平面向量章末总结
平面向量全章小结.ppt

求点P和点M的坐标
P(-10,7) M(2,1)
19. 已知向量a=(1,5),b=(-3,2),求a在b 方向上的正射影的数量。
| a | cos a,b a b 7 13 | b | 13
20. 已知两点A,B的坐标为(5,0),(0,5), 直线OP垂直于直线AB于点P,求点P的坐标
P(5 , 5) 22
x=3, y=-2 7. 已知向量i⊥j,|i|=|j|=1,a=4i-j,b=i+2j, c=2i-3j,计算:a·a+3(a·b)-2(b·c)+1。
32
8. 已知向量r的模和它相对于x轴正方向的转 角θ ,求向量r的坐标。
(1) |r|=16,θ =60°; (8,8 3)
(2) |r|=26,θ =45°; (3) |r|=80,θ =120°;
< a,b >=90° |a+b|= 2 5 , |a-b|= 2 5 <(a+b),a>=45 °
4. 已知△ABC,点O是△ABC的重心(三条
中线的交点),求证: OA OB OC 0
A
O
B
C
D
5. 在△ABC中,引中线AD、BE、CF,求证:
AD BE CF 0
A
F
E
B
C
D
6.给定一个基底{i,j},且a=4i+j,b=3j, c=12i-3j,如果c=xa+yb,求x,y.
AB AD __D__B___.
(3) 如果向量a= 2 b,则向量a与b的关系
3
是 共线 。
(4) AB AC CB BA = 3AB .
高中数学平面向量知识点归纳总结800字(优秀范文8篇)

高中数学平面向量知识点归纳总结800字(优秀范文8篇)关于高中数学平面向量知识点归纳总结,精选5篇优秀范文,字数为800字。
平面向量是数学中的一个重要概念,它不仅在几何学中有广泛的应用,还涉及到物理、工程等多个领域。
本文将对平面向量的应用知识点进行总结。
高中数学平面向量知识点归纳总结(优秀范文):1平面向量是数学中的一个重要概念,它不仅在几何学中有广泛的应用,还涉及到物理、工程等多个领域。
本文将对平面向量的应用知识点进行总结。
一、向量的表示和运算1. 向量的表示:向量可以用一个有序数组或者一个点对来表示,分别称为坐标表示和几何表示。
2. 向量的加法和减法:向量的加法和减法遵循交换律和结合律,可以将向量看作有向线段进行运算。
3. 向量的数量积:向量的数量积是向量的一种运算,结果是一个实数。
它有几何意义和代数意义,可以用来计算向量的模、夹角和投影等。
4. 向量的数量积的性质:数量积满足分配律、交换律、结合律等性质,还满足向量垂直的判定定理和平行的判定定理。
二、向量的几何应用1. 向量的共线和垂直:利用向量共线的性质可以判断直线是否相交、线段是否相交等几何问题;利用向量垂直的性质可以判断两条直线的关系、判断线段之间的位置关系等。
2. 向量的模和单位向量:向量的模表示向量的长度,可以用来计算两点之间的距离等;单位向量是模等于1的向量,可以用来表示方向。
3. 向量的投影:向量的投影表示一个向量在另一个向量上的投影长度,可以用来计算力的分解、向量的分量等。
三、向量的物理应用1. 力的合成和分解:利用向量的加法和减法可以对力进行合成和分解,分析力的平衡和不平衡等物理问题。
2. 动量和动量守恒:动量是物体的物理量,可以用向量表示;利用动量守恒原理可以解决碰撞问题等物理问题。
3. 矢量速度和导数:速度是矢量量,表示物体在单位时间内位移的方向和大小;利用导数可以求解速度与时间的关系。
四、向量的工程应用1. 机械平衡:利用向量的平衡原理可以分析机械结构的平衡条件,设计合理的支撑结构。
第六章平面向量知识点总结

第六章平面向量知识点总结一、平面向量的概念平面向量是指平面上具有大小和方向的量。
它是由起点和终点确定的有向线段。
在平面直角坐标系中,平面向量可以表示为一个有序数对(a, b),其中a表示横坐标的增量,b表示纵坐标的增量。
二、平面向量的表示1. 平面向量的概念平面向量是由两个向量确定的,即它的坐标是有序对(x, y)。
例如平面向量a=(1, 2),其中1表示横坐标的增量,2表示纵坐标的增量。
2. 平面向量的运算(1)平面向量的加法平面向量的加法是指将两个平面向量的对应坐标相加,即(a, b)+(c, d)=(a+c, b+d)。
(2)数乘对于平面向量a=(x, y)和实数k,数乘ka=(kx, ky)。
三、平面向量的运算平面向量的运算包括:平面向量的加法、数乘、模长和方向角。
1. 平面向量的加法设平面向量a=(x₁, y₁),b=(x₂, y₂),则a+b=(x₁+x₂, y₁+y₂)。
2. 数乘设平面向量a=(x, y),实数k,则ka=(kx, ky)。
