白车身接附点局部动刚度分析

合集下载

基于CAE仿真技术的白车身动刚度分析优化

基于CAE仿真技术的白车身动刚度分析优化

AUTO TIME43FRONTIER DISCUSSION | 前沿探讨时代汽车 基于CAE 仿真技术的白车身动刚度分析优化吴亚萍1 秦丽萍2 曾乐彬21.上汽通用五菱汽车股份有限公司 广西柳州市 5450072.湖南湖大艾盛汽车技术开发有限公司 广西柳州市 545007摘 要: 人们对汽车车内噪音舒适性评价越显关注。

车辆的NVH 性能正在成为汽车开发过程中的最重要指标,白车身动刚度作为NVH 性能关键指标之一,具有重要意义。

本文以某车型为研究对象,阐述了白车身动刚度基本分析过程,并选取后悬减震器接附点动刚度为优化对象,通过CAE 仿真技术,识别后悬减震器接附点动刚度不足的主要原因并进行优化,实现了该车身NVH 性能提高。

关键词:NVH 动刚度 模态分析 ODS 诊断1 引言随着车辆普及及国民经济发展,人们对汽车车内噪音舒适性越来越关注。

各车企对汽车的NVH 性能开发也越显重视,NVH 性能成为了汽车市场竞争力的关键因素。

NVH 是指噪音Noise、振动Vibration、舒适性Harshness。

汽车NVH 特性是指在车身振动和噪音的作用下,乘员舒适性主观感受的特征。

它是人体听觉、触觉以及视觉等方面的综合表[1]。

车身分析为整车路噪分析的基础。

车身承受着各子系统结构,以及来自车路面激励及各装置系统的各种载荷激励。

车身结构分析是NVH 性能分析的基石,车身结构对整车性能有着重要影响。

白车身动刚度分析是车身分析的重要指标之一,动刚度性能的好坏体现了汽车系统隔振性能的优劣。

如果车身上关键接附点动刚度不足,容易引起车身结构振动,引起结构声传递大问题。

所以车身关键接附点的动刚度分析显得非常重要。

本文以某车型分析研究为例,阐述了白车身关键接附点动刚度的分析过程。

通过有限元建模,模态分析及模型校对,关键接附点动刚度仿真分析等CAE 仿真技术确定车型动刚度状态,其次针对后悬减震器接附点动刚度不足问题,通过ODS 工作变形分析,应变能分析等手段进行原因分析优化。

车身关键接附点动刚度分析与改进

车身关键接附点动刚度分析与改进
[ 5 ] 杨 妙 梁. 混 合 动 力 车 与 电 动 汽 车 制 动 能 量 回 收 控 制
( 一) : 混合动力车制动能量 回收系统 [ J ] . 汽车与配件 ,
从表 4 、 表 6可 以看 出 : 如果不计入电能消耗 , 插 电式 混 合动 力车 辆 的节 油 效果 比非 插 电 自回收 能
池、 电池 管理 系统 和控 制系统 。 通 过对两 种 车型 的试用 及分析 , 建议 :
量 混合 动 力 车辆 好 , 节油 5 . 1 ; 计入 电能消耗 , 则 非 插 电 自回收能量 混合 动力 车辆 的能 耗 比插 电式 混 合 动力 车 辆低 , 节油 1 . 4 ; 且经 过 6月 、 7月两 个 月
车辆 在怠 速或 行驶 过程 中 由车身 面板振 动 引起 的室 内空 腔轰 鸣噪声 对乘 坐舒 适性 有很 大影 响 。通 过 发动 机 、 悬 架 等 与 车身 的关 键 接 附点 传 递 至 车身 的振 动是 引起 车身 面板 振动 的主要 原 因 。接 附点动
动 刚 度是 在 动 载荷 作 用下 抵 抗 变形 的能 力 , 动 刚度 不足 会对 整车 乘坐 舒适性 和车 身结 构件 的疲 劳
( 1 )在 发展 插 电式混合 动力 车 辆 时加 入 已较 成
熟 的 自回收能量装 置 , 增强 其节 油效果 。 ( 2 )在 设计 制 造 混 合 动 力 车 辆 时 , 加 强 对 动 力
的运行 磨合 后 , 非 插 电 自回收 能 量 混合 动力 车辆 表
现 出 良好 的节 油效 果 。相 比于传 统 的柴 油 车 辆 , 两 种 混合 动 力车 辆都 有 较 好 的节 油效 果 , 比传 统 车辆
摘要 :白车身关键接 附点 的局部动 刚度 对整 车 NVH[ N o i s e ( 噪 声) 、 Vi b r a t i o n ( 振动) 、 Ha r s h —

