圆锥曲线复习题资料.doc
(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx

圆锥曲线一、椭圆:( 1)椭圆的定义:平面内与两个定点F1 , F2的距离的和等于常数(大于| F1 F2 |)的点的轨迹。
其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。
注意: 2a | F1F2 | 表示椭圆;2a | F1F2|表示线段F1F2; 2a| F1F 2 |没有轨迹;(2)椭圆的标准方程、图象及几何性质:中心在原点,焦点在x 轴上中心在原点,焦点在y 轴上标准方程图形x2y2y2x2a2b 21( a b 0)a 2b21(ab 0)yB 2yB 2P F2 PA 1 A 2x A 1xA 2OF1O F21B 1FB 1顶点对称轴焦点焦距离心率通径2b2aA1 (a,0), A2 (a,0)A1( b,0), A2 (b,0)B1 (0, b), B2(0, b)B1( 0,a), B2 (0, a) x 轴,y轴;短轴为2b,长轴为2aF1 (c,0), F2(c,0)F1 ( 0,c), F2 (0,c)| F1 F2 | 2c(c 0)c2 a 2 b 2ec(0 e 1) (离心率越大,椭圆越扁)a(过焦点且垂直于对称轴的直线夹在椭圆内的线段)3.常用结论:(1)椭圆x2y21(a b 0) 的两个焦点为F1, F2,过F1的直线交椭圆于A, B两a2 b 2点,则ABF 2的周长=(2)设椭圆x2y2221( a b 0)左、右两个焦点为 F1, F2,过 F1且垂直于对称轴的直线a b交椭圆于 P, Q 两点,则 P, Q 的坐标分别是| PQ |二、双曲线:( 1)双曲线的定义:平面内与两个定点F1 , F2的距离的差的绝对值等于常数(小于| F1F2 | )的点的轨迹。
其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。
注意: | PF1 || PF2 | 2a 与 | PF2 | | PF1 |2a ( 2a| F1F2 | )表示双曲线的一支。
2a | F1 F2|表示两条射线; 2a| F1F2 |没有轨迹;(2)双曲线的标准方程、图象及几何性质:中心在原点,焦点在 x 轴上中心在原点,焦点在 y 轴上标准x2y21( a 0,b 0)y2x21(a 0, b 0) 22方程 a 2 b 2a bP y2 F图形P y B2x xF1 A 1O A 2F2O B1F1顶点对称轴焦点焦距离心率渐近线A1 ( a,0), A2 ( a,0)B1(0,a), B2 (0, a) x 轴,y轴;虚轴为2b,实轴为2aF1 ( c,0), F2 ( c,0)F1 (0,c), F2 (0, c) | F1F2 | 2c(c 0) c 2 a 2b2ec(e 1)(离心率越大,开口越大)aybx y a xa b通径2b2a (3)双曲线的渐近线:①求双曲线 x 2y21的渐近线,可令其右边的 1 为 0,即得x2y 20 ,因式分解得到xy0。
圆锥曲线全复习

圆锥曲线复习(对高中生而言,再做一次就是一切)一.弦长1.已知抛物线y 2=2px(p>0),过焦点的弦AB 倾斜角为θ,求证:|AB|=2p sin 2θ,并求|AF|,|BF|。
2.已知圆M :(x+1)2+y 2=1,圆N :(x-1)2+y 2=9,动圆P 与圆M 外切并与圆N 内切,圆心P 的轨迹为曲线C 。
(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB|3. 已知点A (0,-2),椭圆E :22221(0)x y a b a b +=>>,F 是椭圆的焦点,直线AF O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当O P Q ∆的面积最大时,求l 的方程.4. 设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E.(Ⅰ)证明EA EB +为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线C 1,直线l 交C 1于M,N 两点,过B 且与l 垂直的直线与圆A 交于P,Q 两点,求四边形MPNQ 面积的取值范围.二:中点弦1.已知椭圆x 24+y 29=1,一组平行直线的斜率是32,求这组直线与椭圆相交时,弦中点的轨迹方程。