3. 模长平面向量的模长表示向量的长度,它的计算公式是:|a| = √(x² + y²)。
4. 方向角平面向量的方向角表示向量与x轴的夹角。
它的计算公式是:θ = arctan(y/x)。
四、平面向量的线性运算1. 向量的共线如果平面向量a=λb,则a和b共线。
2. 向量的线性组合设有向量a、b,向量a' = λa,b' = μb,如果a' + b' = 0,那么向量a和b线性无关。
也就是说,向量a和向量b不是平行的,且不是共线的。
3. 平面向量线性运算的性质(1)结合律(a+b)+c=a+(b+c)(2)交换律a+b=b+a(3)数乘结合律k(la)=(kl)a五、平面向量的坐标位置关系1. 向量的平行平面向量a和b平行的充要条件是a=λb。
2. 向量的垂直平面向量a和b垂直的充要条件是a·b=0。
高中数学有关平面向量知识点总结概括

高中数学有关平面向量知识点总结概括高中数学平面向量的知识点总结概括如下:1. 平面向量的定义:平面上两点之间的有向线段。
2. 平面向量的表示法:用向量符号a或者AB来表示。
3. 平面向量的运算:- 平面向量的加法:向量a+b的结果是用起点为a的点与起点为b的点之间的有向线段所代表的向量。
- 平面向量的数乘:向量ka的结果是起点相同且方向与a相同或相反的线段,但其长度为ka倍。
- 平面向量的减法:向量a-b可以表示为a+(-b),其中-(b)表示b的反向量。
4. 平面向量的基本性质:- 平面上任意两个向量的和和差与其起点无关,即将平移后的向量的运算结果与平移前的向量的运算结果相同。
- 向量的交换律:a+b=b+a- 向量的结合律:(a+b)+c=a+(b+c)- 数乘的结合律:k(la)=(kl)a- 数乘的分配律:(k+l)a=ka+la- 零向量的性质:任何向量与零向量的和等于该向量本身。
5. 平面向量的数量积:- 数量积的定义:向量a与向量b的数量积a·b等于a、b的模的乘积和它们的夹角的余弦值的乘积。
- 数量积的计算公式:a·b=|a||b|cosθ,其中θ为a和b的夹角。
6. 平面向量的性质:- 数量积与夹角的关系:a·b=0当且仅当a与b垂直,即a与b的夹角为90度。
- 数量积的交换律:a·b=b·a- 数量积的结合律:(ka)·b=a·(kb)=k(a·b)- 非零向量的性质:若a·b=0,则a、b中至少有一个为零向量。
7. 平面向量的向量积:- 向量积的定义:向量a与向量b的向量积a×b等于a、b的模的乘积和它们的夹角的正弦值的乘积,方向垂直于a、b所在平面,符合右手定则。
- 向量积的计算公式:|a×b|=|a||b|sinθn,其中θ为a和b的夹角,n为单位法向量。
8. 平面向量的性质:- 向量积与夹角的关系:|a×b|=|a||b|sinθ,其中θ为a和b的夹角。
平面向量知识点总结归纳

平面向量知识点总结归纳一、向量的基本概念1. 向量的定义既有大小又有方向的量叫做向量。
例如,物理学中的力、位移、速度等都是向量。
向量可以用有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。
向量的大小叫做向量的模,记作a(对于向量a)。
模为0的向量叫做零向量,记作0,零向量的方向是任意的。
模为1的向量叫做单位向量。
2. 向量的表示方法几何表示:用有向线段表示向量,有向线段的起点和终点分别表示向量的起点和终点。
例如,以A为起点,B为终点的向量记作AB。
字母表示:用小写字母a,b,c,表示向量。
3. 相等向量与平行向量相等向量:长度相等且方向相同的向量叫做相等向量。
若a=b,则a=b且a与b方向相同。
例如,在平行四边形ABCD中,AB=DC。
平行向量(共线向量):方向相同或相反的非零向量叫做平行向量。
规定零向量与任意向量平行。
若a与b是平行向量,则记作ab。
例如,在梯形ABCD中,ADBC。
二、向量的运算1. 向量的加法三角形法则已知非零向量a,b,在平面内任取一点A,作AB=a,BC=b,则向量AC=a+b。
例如,若a表示向东3个单位长度的位移,b表示向北4个单位长度的位移,那么a+b表示向东北方向5个单位长度(根据勾股定理3^2+4^2 = 5)的位移。
平行四边形法则已知两个不共线向量a,b,作AB=a,AD=b,以AB,AD为邻边作平行四边形ABCD,则向量AC=a+b。
运算律:向量加法满足交换律a+b=b+a,结合律(a+b)+c=a+(b+c)。
2. 向量的减法定义:向量a与b的差ab=a+(b),其中b是b的相反向量,b与b大小相等,方向相反。
三角形法则:已知向量a,b,在平面内任取一点O,作OA=a,OB=b,则向量BA=ab。