白车身弯曲刚度分析报告

白车身弯曲刚度分析报告

编号:QQ-PD-PK-066白车身弯曲刚度分析报告项目名称:QQ458321486编制:日期:校对:日期:审核:日期:批准:日期:XX汽车有限公司2013年03月目录1分析目的 (1)2使用软件说明 (1)3有限元模型建立 (1)4白车身弯曲刚度分析边界条件 (1)5分析结果 (3)6结论 (10)1分析目的车身是轿车的关键总成,除了保证外形美观以外,汽车设计工程师们更注重车身结构的设计。

车身应有足够的刚度,刚度不足,会导致车身局部区域出现大的变形,从而影响了车的正常使用。

低的刚度必然伴随有低的固有频率,易发生结构共振和声响。

本报告以QQ白车身为分析对象,利用有限元法,对其进行了弯曲刚度分析。

2使用软件说明本次分析采用Hypermesh作前处理,Altair optistruct求解。

HyperMesh是世界领先的、功能强大的CAE应用软件包,也是一个创新、开放的企业级CAE平台,它集成了设计与分析所需的各种工具,具有无与伦比的性能以及高度的开放性、灵活性和友好的用户界面,与多种CAD和CAE软件有良好的接口并具有高效的网格划分功能;Altair Optistruct是一个综和隐式和显示求解器于一体的大规模有限元计算软件,几乎所有的线性和非线性问题都可以通过其进行求解。

Altair Optistruct最强大的功能是其友好的CAO接口,通过Altair Optistruct可以进行任何形状、尺寸、拓扑结构的优化,采用固定的内存分配技术,具有很高的计算精度和效率。

3有限元模型建立根据设计部门提供的白车身的工艺数模建立QQ的计算模型,对模型进行了有限元离散处理:白车身所有零部件都采用板壳单元进行离散,并尽量采用四边形板壳单元模拟,少量三角形单元以满足高质量网格的过渡需要;粘胶用实体单元模拟,焊点采用CWELD 和RBE2单元模拟。

其中四边形单元469700个,三角形单元15543个,三角形单元比例3.4%。

车身连接点动刚度分析与NVH性能改进研究

车身连接点动刚度分析与NVH性能改进研究

车身连接点动刚度分析与NVH性能改进研究车身连接点动刚度分析与NVH性能改进研究汽车结构的主要部分是车身结构,而车身结构的动刚度是评估汽车NVH性能的重要指标之一。