2.已知直线l:x-y-2=0,抛物线C:y 2=2px(p>0).(1)若直线l 过抛物线C 的焦点,求抛物线的方程;(2)已知抛物线C 上存在关于直线l 对称的相异两点P ,Q ,求证:线段PQ 的中点为(2-p,-p)并求p 的取值范围。
三:对称1.已知椭圆: x 24+y 23=1,试确定m 的取值范围,使得椭圆上的两个不同的点关于直线y=4x+m 对称2.已知椭圆E 经过点A(2,3),对称轴为坐标轴,焦点F 1,F 2在x 轴上,离心率e=12。
圆锥曲线知识点复习

圆锥曲线知识点复习一、轨迹方程1、求轨迹方程的几个步骤:(建-设-列-化-证)a.建系(建立平面直角坐标系,多数情况此步省略)b.设点(求哪个点的轨迹,就设它(x,y ))c.列式(根据条件列等量关系)d.化简(化到可以看出轨迹的种类)e.证明(改成:修正)(特别是①三角形、②斜率、③弦的中点问题) 2、求动点轨迹方程的几种方法a.直接法:题目怎么说,列式怎么列。
b.定义法:先得到轨迹名称c.代入法(相关点法):设所求点(x ,y )另外点(21y x ,)找出已知点和所求点的关系d.参数法:(x,y )中x,y 都随另一个量变化而变化—消参二、弦长若直线b kx y +=与二次曲线的交点为A(1,1,y x )和B (2,2,y x ) 方法一:联立直线与二次曲线方程求出两交点⇒两点间距离方法二:利用弦长公式:||1||212x x k AB -+==2122124)(1x x x x k -+∙+ ||21211y y k -+==212212411y y y y k-+∙+)( 方法三:(半弦长)2=(半径)2-(圆心到直线距离)2(—只适用于圆)三、直线与二次曲线交点方法一:利用圆的圆心与弦中点的连线与弦垂直。
(—只适用于圆)方法二:点差法—不能用于判别存在性问题。
方法三:联立方程后利用两根之和与中点的关系—求存在性问题或求范围时需考虑∆。
五、椭圆1.另椭圆还具有以下性质a.椭圆上到中心的距离最小的点是短轴的两个端点,距离最大的点是长轴的两个端点;b.椭圆上到焦点距离最大、最小的点是长轴的两个端点(天体运动中称“远日点”“近日点”) 最大、最小距离分别为a+c , a-c ;c.设椭圆的两个焦点F 1、F 2当椭圆上的点P 在短轴端点时,21PF F ∠最大。
六、椭圆与双曲线对比七、双曲线2.已知渐近线02222=-b y a x ,可设双曲线方程:)(02222≠=-k k by a x ⎩⎨⎧<>轴焦点在轴焦点在y ,k x ,00k (二)等轴双曲线1、定义:若a=b 即实轴和虚轴等长,这样的双曲线叫做等轴双曲线2、方程:222a y x =-或222a x y =-.3、等轴双曲线的性质:(1)渐近线方程为:x y ±= ;渐近线互相垂直. 3)等轴双曲线方程可以设为:)0(22≠=-λλy x ,当0>λ时交点在x 轴,当0<λ时焦点在y 轴上.九、抛物线说明:(1)通径:过抛物线的焦点且垂直于对称轴的弦称为通径;(2)抛物线的几何性质的特点:有一个顶点,一个焦点,一条准线,一条对称轴,无对称中心,没有渐近线;(3)注意强调p 的几何意义:是焦点到准线的距离。
高三一轮复习资料-圆锥曲线.doc

江苏省13大市数学试题分类汇编-圆锥曲线一、填空题1、(常州市2013届高三期末)已知双曲线22221(0,0)x y a b a b -=>>的一条渐近线经过点(1,2),则该双曲线的离心率的值为2、(连云港市2013届高三期末)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2 = 4x 的准线交于A 、B 两点,AB =3,则C 的实轴长为 .3、(南京市、盐城市2013届高三期末)已知1F 、2F 分别是椭圆14822=+y x 的左、右焦点, 点P 是椭圆上的任意一点, 则121||PF PF PF -的取值范围是 .4、(南通市2013届高三期末)已知双曲线22221y