3. 向量的数乘定义:实数与向量a的积是一个向量,记作a,它的长度a=a,它的方向当> 0时与a相同,当<0时与a相反,当= 0时,a=0。
新高一第六章平面向量章末总结规律总结1...

新高一第六章平面向量章末总结规律总结1...新高一第六章平面向量章末总结规律总结1.本章我们学习的向量具有大小和方向两个要素.用有向线段表示向量时,与有向线段的起点位置没有关系,同向且等长的有向线段都表示同一向量.数学中的向量指的是自由向量,根据需要可以进行平移.2.共线向量条件和平面向量基本定理,揭示了共线向量和平面向量的基本结构,它们是进一步研究向量正交分解和用坐标表示向量的基础.3.向量的数量积是一个数,当两个向量的夹角是锐角或零角时,它们的数量积为正数;当两个向量的夹角为钝角或180°角时,它们的数量积为负数;当两个向量的夹角是90°时,它们的数量积等于0.零向量与任何向量的数量积等于0.通过向量的数量积,可以计算向量的长度(模)、平面内两点间的距离、两个向量的夹角,判断相应的两条直线是否垂直.4.平面向量的应用中,用平面向量解决平面几何问题,要注意“三部曲”;用向量解决物理问题,体现了数学建模的要求,要根据题意结合物理意义作出图形,转化为数学问题,再通过向量运算使问题解决.5.正、余弦定理将三角形边和角的关系进行量化,为我们解三角形或求三角形的面积提供了依据,而三角形中的问题常与向量、函数、方程及平面几何相结合,通常可以利用正、余弦定理完成证明,求值问题.(1)解三角形与向量的交汇问题,可以结合向量的平行、垂直、夹角、模等知识转化求解.(2)解三角形与其他知识交汇问题,可以运用三角形的基础知识,正、余弦定理、三角形的面积公式与三角恒等变换,通过等价转化构造方程及函数求解.6.学习本章要注意类比,如向量的运算法则及运算律可与实数相应的运算法则及运算律进行横向类比.7.向量是数形结合的载体.在本章学习中,一方面通过数形结合来研究向量的概念和运算;另一方面,我们又以向量为工具,运用数形结合的思想解决数学问题和物理的相关问题.同时,向量的坐标表示为我们用代数方法研究几何问题提供了可能,丰富了我们研究问题的范围和手段.。
(完整版)高中数学平面向量知识点总结

高中数学必修4之平面向量知识点归纳一.向量的基本概念与基本运算1、向量的概念:①向量:既有大小又有方向的量向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量⑤相等向量:长度相等且方向相同的向量2、向量加法:设,ABa BCb uu u ru uu r r r ,则a +b r =AB BC u u u r u u u r =ACuu u r (1)a a a 00;(2)向量加法满足交换律与结合律;AB BCCDPQQRAR u u u r u u u r u uu r u u u r u u u r u u u rL,但这时必须“首尾相连”.3、向量的减法:①相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下:(Ⅰ)a a ;(Ⅱ)当0时,λa 的方向与a 的方向相同;当时,λa 的方向与a 的方向相反;当0时,0a,方向是任意的5、两个向量共线定理:向量b 与非零向量a 共线有且只有一个实数,使得b =a6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,使:2211e ea,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底二.平面向量的坐标表示1平面向量的坐标表示:平面内的任一向量a r可表示成axi yj r rr ,记作a r=(x,y)。
2平面向量的坐标运算:(1)若1122,,,ax y bx y rr ,则1212,a bx x y y r r (2)若2211,,,y x B y x A ,则2121,AB x x y y u u u r(3)若a r =(x,y),则a r =(x, y)(4)若1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5)若1122,,,ax y bx y rr ,则1212a bx x y y r r 若ab rr ,则02121y y x x 三.