车身连接点的动刚度对汽车的NVH性能有重要影响。

因此,本文将研究车身连接点动刚度分析与NVH性能改进。

1、车身连接点动刚度分析车身连接点动刚度是指在汽车行驶时,由于悬挂系统抵消车身上的不良振动所产生的剧烈影响。

此外,它还包括车体和底盘的构造和设计,以最大程度地减少噪声、振动和硬度的传递。

在设计车身连接点时,需要考虑到连接点的材料、形状、尺寸等。

合理的材料选择和结构设计能够有效地改善车身连接点的动刚度,从而降低噪声、震动和硬度的传递。

汽车的车身连接点主要包括悬挂连接点、发动机安装点、传动系连接点等。

对悬挂系统的连接点的动刚度进行分析和优化,能够有效降低路面颠簸所带来的体验。

对发动机安装点和传动系连接点的动刚度进行分析和优化,能够有效降低发动机运行时带来的振动和噪音。

2、NVH性能改进NVH性能与车身连接点的动刚度密切相关。

在降低车身连接点的动刚度的同时,可以进一步改善汽车的NVH性能。

要改进汽车的NVH性能,需要采取一系列措施。

首先,优化车身结构设计,包括悬挂系统、车架、车门等,在减少振动、噪音和硬度传递的同时,还需保持车身结构的强度和刚度。

其次,采用高性能的材料,如复合材料、高韧性钢材等,以提高车身结构的动刚度。

这可以显著减少车身振动和噪声,提高汽车的行驶舒适性和NVH性能。

最后,可以采用主动或被动隔音措施,如隔音材料和减震器等,来进一步改善汽车的NVH性能。

这些措施可以有效降低车内噪音和振动,提高乘坐舒适性。

总之,车身连接点动刚度分析与NVH性能改进是提高汽车运行安全性、舒适性、节能性和环保性的关键环节。

对车身连接点的动刚度进行合理的分析和优化,可以显著提高汽车的NVH性能,使其更加符合用户需求和市场需求。

3、车身连接点动刚度分析方法在车身连接点动刚度分析方面,可以采用有限元方法进行计算。

车身模态及接附点动刚度分析

车身模态及接附点动刚度分析
为 0 9 mm 左右ꎬ属性设置为 PSHELLꎮ 模型建立
后ꎬ共有 3 104 429 个单元、2 717 029 个节点ꎬ三角
形单元占比为 5 3% ꎮ
表 1 车身材料参数
Table 1 Body material parameters
材料
弹性模量 / MPa
泊松比

2 1 × 10 5
the research objectꎬits finite element model is establishedꎬthe free mode of the vehicle body within
0 ~ 100 Hz and the dynamic stiffness of 16 attachment points is obtainedꎬthe left front and right
格比例较大ꎬ网格主要由四边形单元和少量三角
形单元混合而成ꎬ采用三角形单元是为了获得更
高质 量 的 整 体 网 格ꎬ 其 数 量 不 超 过 单 元 总 数 的
10% ꎮ 组件进行连接时ꎬ主要使用螺栓、点焊和粘
胶三种方式ꎬ车身相关材料参数如表 1 所示ꎮ 车
身厚度约 0 7 ~ 3 2 mmꎬ有限元模型中厚度设置
下的动刚度特性较差ꎬ此时进行模态分析ꎬ通过分
析车 身 模 态 频 率 与 振 型 来 判 断 产 生 峰 值 的 原
因 [13] ꎮ IPI 计算公式为
IPI =
- w2 x0 e jwt - w2
ẍ
- w2



jwt

Kd
F0 e
k ห้องสมุดไป่ตู้ w2 m + jwc
(9)
沈 阳 理 工 大 学 学 报

白车身扭转刚度分析方法对比-顺便谈谈蔚来ES8

白车身扭转刚度分析方法对比-顺便谈谈蔚来ES8

白车身扭转刚度分析方法对比-顺便谈谈蔚来ES81概述在上一篇文章《白车身弯曲刚度分析方法对比》中,我们介绍了白车身弯曲刚度分析方法,在这一篇文章中我们将接着介绍扭转刚度分析方法。