x a b-=的一个焦点与圆x 2+y 2-10x =0的圆心重合,且双曲线的离心率等于5,则该双曲线的标准方程为 .5、(徐州、淮安、宿迁市2013届高三期末)已知双曲线)0,0(12222>>=-b a b y a x 的右焦点为,F 若以F 为圆心的圆05622=+-+x y x 与此双曲线的渐近线相切,则该双曲线的离心率为 .6、(苏州市2013届高三期末)在平面直角坐标系xOy 中,双曲线2222:1(0,0)x y E a b a b-=>>的左顶点为A ,过双曲线E 的右焦点F 作与实轴垂直的直线交双曲线E 于B ,C 两点,若ABC ∆为直角三角形,则双曲线E 的离心率为 .7、(泰州市2013届高三期末)设双曲线22145x y -=的左、右焦点分别为1F ,2F ,点P 为双曲线上位于第一象限内一点,且12PF F 的面积为6,则点P 的坐标为8、(无锡市2013届高三期末)如图,过抛物线y 2=2px (p>0)的焦点F 的 直线L 交抛物线于点A 、B ,交其准线于点C ,若|BC|=2|BF|,且|AF|=3,则此 抛物线的方程为 。
9、(扬州市2013届高三期末)已知圆C 的圆心为抛物线x y 42-=的焦点,又直线4360x y --=与圆C 相切,则圆C 的标准方程为 .10、(镇江市2013届高三期末)圆心在抛物线22x y =上,并且和抛物线的准线及y 轴都相切的圆的标准方程为 .二、解答题1、(常州市2013届高三期末)如图,在平面直角坐标系xoy 中,已知12,F F 分别是椭圆E :22221(0)x y a b a b+=>>的左、右焦点,A ,B 分别是椭圆E 的左、右顶点,且2250AF BF +=. (1)求椭圆E 的离心率;(2)已知点()1,0D 为线段2OF 的中点,M 为椭圆E 上的动点(异于点A 、B ),连接1MF 并延长交椭圆E 于点N ,连接MD 、ND 并分别延长交椭圆E 于点P 、Q ,连接PQ ,设直线MN 、PQ 的斜率存在且分别为1k 、2k ,试问是否存在常数λ,使得120k k λ+=恒成立?若存在,求出λ的值;若不存在,说明理由.2、(连云港市2013届高三期末)已知椭圆C :22221x y a b+=(a >b >0)的上顶点为A ,左,右焦点分别为F 1,F 2,且椭圆C 过点P (43,b3),以AP 为直径的圆恰好过右焦点F 2.(1)求椭圆C 的方程;(2)若动直线l 与椭圆C 有且只有一个公共点,试问:在x 轴上是否存在两定点,使其到直线l 的距离之积为1?若存在,请求出两定点坐标;若不存在,请说明理由.3、(南京市、盐城市2013届高三期末)如图, 在平面直角坐标系xOy 中, 已知椭圆2222:1(0)x y C a b a b +=>>经过点M (32,2),椭圆的离心率223e =, 1F 、2F 分别是椭圆的左、右焦点.(1)求椭圆C 的方程;(2)过点M 作两直线与椭圆C 分别交于相异两点A 、B .xy OF 2(第2题图)PAF 1①若直线MA 过坐标原点O , 试求2MAF ∆外接圆的方程;②若AMB ∠的平分线与y 轴平行, 试探究直线AB 的斜率是否为定值?若是, 请给予证明;若不是, 请说明理由.4、(南通市2013届高三期末)已知左焦点为F (-1,0)的椭圆过点E (1,233).过点P (1,1)分别作斜率为k 1,k 2的椭圆的动弦AB ,CD ,设M ,N 分别为线段AB ,CD 的中点. (1)求椭圆的标准方程;(2)若P 为线段AB 的中点,求k 1;(3)若k 1+k 2=1,求证直线MN 恒过定点,并求出定点坐标.5、(徐州、淮安、宿迁市2013届高三期末)如图,在平面直角坐标系xOy 中,椭圆)0(1:2222>>=+b a b y a x E 的焦距为2,且过点)26,2(. (1) 求椭圆E 的方程;(2) 若点A ,B 分别是椭圆E 的左、右顶点,直线l 经过点B 且垂直于x 轴,点P 是椭圆上异于A ,B 的任意一点,直线AP 交l 于点.M (ⅰ)设直线OM 的斜率为,1k 直线BP 的斜率为2k ,求证:21k k 为定值; (ⅱ)设过点M 垂直于PB 的直线为m .