平面向量的数量积1两个向量的数量积:已知两个非零向量a r 与b r,它们的夹角为,则a r ·b r =︱a r︱·︱b r ︱cos 叫做a r与b r 的数量积(或内积)规定00ar r 2向量的投影:︱b r ︱cos =||a b a r r r ∈R ,称为向量b r 在a r方向上的投影投影的绝对值称为射影3数量积的几何意义:a r ·b r 等于a r 的长度与b r 在a r方向上的投影的乘积4向量的模与平方的关系:22||a a a a r r r r 5乘法公式成立:2222a b ab a b a b r r r r r r r r ;2222abaa bb r r r r r r 222aa bbr r r r 6平面向量数量积的运算律:①交换律成立:a bb arr r r ②对实数的结合律成立:a b a b a bRr r r r r r ③分配律成立:abca cb c r r r r r r r ca br r r 特别注意:(1)结合律不成立:ab ca b c r r r r r r ;(2)消去律不成立a ba cr r r r 不能得到bc rr (3)a b r r =0不能得到a r =0r或b r =0r 7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)ax y b x y rr,则a r ·b r=1212x x y y 8向量的夹角:已知两个非零向量a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800)叫做向量a r 与b r 的夹角cos =cos,a b a ba b??r r r r r r =222221212121y x y x y y x x 当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r与b r 反方向时θ=1800,同时0r与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r⊥br 10两个非零向量垂直的充要条件:a ⊥ba ·b =O02121y y x x 平面向量数量积的性质一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则().A .AB 与AC 共线B .DE 与CB 共线C .AD 与AE 相等D .AD 与BD 相等2.下列命题正确的是().A .向量AB 与BA 是两平行向量B .若a ,b 都是单位向量,则a =bC .若AB =DC ,则A ,B ,C ,D 四点构成平行四边形D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A(3,1),B(-1,3),若点C满足OC =OA +OB ,其中,∈R ,且+=1,则点C 的轨迹方程为().A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=04.已知a 、b 是非零向量且满足(a -2b)⊥a ,(b -2a)⊥b ,则a 与b 的夹角是A .6B .3C .23D .565.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP =A .λ(AB +AD ),λ∈(0,1)B .λ(AB +BC ),λ∈(0,22)C .λ(AB -AD ),λ∈(0,1)D .λ(AB -BC ),λ∈(0,22)6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则DF =().(第1题)A.EF+ED B.EF-DE C.EF+AD D.EF+AF7.若平面向量a与b的夹角为60°,|b|=4,(a+2b)·(a-3b)=-72,则向量a的模为().A.2 B.4 C.6 D.128.点O是三角形ABC所在平面内的一点,满足OA·OB=OB·OC=OC·OA,则点O是△ABC的().A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中,AB=a+2b,BC=-4a-b,DC=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形B.矩形C.梯形D.菱形10.如图,梯形ABCD中,|AD|=|BC|,EF∥AB∥CD则相等向量是().A.AD与BC B.OA与OBC.AC与BD D.EO与OF二、填空题11.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x=.13.已知平面上三点A,B,C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC +BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+mb)⊥(a-b),则实数m 等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a+c=b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λAC(λ∈R),试求λ为何值时,点P在第三象限内?