因为同属车身刚度分析,所以本文重复了上一篇的少部分文字。

好在两篇文章都是本人所作,并不涉嫌抄袭。

白车身刚度是整车设计的一个重要指标,它决定了车辆在外力作用下抵抗变形的能力。

白车身刚度与整车多项性能均有关联,例如耐久性能、碰撞安全性能、操稳性能和NVH性能等。

通常我们主要关注两个车身刚度指标,即弯曲刚度和扭转刚度。

当前的主流设计趋势就是在控制成本和重量的前提下,尽量将车身弯扭刚度提升。

对于乘用车而言,白车身的扭转刚度相比弯曲刚度更值得关注。

白车身的失效形式以扭转疲劳为主,当扭转刚度不足时,车身在外力作用下将发生较大的扭转变形,反复加载后局部薄弱点就可能疲劳破坏。

如果车身扭转刚度不足,行驶时车身变形较大,可能导致整车各部件之间发生摩擦异响;尤其是背门框和侧门框会产生较大的洞口变形量,影响车辆动态密封性能。

白车身扭转刚度对整车操稳性能也有明显影响。

白车身扭转刚度还是白车身轻量化程度的重要表征。

国际上流行的一个重要的车身设计指标—轻量化系数,就是根据白车身扭转刚度、白车身质量、轴距和轮距计算得到的。

相比白车身弯曲刚度分析方法,扭转刚度分析方法还不算特别混乱,但也存在很多不一致的地方。

本文将对国内汽车业内常用的几种白车身扭转刚度分析方案作对比分析。

在本文的末尾,还将对最近热度非凡的蔚来ES8白车身扭转刚度数值进行简单的点评。

2有限元模型对比虽然名称叫白车身扭转刚度分析,但所用的白车身有限元模型并不一定是传统意义的BIW模型。

有些主机厂所分析的模型是BIW,有些则是BIW加风挡玻璃也就是所谓的BIP模型。

对于电动车而言,分析模型还可能是BIW+电池包,或者BIP玻璃+电池包。

其中BIP模型使用的最为广泛。

上面所提到的BIW,指的是焊接或者铆接车身的本体部分,不包括四门两盖、仪表板支撑横梁、翼子板等部件以及粘在车身的玻璃。

轿车白车身连接头结构的刚度分析与研究

轿车白车身连接头结构的刚度分析与研究

轿车白车身连接头结构的刚度分析与研究连接头是白车身框架结构中的重要组成部分,起到了平稳过渡的作用,若忽略连接头的柔性将其刚性处理,则会额外地增加白车身的刚度,同时连接头的刚度也是影响白车身刚度的重要因素之一,故有必要对白车身连接头进行探究,进而为白车身的设计提供参考。

本文以承载式白车身为研究对象,在白车身有限元模型的基础上分析了白车身的动静态性能,充分考虑连接头柔性的前提下计算了连接头刚度,探究了连接头刚度的评估方法,并对白车身七个连接头模型的刚度进行了评估,探讨了连接头与白车身动静态性能之间的关系,得出不同连接头对白车身动静态性能的影响。

本文首先以有限元模型建模原则为基础建立了白车身有限元模型,计算弯曲刚度、扭转刚度、一阶弯曲模态和一阶扭转模态,并对其进行评估得出本款白车身有良好的弯曲刚度,扭转刚度不足,模态分布合理,而一阶扭转模态偏低易于与发动机激励频率耦合而产生共振,通过灵敏度分析总结出对白车身动静态性能有重要影响的部件。

接着截取白车身的七个连接头有限元模型,探究接头结构的力学特性,计算分析得出接头角位移矩阵存在耦合现象,为了消除接头模型的耦合现象,进一步探究了接头的解耦方法及其柔性,从而得到了连接头的前后弯曲刚度、扭转刚度和内外弯曲刚度。

随后探究了评估连接头刚度的方法,建立未刚性与刚性接头有限元模型,计算不同连接头各分支的刚度比值系数,进而评估了七个连接头模型各分支的前后弯曲刚度、扭转刚度和内外弯曲刚度的强弱,同时整体比较了所有连接头分支在同一刚度条件下的强弱情况,总结得出在前后弯曲刚度下、内外弯曲刚度下、扭转刚度下刚度比值系数高和低的连接头分支。

最后探究了连接头与白车身动静态性能之间的关系,通过区域灵敏度分析和应变能计算得出不同连接头对白车身动静态性能的影响,总结出对动静态性能影响大的连接头作为白车身性能改进的参考。