求证:直线m 过定点,并求出定点的坐标.6、(苏州市2013届高三期末)如图,在平面直角坐标系xOy 中,已知点F 是椭圆2222:1(0)x y E a b a b+=>>的左焦点,A ,B ,C 分别为椭圆E 的右、下、上顶点,满足5FC BA =,椭圆的离心率为12. ABMPOlxym(1)求椭圆的方程;(2)若P 为线段FC (包括端点)上任意一点,当PA PB 取得最小值时,求点P 的坐标; (3)设点M 为线段BC (包括端点)上的一个动点,射线MF 交椭圆于点N ,若NF FM λ=,求实数λ的取值范围.8、(扬州市2013届高三期末)如图,已知椭圆1E 方程为22221(0)x y a b a b+=>>,圆2E 方程为222x y a +=,过椭圆的左顶点A 作斜率为1k 直线1l 与椭圆1E 和圆2E分别相交于B 、C .(Ⅰ)若11k =时,B 恰好为线段AC 的中点,试求椭圆1E 的离心率e ; (Ⅱ)若椭圆1E 的离心率e =12,2F 为椭圆的右焦点,当2||||2BA BF a +=时,求1k 的值; (Ⅲ)设D 为圆2E 上不同于A 的一点,直线AD 的斜率为2k ,当2122k b k a =时,试问直线BD 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.9、(镇江市2013届高三期末)已知椭圆O 的中心在原点,长轴在x 轴上,右顶点(2,0)A 到右焦点的距离与它到右准线的距离之比为23. 不过A 点的动直线12y x m =+交椭圆O 于P ,Q 两点. (1) 求椭圆的标准方程;(2)证明P ,Q 两点的横坐标的平方和为定值;(3)过点 A,P ,Q 的动圆记为圆C ,动圆C 过不同于A 的定点,请求出该定点坐标.OMNAC xByy xODCBA。
圆锥曲线复习

椭圆及其标准方程椭圆与双曲线性质的比较抛物线图像与性质标准方程一、 知识积累:二、基础回顾:1、已知椭圆2212516x y +=,12,F F 是椭圆的左右焦点,p 是椭圆上一点。
(1)a = ; b = ; c = ; e = ; (2)长轴长= ; 短轴长= ; 焦距= ;12||||PF PF += ; 12FPF ∆的周长= ;2、 已知双曲线221916x y -=,12,F F 是椭圆的左右焦点,p 是椭圆上一点。
(1)a = ; b = ; c = ; e = ; (2)实轴长= ; 虚轴长= ; 焦距= ;12||||||PF PF -= . 渐近线方程: ; 3、抛物线28y x =,M 是抛物线上一点,且点M 到y 轴的距离是4。
(1)p= ;焦点F = ( ) ;准线方程: ;离心率= (2)点M 到该抛物线焦点的距离是 。
4、已知椭圆方程是192522=+y x 的M 点到椭圆的左焦点为1F 距离为6,则M 点到2F 的距离是 。
5.(2005广东)若焦点在x 轴上的椭圆1222=+my x 的离心率为21,则m=( )A .3B .23C .38 D .32 6.(2007全国Ⅰ文、理)已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为( )(A )112422=-y x (B )141222=-y x (C )161022=-y x (C )110622=-y x 7.(2006浙江文)抛物线28y x =的准线方程是( )(A) 2x =- (B) 4x =- (C) 2y =- (D) 4y =-8.【2012高考安徽文14】过抛物线24y x =的焦点F 的直线交该抛物线于,A B 两点,若||3AF =,则||BF =______。
9.( 2007广东文)在平面直角坐标系xOy 中,已知抛物线关于x 轴对称,顶点在原点O ,且过点P(2,4),则该抛物线的方程是 ..美术班作业姓名:1、填表:1、 求函数的导数: (1)3213243y x x x =++-,则y '= ;(2)cos x y x= ,则y '= ;(3)2xy x a =+,则y '= ;(4)log a y x x =⋅,则y '= ; 2、已知函数23y x x =+,(1)函数的导数: y '= ;在点()2,10A 处的切线方程的 3、函数1y x x=+在1x =处的导数是 ;相应的切线斜率=k 切 ;切点坐标是 ;切线方程是 。