(第10题)18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).(第19题) 20.已知向量a=(cos θ,sin θ),向量b=(3,-1),则|2a-b|的最大值.一、选择题1.B 解析:如图,AB 与AC ,AD 与AE 不平行,AD 与BD 共线反向.2.A解析:两个单位向量可能方向不同,故B 不对.若AB =DC ,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对.3.D解析:提示:设OC =(x ,y),OA =(3,1),OB =(-1,3),OA =(3,),OB =(-,3),又OA +OB =(3-,+3),∴(x ,y)=(3-,+3),∴33+=-=y x ,又+=1,由此得到答案为D .4.B解析:∵(a -2b)⊥a ,(b -2a)⊥b ,∴(a -2b)·a =a 2-2a ·b =0,(b -2a)·b =b 2-2a ·b =0,∴a 2=b 2,即|a|=|b|.∴|a|2=2|a||b|cos θ=2|a|2cos θ.解得cos θ=21.∴a 与b 的夹角是3π.5.A解析:由平行四边形法则,AB +AD =AC ,又AB +BC =AC ,由λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵AF =DE ,∴DF =DE +EF =EF +AF .7.C解析:由(a +2b)·(a -3b)=-72,得a 2-a ·b -6b 2=-72.而|b|=4,a ·b =|a||b|cos 60°=2|a|,∴|a|2-2|a|-96=-72,解得|a|=6.8.D 解析:由OA ·OB =OB ·OC =OC ·OA ,得OA ·OB =OC ·OA ,即OA ·(OC -OB )=0,故BC ·OA =0,BC ⊥OA ,同理可证AC ⊥OB ,∴O 是△ABC 的三条高的交点.9.C解析:∵AD =AB +BC +D C =-8a -2b =2BC ,∴AD ∥BC 且|AD |≠|BC |.∴四边形ABCD 为梯形.10.D解析:AD 与BC ,AC 与BD ,OA 与OB 方向都不相同,不是相等向量.(第1题)二、填空题11.-32.解析:A ,B ,C 三点共线等价于AB ,BC 共线,AB =OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又A ,B ,C 三点共线,∴5(4-k)=-7(-k -4),∴k =-32.12.-1.解析:∵M(-1,3),N(1,3),∴MN =(2,0),又a =MN ,∴=4-3-2=3+2x x x 解得4=1=-1=-x x x 或∴x =-1.13.-25.解析:思路1:∵AB =3,BC =4,CA =5,∴△ABC 为直角三角形且∠ABC =90°,即AB ⊥BC ,∴AB ·BC =0,∴AB ·BC +BC ·CA +CA ·AB=BC ·CA +CA ·AB =CA ·(BC +AB )=-(CA )2=-2CA =-25.思路2:∵AB =3,BC =4,CA =5,∴∠ABC =90°,∴cos ∠CAB =CAAB =53,cos ∠BCA =CABC=54.根据数积定义,结合图(右图)知AB ·BC =0,BC ·CA =BC ·CA cos ∠ACE =4×5×(-54)=-16,CA ·AB =CA ·AB cos ∠BAD =3×5×(-53)=-9.∴AB ·BC +BC ·CA +CA ·AB =0―16―9=-25.14.323.解析:a +mb =(3+2m ,4-m),a -b =(1,5).∵(a +mb)⊥(a -b),∴ (a +mb)·(a -b)=(3+2m)×1+(4-m)×5=0m =323.15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF交AC 于点E ,则OF =OA +OC ,又OA +OC =-OB ,(第15题)D(第13题)∴OF =2OE =-OB .O 是△ABC 的重心.16.答案:平行四边形.解析:∵a +c =b +d ,∴a -b =d -c ,∴BA =CD .∴四边形ABCD 为平行四边形.三、解答题17.λ<-1.