120_白车身扭转刚度分析

120_白车身扭转刚度分析

B1
1306.032
B2
900.872
D1
1319.127
D2
1347.472
1341.06 1304.43 1305.633 901.658 1320.17 1346.516
2.059 -2.044 -0.399 0.786 1.043 -0.956
变形率 (%)
0.154 -0.156 -0.031 0.087 0.079 -0.071
单元数(个) 749149
节点数(个) 三角形比例(%)
998923
1.2
质量(kg) 407.4
白车身扭转刚度分析:边界条件
123456 后减震器与车身连接处
3
前减震器与车身连接处两点中点
Mx= 2000N·m 在前螺旋弹簧与车身连接点施加力,形成绕X轴2000N·m的扭矩
白车身扭转刚度分析:扭转变形曲线
NASTRAN
参考标准: 标准
结论:
白车身扭转刚度满足目标值。 窗框、门框变形率满足目标值。
A1 前风窗框
A2
B1 左门框
B2
C1 后背门框
C2
各窗框、门框 变形率(%)
0.154 -0.156 -0.031 0.087 0.079 -0.071
目标值 <0.2%
白车身扭转刚度分析:模型信息
模型信息
测量点扭转角(°)
扭转变形曲线
0.25
0.2
0.15
0.1
0.05
0
0
300
600
900
1200
1500
1800
2100
2400
测量点X向坐标(mm)
白车身扭转刚度分析:门窗框变形表
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

白车身接附点局部动刚度分析
肖攀 周定陆 周舟
长安汽车股份有限公司汽车工程研究院
白车身接附点局部动刚度分析
BIW INPUT POINT INERTANCE ANALYSIS
肖攀 周定陆 周舟
(长安汽车股份有限公司汽车工程研究院,重庆401120)
摘 要: 白车身接附点的局部动刚度对整车的NVH性能有较大的影响,是在整车NVH分析中需要首先考虑的因素。

MSC Nastran对于整车的中低频NVH分析有一套完整的解决方案,本文中的IPI分析是其中的一种方案。

关键词:白车身,有限元,接附点,动刚度,源点导纳
Abstract:The local dynamic stiffness of attaching points is the key point to NVH performance of a vehicle, and it should be considered first in NVH analysis. MSC Nastran can provide a series of solutions for normal frequency NVH analysis of total vehicle, and IPI analysis in this paper is one of these solutions.
Key words: BIW, CAE, NVH, IPI, MSC Nastran
1 前言
随着消费者对汽车的要求越来越高和对汽车认识的成熟,汽车的NVH性能也成消费者非常关注的性能指标之一。

NVH测试试验虽然是一种必不可少的可靠的方法,但有滞后的缺点,必须要在样车完成之后才能进行试验并发现问题,然后解决问题。

如果问题严重,还将带来开发周期的延长和巨额的设计变更费用,增加开发成本。

整车NVH性能的CAE分析方法,其优点在于可以在没有实物样车的工程化设计阶段,较为准确地评价整车的NVH 性能,并提出改进方案,尽可能在设计阶段解决车身结构及包装上可能存在的NVH问题。

为最后得到NVH性能优良的汽车,在设计阶段就打好良好的基础。

利用现有软件MSC Nastran,可以对整车的中低频NVH性能进行有效地分析及评价。

其中,IPI(Input Point Inertance)分析是评价NVH性能的重要分析方法之一,是用于考察车身与发动机、悬架连接的接附点的局部动刚度这一个重要指标。

白车身接附点局部动刚度所考察的是在所关注的频率范围内该接附点局部区域的刚度水平,刚度过低必然引起更大的噪声,因此该性能指标对整车的NVH性能有较大的影响,是在整车NVH分析中需要首先考虑的因素。

2 分析模型
由于IPI分析是考察白车身的各接附点局部刚度,因此分析对象包括白车身上的弹簧接
附点、减振器接附点、发动机接附点等所有的接附点。

在实际的分析中,由于车身结构左右侧结构基本对称,因此只需分析一侧的接附点即可。

3 分析理论 源点加速度导纳:()a 2
a 22K f 2K F x F a IPI πωω==== (1) 其中 :
x /F K a =为接附点动刚度;为加速度;圆频率x a 2ω=f 2πω=
IPI 分析得到的响应曲线如图1所示。