(完整word版)圆锥曲线基础知识专项练习

圆锥曲线练习一、选择题(本大题共13小题,共65。
0分)1.若曲线表示椭圆,则k的取值范围是()A。
k>1 B.k<—1C。
-1<k<1 D。
-1<k<0或0<k<12。
方程表示椭圆的必要不充分条件是()A.m∈(—1,2)B。
m∈(-4,2)C。
m∈(-4,-1)∪(—1,2) D.m∈(—1,+∞)3.已知椭圆:+=1,若椭圆的焦距为2,则k为()A.1或3 B。
1 C.3 D。
64。
已知椭圆的焦点为(-1,0)和(1,0),点P(2,0)在椭圆上,则椭圆的标准方程为()A. B.C。
D。
5.平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A、B 为焦点的椭圆”,那么()A。
甲是乙成立的充分不必要条件B。
甲是乙成立的必要不充分条件C.甲是乙成立的充要条件D.甲是乙成立的非充分非必要条件6。
“a>0,b>0”是“方程ax2+by2=1表示椭圆”的()A。
充要条件B。
充分非必要条件C.必要非充分条件D。
既不充分也不必要条件7。
方程+=10,化简的结果是()A。
+=1 B。
+=1 C.+=1 D。
+=18.设椭圆的左焦点为F,P为椭圆上一点,其横坐标为,则|PF|=()A.B。
C.D。
9。
若点P到点F(4,0)的距离比它到直线x+5=0 的距离小1,则P点的轨迹方程是( )A。
y2=-16x B.y2=—32x C.y2=16x D.y2=32x10。
抛物线y=ax2(a<0)的准线方程是( )A.y=—B.y=-C.y=D.y=11.设抛物线y2=4x上一点P到直线x=—3的距离为5,则点P到该抛物线焦点的距离是()A.3B.4C.6D.812。
已知点P是抛物线x=y2上的一个动点,则点P到点A(0,2)的距离与点P到y轴的距离之和的最小值为( )A。
2 B。
C.-1 D。
+113.若直线y=kx—2与抛物线y2=8x交于A,B两个不同的点,且AB的中点的横坐标为2,则k=() A。
高三圆锥曲线复习基础和大题含答案

考纲要求(1)圆锥曲线① 了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用;② 掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质; ③ 了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质; ④ 了解圆锥曲线的简单应用; ⑤ 理解数形结合的思想。
(2)曲线与方程了解方程的曲线与曲线的方程的对应关系。
基本知识回顾(1)椭圆① 椭圆的定义设F1,F2是定点(称焦点),P 为动点,则满足|PF1|+|PF2|=2a (其中a 为定值,且2a >|F1F2|)的动点P 的轨迹称为椭圆,符号表示:|PF1|+|PF2|=2a (2a >| F1F2|)。
② 椭圆的标准方程和几何性质 焦点在x 轴上的椭圆焦点在y 轴上的椭圆标准方程22a x +22by =1(a >b >0)22a y +22bx =1(a >b >0)范围x [,][,]a a y b b ∈-∈-[,][,]x b b y a a ∈-∈-图形对称性 对称轴:x 轴、y 轴 对称中心:原点顶点1212(,0),(,0)(,0),(,0)A a A aB b B b --1212(0,),(0,)(0,),(0,)A a A aB b B b --轴 长轴A 1A 2的长为:2a 短轴B 1B 2的长为:2b焦距F 1F 2=2c离心率e ,(0,1)ce a=∈ a,b,c 关系222a b c =+例题例1:椭圆22192x y +=的焦点为12,F F ,点P 在椭圆上,若1||4PF =,则2||PF = ;12F PF ∠的大小为 。
变式1:已知12F 、F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,p 为椭圆C 上的一点,且→→⊥21PF PF 。
若12PF F ∆的面积为9,则b = 。
