判断破坏机制。
四、断裂损伤机理材料的断裂破坏是一个复杂和多层次的过程,其损伤机理可以分为微观和宏观两个层次。
1.微观层次在微观层次上,材料的破坏主要是由裂纹的扩展和材料局部的塑性变形共同作用导致的。
材料的破坏前,裂纹的长度会随着载荷的增加而逐渐增加,当裂纹的长度达到一定程度时,就会出现快速扩展和破坏。
2.宏观层次在宏观层次上,材料的破坏主要是由断面剪切和拉伸引起的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2a
2)表面自由能 ES 4ab 2 A
V E S π 2 A 2 A A 2 Eb
2.2 断裂力学的能量方法
一、Griffith理论
3.Griffith理论
3) 给定裂纹长度 2 E G 2 EGC a:裂纹半长 f πa πa 给定应力 2 E EGC —容限裂纹半长 aC 2 2 π π 4) Griffith理论适用范围 2 E E 8 —足够尖的裂纹, b0 Griffith裂纹 πa 4ab0 π
第一章
绪论
二、工程中的断裂事故
5 . 1958 美国北极星号导弹固体燃料发动机壳体爆 炸;
6.1969年11月美国F3左翼脱落;
7.1972年我国歼5坠毁; 8.近年来桥梁、房屋、锅炉和压力容器、汽车等
第一章
绪论
二、工程中的断裂事故
第一章
绪论
二、工程中的断裂事故
9.2007年11月2日美国F15 空中解体;
max th f E /(4ab0 )
a / 1
( 0, f 0) —连续介质力学和弹性理论的局限
4.按微观理论
b f E /(4ab0 ) f E /(4a )
0
2.2 断裂力学的能量方法
一、Griffith理论
一、Griffith理论
2.能量释放率及断裂判据 3)裂纹扩展单位面积消耗的能量—裂纹扩展阻力率 (临界应变能释放率) Λ E S GC A A GC:材料常数(材料的断裂韧度)
4)断裂判据
G GC
2.2 断裂力学的能量方法
一、Griffith理论
3.Griffith理论
V0
[3]张安哥等.疲劳、断裂与损伤.西南交通大学出版社, 2006.
[4]黄维扬.工程断裂力学.航空工业出版社,1992. [5]庄茁等.工程断裂与损伤.机械工业出版社,2004.
第二章 线弹性断裂力学
2.1 裂纹及其对强度的影响
2.2 断裂力学的能量方法
2.3 I型裂纹尖端的应力场和位移场 2.4 II、III型裂纹尖端的应力场和位移场 2.5 应力强度因子 2.6 G与K的关系
在与裂纹面平行而与裂纹尖端线垂直的 切应力作用下,使裂纹面产生沿裂纹面 相对滑动位移(位移平行切应力方向 ), 裂纹上下表面垂直于裂纹尖端线方向的 位移不连续(方向相反)
II型裂纹
2.1 裂纹及其对强度的影响
一、裂纹的分类
2.按裂纹的力学特征 3)撕裂型(III型, Anti-plane Shear Mode )裂纹
1.裂纹扩展中的能量关系(裂纹面积A扩展了dA) 1)体系能量变化 dW dV dΛ dE S
W:外力功;V:弹性势能;Λ :塑性功 ES:裂纹表面能 ( 形成自由表面,分子结合力断 裂所需要的能量)
2)弹性系统释放的能量(势能) dΠ dW dV dΛ dE S
第一章
绪论
三、断裂力学发展简史
11.1948年,N. F. Mott(莫特)进行了裂纹快速扩 展速度的定量计算,并将动能引入Griffith能 量准则。 12.复合材料的界面断裂力学
四、断裂力学分类
1.宏观断裂力学和微观断裂力学; 2.宏观断裂力学:线弹性断裂力学,弹塑性断 裂力学,断裂动力学和界面断裂力学。
C
2.2 断裂力学的能量方法
一、Griffith理论
3.Griffith理论
5) Griffith理论 的含义 裂纹扩展单位面积释放的应变能等于形成自 由表面所需要的表面能,裂纹不稳定平衡; 释放的应变能大于表面能,裂纹失稳扩展; 释放的应变能小于表面能,裂纹不扩展。
裂纹扩展后,能量释放率降低,稳定扩展; 裂纹扩展后,能量释放率增大,失稳扩展;
第一章
绪论
三、断裂力学发展简史
7.1965年,A. A. Wells(威尔斯)在大量实验和工 程经验的基础上提出了弹塑性条件下裂纹的 起 裂 准 则 — — COD(Crack Opening Displacemen) 准则,但其理论基础很薄弱, 不是一个直接严密的裂纹尖端弹塑性应力应 变场的表征参量。 8.1968年,J. R. Rice(赖斯)提出J积分,它避开 直接计算裂纹尖端附近的弹塑性应力应变场, 而用围绕裂尖的与路径无关的回路线积分 (J 积分)作为表示裂纹尖端应变集中特性的平均 参量。
第一章
绪论
六、断裂力学研究方法
从弹性力学方程或弹塑性力学方程出发,把裂纹
作为一种边界条件,考虑裂纹顶端的应力、应变
和位移场,设法建立这些场与控制断裂的物理参
量之间的关系和裂纹尖端附近的局部断裂条件。
第一章
绪论
七、参考书
[1]高庆.工程断裂力学.重庆大学出版社,1986.
[2]李庆芬等.断裂力学及其工程应用.哈尔滨工程大学, 2008.