解析:设点P 的坐标为(x ,y),则AP =(x ,y)-(2,3)=(x -2,y -3).AB +λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7)=(3+5λ,1+7λ).∵AP =AB +λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ).∴713532yx 即7455yx 要使点P 在第三象限内,只需74055解得λ<-1.18.DF =(47,2).解析:∵A(7,8),B(3,5),C (4,3),AB =(-4,-3),AC =(-3,-5).又D 是BC 的中点,∴AD =21(AB +AC )=21(-4-3,-3-5)=21(-7,-8)=(-27,-4).又M ,N 分别是AB ,AC 的中点,∴F 是AD 的中点,∴DF =-FD =-21AD =-21(-27,-4)=(47,2).19.证明:设AB =a ,AD =b ,则AF =a +21b ,ED =b -21a .∴AF ·ED =(a +21b)·(b -21a)=21b 2-21a 2+43a ·b .又AB ⊥AD ,且AB =AD ,∴a 2=b 2,a ·b =0.∴AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴|2a -b|2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ.又4sin θ-43cos θ=8(sin θcos3π-cos θsin3π)=8sin(θ-3π),最大值为8,∴|2a -b|2的最大值为16,∴|2a -b|的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b|表示2a ,b终点间的距离.|2a|=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ|的最大值为直径的长为4.(第18题)(第19题)。
高一数学必修四第二章 平面向量章末总结

高一数学必修四第二章平面向量章末总结平面向量是高中数学必修四中的一章内容,主要介绍了平面向量的定义、平面向量的加法、减法、数乘、数量积、向量积等基本运算,以及平面向量的共线、垂直、平行、四边形法则、平面向量的投影等相关概念和定理。
在学习这一章节的过程中,我深刻体会到平面向量的重要性和应用,对于解决实际问题有着很大的帮助。
下面我将对这一章内容进行总结。
第一节平面向量的定义平面向量是一个有大小和方向的量。
平面向量的表示可以用有向线段表示,其中线段代表向量的大小,箭头代表了向量的方向。
平面向量的起点和终点分别叫做向量的始点和终点。
平面向量常用大写字母表示,例如:AB、AC。
平面向量也可以用坐标表示,例如:向量AB的坐标为(3,4),表示向量的起点在原点,终点在坐标点(3,4)处。
平面向量的大小叫做向量的模,用|AB|表示。
第二节平面向量的加法平面向量的加法满足三个定律:1. 交换律:AB + BC = BC + AB.2. 结合律:(AB + BC) + CD = AB + (BC + CD).3. 加法逆元:对于任意的向量AB, 存在向量BA, 使得AB +BA = 0, BA + AB = 0.第三节平面向量的数乘平面向量的数乘即将向量与一个实数进行乘法运算。
加法和数乘的运算统称为线性运算。
数乘满足两个定律:1. 结合律:a(bAB) = (ab)AB.2. 分配律:(a+b)AB = aAB + bAB.第四节平面向量的减法平面向量的减法可以转化为加法和数乘的运算:AB - AC = AB + (-1)AC第五节平面向量的数量积数量积又称为点积,记为AB·CD, 定义为AB·CD = |AB| |CD| cosθ, 其中θ为两个向量的夹角。
第六节平面向量的向量积向量积的结果是一个向量,记为AB×CD,用它来表示与它们夹角θ所在平面的法向量,其大小等于两个向量的模的乘积与夹角θ的正弦值,方向遵循右手螺旋法则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
→ → → → → AB AC AB AC 1 · 4. 在△ABC 中, 已知向量AB与AC满足 + BC= 0 且 · = , → → → → 2 |AB| |AC| |AB| |AC | 则△ABC 为 A.等边三角形 C.等腰非等边三角形 B.直角三角形 D.三边均不相等的三角形 (A )
(7) a bc ab c ;
;
练习1:
已知向量 AB与 AC 的夹角为 120°,且 AB 3, AC 2
若 AP AB AC, AP BC ,则
7 12
.