例2:若点P 到点F (4,0)的距离比它到定直线x +5=0的距离小1,则P 点的轨迹方程是( )A .y 2=16-xB .y 2=32-xC .y 2=16xD .y 2=32x变式2:动圆与定圆A :(x +2)2+y 2=1外切,且与直线 ∶x =1相切,则动圆圆心P 的轨迹是( )A .直线B .椭圆C .双曲线D .抛物线变式3:抛物线的顶点在原点,焦点在y 轴上,其上的点)3,(-m P 到焦点的距离为5,则抛物线方程为( ) A .y x 82=B .y x 42=C .y x 42-=D . y x 82-=变式4:在抛物线y 2=2x 上有一点P ,若 P 到焦点F 与到点A (3,2)的距离之和最小,则点P 的坐标是 。
(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx

(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx圆锥曲线⼀、椭圆:( 1)椭圆的定义:平⾯内与两个定点F1 , F2的距离的和等于常数(⼤于| F1 F2 |)的点的轨迹。
其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。
注意: 2a | F1F2 | 表⽰椭圆;2a | F1F2|表⽰线段F1F2; 2a| F1F 2 |没有轨迹;(2)椭圆的标准⽅程、图象及⼏何性质:中⼼在原点,焦点在x 轴上中⼼在原点,焦点在y 轴上标准⽅程图形x2y2y2x2a2b 21( a b 0)a 2b21(ab 0)yB 2yB 2P F2 PA 1 A 2x A 1xA 2OF1O F21B 1FB 1顶点对称轴焦点焦距离⼼率通径2b2aA1 (a,0), A2 (a,0)A1( b,0), A2 (b,0)B1 (0, b), B2(0, b)B1( 0,a), B2 (0, a) x 轴,y轴;短轴为2b,长轴为2aF1 (c,0), F2(c,0)F1 ( 0,c), F2 (0,c)| F1 F2 | 2c(c 0)c2 a 2 b 2(0 e 1) (离⼼率越⼤,椭圆越扁)a(过焦点且垂直于对称轴的直线夹在椭圆内的线段)3.常⽤结论:(1)椭圆x2y21(a b 0) 的两个焦点为F1, F2,过F1的直线交椭圆于A, B两a2 b 2点,则ABF 2的周长=(2)设椭圆x2y2221( a b 0)左、右两个焦点为 F1, F2,过 F1且垂直于对称轴的直线a b交椭圆于 P, Q 两点,则 P, Q 的坐标分别是| PQ |⼆、双曲线:( 1)双曲线的定义:平⾯内与两个定点F1 , F2的距离的差的绝对值等于常数(⼩于| F1F2 | )的点的轨迹。
其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。
注意: | PF1 || PF2 | 2a 与 | PF2 | | PF1 |2a ( 2a| F1F2 | )表⽰双曲线的⼀⽀。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锥曲线专题一、求圆锥曲线的方程
【复习要点】
求指定的圆锥曲线的方程是高考命题的重点,主要考查识图、画图、数形结合、等价转化、分类讨论、逻辑推理、合理运算及创新思维能力,解决好这类问题,除要求熟练掌握好I员I锥曲线的定义、性质外,命题人还常常将它与对称问题、弦长问题、最值问题等综合在一起命制难度较大的题,解决这类问题常用定义法和待定系数法.
-•般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤.
定形——指的是二次曲线的焦点位置与对称轴的位置.
定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为/WA-2+/ly2= 1 (/n>0,/2>0).
定量——由题设中的条件找到“式”中特定系数的等量关系,通过解方程得到量的大小. 【例题】
2 9
【例1】双曲线一-三=1(族N)的两个焦点几、F2, P为双曲线上一点,
4 b2
IOPIV5,IPF]l,IFiF2l,IPF2l成等比数列,则"=.