第一章
绪论
五、断裂力学的任务
1 .研究裂纹体的应力场、应变场与位移场,寻 找控制材料开裂的物理参量;
2 .研究材料抵抗裂纹扩展的能力 —— 韧性指标 的变化规律,确定其数值及测定方法;
3.建立裂纹扩展的临界条件——断裂准则; 4 .含裂纹的各种几何构形在不同载荷作用下, 控制材料开裂物理参量的计算。
第一章
绪论
三、断裂力学发展简史
3.1955~1957年,G. R. Irwin(欧文)通过对裂尖附近 应力场的研究,提出了新的断裂参量 — 应力强 度因子,并建立断裂判据,成为线弹性断裂力 学的另一核心—应力强度因子断裂准则。
4.1963年,F. Erdogan(艾多甘)和G. C. Sih(薛昌明) 提出了复合型裂纹扩展的最大拉应力理论; 1972年,K. Palaniswamy(帕拉尼斯瓦米)从裂纹 扩展能量释放率的概念出发建立了复合型裂纹 扩展的最大能量释放率理论;1970s中期,G. C. Sih 又提出了能处理全复合型裂纹扩展的应变能 密度因子理论。
第一章
绪论
三、断裂力学发展简史
1.1913年,C. E. Inglis(英格列斯)将裂纹(缺陷) 简化为椭圆形切口,用线弹性方法研究了含 椭圆孔无限大板受均匀拉伸问题 —— 按应力 集中观点解释了材料实际强度远低于理论强 度是由于固体材料存在缺陷的缘故。 2.1921 年,A. A. Griffith(格里非斯)用弹性体能 量平衡的观点研究了玻璃、陶瓷等脆性材料 中的裂纹扩展问题,提出了脆性材料裂纹扩 展的能量准则,成为线弹性断裂力学的核心 之一—能量释放率准则。
2.1 裂纹及其对强度的影响
一、裂纹的分类
2.按裂纹的力学特征 1)张开型(I型,Opening Mode )裂纹
在与裂纹面正交的拉应力作用下,裂纹 面产生张开位移(位移与裂纹面正交), 裂纹上下表面垂直于裂纹面的位移不连 续(方向相反)
I型裂纹
2)滑移型(II型, Sliding Mode )裂纹
绪论
用分子论观点计算出绝大部分固体材
料的强度103MPa,而实际断裂强度
100MPa?
第一章
绪论
二、工程中的断裂事故
1.1860~1870英国铁路事故死200人/年; 2 . 1938 年 3 月 14 日比利时费廉尔大桥断成三节, 1947~1950比利时又有14座大桥脆性破坏; 3.美国二次大战期间2500艘自由轮,700艘严重破 坏,其中145艘断成两段,10艘在平静海面发生。 同时期大量的战机事故 —— 广泛采用焊接工艺 和高强度材料; 4.1954年1月10日英国大型喷气民航客机彗星号坠 落,同时期共三架坠落;
第一章
绪论
五、断裂力学的任务5.将3和结合解决下述问题 1)给定结构型式、裂纹,计算含裂纹体承载能力;
2)给定结构型式、载荷,计算允许裂纹长度—损伤 容限;
3)给定结构损伤容限和载荷,设计结构几何尺寸; 4)计算重复载荷作用下裂纹扩展至容许长度寿命; 5)为结构选择材料; 6)结构的止裂与修补。
在与裂纹面垂直而与裂纹尖端线 平行的切应力作用下,使裂纹面 产生沿裂纹面外相对滑动位移 ( 位 移平行切应力方向 ) ,裂纹上下表 面平行于裂纹尖端线方向的位移 不连续(方向相反)
III型裂纹
4)多数裂纹为复合型裂纹,I型裂纹最常见、 最危险、最重要。
2.1 裂纹及其对强度的影响
二、裂纹对材料强度的影响
2.2 断裂力学的能量方法
一、Griffith理论
2.能量释放率及断裂判据 1)裂纹扩展单位面积系统释放的能量—能量释放率 Π W V G A A A 2)如外力功为零,裂纹厚度b不变,长度为a 1 V G b a G单位N/m;也称为裂纹驱动力
2.2 断裂力学的能量方法
裂纹扩展阻力率等于表面自由能密度的2倍。
2.2 断裂力学的能量方法
一、Griffith理论
3.Griffith理论
6) 断裂过程的能量平衡
能量
ES
V +ES a
ac V
2.2 断裂力学的能量方法
一、Griffith理论
4.Orowan理论 1)金属材料—裂纹扩展前尖端产生塑性区,需耗 散能量; 2)引入塑性功率(裂纹扩展单位面积,内力对塑性 变形作的塑性功); 2 π A 2( Γ ) 2 Eb G:塑性功率,对于金属材料,G比大三个量级 π 2 A 2Γ 2 Eb
第一章
绪论
三、断裂力学发展简史
9.1968年,J. W. Hutchinson(哈钦森)、J. R. Rice 和 G. F. Rosengren(罗森格伦 )分别发表了I型裂 纹 尖 端 应 力 应 变 场 的 弹 塑 性 分 析, 即 著 名 的 HRR奇异解,它证明了J积分唯一决定裂尖弹塑 性应力应变场的强度,也具有奇异性。从此, 弹塑性力学有了一个新的理论起点。 10 . COD 准则和 J 积分准则均为弹塑性裂纹起裂准 则,从1970s起着力建立裂纹稳定扩展准则。