计算得到IPI 曲线所包围的面积,则有:
∑∑∑Δ=Δ=Δ=i i a i a i i i IPI f K f f K f f IPI AREA 222244*ππ (2)
得到该接附点的动刚度:
IPI i a AREA f f K ∑Δ=2
24π (3)
根据式(3)作出动刚度曲线如如图2所示,该曲线所包围的面积等于IPI 响应曲线所包围的面积。

通过与动刚度目标值比较来评价各接附点的动刚度水平。

图1 IPI 分析响应曲线及其所包围的面积
图2 动刚度曲线所包围的面积
4 分析方法
用于IPI分析的白车身分析模型无约束,为自由状态。

将每个接附点的每个方向(X、Y、Z)的激励载荷定义为一个载荷工况,载荷为1N的集中力,频率范围为所关注的中低频率,同时将激励点定义为响应点,且响应自由度与激励自由度相同,例如Z向单位激励的响应输出为Z向加速度。

图5为接附点的激励载荷示意。

X向
Y向
Z向
图5 接附点激励载荷定义
由IPI分析得到一个接附点某方向的响应曲线,如图6-7中的曲线“IPI”,根据前面的公式计算得到该点的动刚度Ka,再根据动刚度目标值Kd得到一条IPI格式的Kd曲线。

该接附点的动刚度评价标准为:1、Ka值大于Kd值;2、然后将该点的IPI曲线与Kd曲线比较,如果IPI曲线在Kd曲线下方,则表示该接附点在该方向的动刚度满足目标值,对于IPI 曲线上某些超出Kd曲线的峰值则需要重点关注。

引起某个频率的响应峰值的原因是该频率下的刚度过低,但并不一定是该接附点的附近局部区域的刚度过低引起,因此需要利用直接频率响应分析、灵敏度分析等方法找到引起该响应峰值的刚度较低的部件或局部区域,通过优化改进该部件或局部区域的刚度来降低该响应峰值。

4.4 分析结果
以下为某车型的某个接附点的动刚度分析优化过程。

通过IPI 分析,得到该接附点的IPI 曲线和动刚度Ka ,Ka 能够满足动刚度目标值Kd ,但从IPI 曲线上可以看出,有4个响应峰值需要改进,图6为该接附点的Z 向IPI 分析结果曲线。

通过直接频率响应分析,发现引起其中2个频率上的响应峰值都是由同一个局部区域较低的刚度引起,在与设计部门讨论并确定了5种改进方案并经IPI 分析后发现,第5种改进方案能较明显地降低这2个频率的响应峰值,并且在关注频率范围内动刚度都有显著提高。

图7为方案5(绿色虚线)与原方案(红色实线)在该接附点Z 向IPI 曲线比较,
运用相同的方法,可以逐个对每个接附点的每个方向的动刚度及响应峰值进行优化、改进。

图6 某接附点Z 向IPI 曲线
原方案
峰值降低
峰值降低 改进方案
图7 某接附点改进方案的IPI 曲线比较
5 结论
运用基于MSC Nastran的IPI分析方法可以考察车身结构对于整车的中低频NVH性能的影响,并可指导用于改进整车NVH性能的车身结构的优化措施,在设计阶段解决潜在的NVH问题。

车身接附点的动刚度对于整车NVH性能有直接的影响,需要首先关注;
IPI分析通过运用频率响应方法分析接附点的源点导纳响应来评价局部动刚度;
IPI分析只用于评价接附点的动刚度水平及发现关注频率范围内的响应峰值。

影响接附点动刚度的因素并不局限于该点附近结构区域的刚度,要找到引起动刚度较低或响应峰值的原因,需要运用直接响应分析或灵敏度分析等方法来确定在该频率下刚度最低的局部结构。

6 参考文献
[1] MSC Nastran Quick Reference Guide
[2] 马大猷.现代声学理论基础.北京:科学出版社
[3]〔澳〕M.P.诺顿.工程噪声和振动分析基础.北京:航空工业出版社。

相关文档
最新文档