【例2】已知圆G的方程为(》一2)2+侦-1)2=史,椭圆C2的方程为
# +、= 1(。
>/7>0), C2的离心率为遮,如果C1与C2相交于4、B两点,旦线段他 / 人2 \
f 2
恰为圆G的直径,求直线AB的方程和椭圆C2的方程。
B
【例3】过点(1, 0)的直线/与中心在原点,焦点在工轴上且离心率为亭的椭圆C 相交于A、加点,直线日,过线段"的中点,同时椭圆。
上存在-点与右焦点关
于直线I对称,试求直线/与椭圆C的方程.
77
【例4】如图,已知△ Pg的面积为丁,P为线段P|P2的一个三等分点,求以
4
直线OP】、。
户2为渐近线n过点p的离心率为业的双曲线方程.
- 2
【例7】2 /
[例5】过椭圆C:土 + 土 = 1(。
>8>0)上一动点P引圆0: X2 +/ =b2的两条切线
/ b2
PA、P8, A、8为切点,直线48与x轴,y轴分别交于M、N两点。
⑴
已知P点坐标
为(Xo,Vo)并且XoVo。
,试求直线L8方程;⑵ 若椭圆的短轴长
•) 2
为8,并且—+ ,求椭I员1 C的方程;⑶椭圆C
\0M I- IONI? 16
上是否存在点P,由P向圆。
所引两条切线互相垂直?若存在,
请求出存在的条件;若不存在,清说明理由。
【例6】已知椭圆C的焦点是Fi ( 一心,0)> F2(73 , 0),点Fi到相应的准线的距离为吏,过F2点且倾斜角为锐角的直线/与椭圆C交于A、B两点,使得
|F
2B|=3|F
2
A|.
B(-1,O),C(1,O),P 是平面上一动点,旦满Si\PC\ \BC\=PB CB.
已知点
(1)求点P的轨迹C对应的方程;
(2)已知点A (m,2)在曲线C上,过点A作曲线C的两条弦AD和AE,且AD1AE,判断:直线DE是否过定点?试证明你的结论.
(3)已知点A (m,2)在曲线C上,过点A作曲线C的两条弦AD, AE,旦AD, AE的斜率«、幻满足灯・幻=2.求证:直线DE过定点,并求出这个定点.
.2 ,2 9
【例8】已知曲线土-土" = 1(。
> (展>0)的离心率e =—,直线/过A (°, 0)、/ b2
3
B (0, -b)两点,原点O到/的距离是匝.
2
2 2
【例9】已知动点P与双曲线3-; = 1的两个焦点巳、%的距离之和为定值,且cosZFiPF?的最小值为.
(1)求动点P的轨迹方程;
(2)若已知7)(0,3), M . N在动点F的轨迹上且,求实数4的取值范围.
【求圆锥曲线的方程练习】
一、选择题
1.己知直线x+2y—3=0与圆x2+y2+x—6v+w =0相交于P、Q两点,。
为坐标原点,若
OPA-OQ,则 s 等于()
A.3
B.-3
C.l
D.-1
2.中心在原点,焦点在坐标为(0, ±5 VI)的椭圆被直线3尤一),一2=0截得的弦的中点
的横坐标为L,则椭圆方程为()
2
A 2X2 2疽2x2 2y2f
A. --- + ^—= 1
B. -- + —— = 1
25 75 75 25
2 2 2 2
C.—
D.—
25 75 75 25
二、填空题
3.直线/的方程为)F+3,在/上任取一点P,若过点F旦以双曲线12.x2~4y2=3的焦点作椭圆的
焦点,那么具有最短长轴的椭圆方程为.
4.巳知圆过点P(4,—2)、0—1, 3)两点,且在),轴上截得的线段长为点,则该圆的方程为.
三、解答题
5.巳知椭圆的中心在坐标原点,焦点在x轴上,它的一个焦点为F,肱是椭圆上的任意点,IMFI的最大值和最小值的几何平均数为2,椭圆上存在着以为轴的对称点M,和M2,且IM|M2I=^^,试求椭圆的方程.
6.某抛物线形拱桥跨度是20米,拱高4米,在建桥时每隔4米需用一支柱支撑,求其
t +匕=l(〃>8>0),C2的离心率为毛,如果G与C2相交于A. B两点,月.线段A3恰a 2 为圆G的直径,求直线AB的方程和椭圆C2的方程.。