1 练习2.设向量 a, b, c 满足| a|=|b|=1 , a b , 2 ,则 | c | 的最大值为( ) A a c, b c
6.(浙江高考)若平面向量α、β满足|α|=1, |β|≤1,且以向量α、β为邻边的平行四边形的面 积为1/2,则α与β的夹角θ的取值范围是 ____________.
7.今有一小船位于d=60 m宽的河边P处,从这里起,在 下游l=80 m处河流有一瀑布,若河水流速方向由上游指 向下游(与河岸平行),水速大小为5 m/s,如图,为了使 小船能安全渡河,船的划速不能小于多少?当划速最小 时,划速方向如何?
A组
专项基础训练 → →
→ → → → AB AC → 因为非零向量AB与AC满足 BC=0,所以∠BAC 的平分 → + → · |AB| |AC| 线垂直于 BC,所以 AB=AC. → → AB AC 1 π 又 cos∠BAC= · = ,所以∠BAC=3. → → 2 |AB| |AC|
章末总结 (第二章)
一.向量相关概念
1.零向量:模的大小为 0 ,方向是任意的 .
它与任意向量都 共线 ,记为0.
2.单位向量:模的大小为 1
a
,与a同向的单位向量为 a
.
3.平行向量 : 方向相同或相反 的向量,也叫 共线向量 . 4.向量的投影 :|b|cos〈a,b〉 叫做向量b在向量a方向上 的投影.
a•b=0
四.易错点 (1) 0 与0的区别; (2) 向量共线与直线共线的联系与区别; (3)由a∥b,b∥c不能推出a∥c;
(4)若a∥b ,不一定有a=λb; (5)若a=(x1,y1),b=(x2,y2)且a∥b,不一定有
x1 y1 ; x2 y 2
(6)若 a b a c a 0 ,则不一定有 b c
三点共线定理:平面上三个点共线的充要条件是存在实 数α 、β ,使 OA OB OB ,其中α + β =1.
四.平面向量的两个充要条件 若两个非零向量a=(x1,y1),b=(x2,y2),则: (1)a∥b⇔ (2)a⊥b⇔ a=λb ⇔ ⇔ x1y2-x2y1=0. x1x2+y1y2=0.
OB =b,则AOB 是向量a与 5.向量的夹角 :设 OA =a, b的夹角.(共起点)
二.向量相关运算
(1)向量加法: 可运用三角形法则或平行四边形法 . (2)向量的减法: 三角形法则 . 注:指向被减
(3)向量的数乘:实数λ 与向量a的积是一个向量, 记作λa . (4)向量数量积:a ⋅ b = 求模公式: a |a ||b| cosθ
解 析
所以△ABC 为等边三角形.
B组
专项能力提升
B
解 析
→ → → → → → → → → AO· BC=AO· (AC-AB)=AO· AC-AO· AB, 1→ → → 因为 OA=OB,所以AO在AB上的投影为2|AB|, → → 1→ → 所以AO· AB=2|AB|· |AB|=2, → → 1→ → 9 同理AO· AC=2|AC|· |AC|=2, 5 → → 9 故AO· BC=2-2=2.
a
2
求夹角公式: cos a, b 向量坐标运算
a b ab
三.平面向量的两个重要定理
(1)向量共线定理:向量a(a≠0)与b共线当且仅当存在唯 一一个实数λ,使b=λa.
(2)平面向量基本定理:如果e1,e2是同一平面内的两个 不共线向量,那么对这一平面内的任一向量a,有且只 有一对实数λ1,λ2,使a=λ1e1+λ2e2,其中e1,e2是一 组基底.
3
A.2
B.
3
a=(2,-1),b=(λ,3),若 a 与 b 的夹角为钝角,则 3 (-∞,-6)∪-6,2 λ 的取值范围是________________________ .
3 由 a· b<0,即 2λ-3<0,解得 λ< ,由 a∥b 得: 2
3 6=-λ,即 λ=-6.因此 λ<2,且 λ≠-6.