实验3 组合逻辑电路
实验三组合逻辑电路应用——译码器、数据选择器

实验三组合逻辑电路应用——译码器、数据选择器
译码器和数据选择器是现代数字电子学中常用的两种组合逻辑电路。
它们可以将输入
的二进制信号转换为对应的输出信号,并且在数字电路中具有广泛的应用。
一、译码器
译码器是一种将输入的二进制信号转换成对应输出信号的数字电路。
译码器的作用是
将输入的地址码转换成溢出电路所能识别的控制信号,通常用来将不同的地址码映射到不
同的设备或功能上。
比如在存储器系统中,根据不同地址码,从RAM或者ROM中取出相应
的数据或指令。
除此之外,译码器还可以用于数据压缩、解码、解密等领域。
在一些数字电路中,译
码器还可以充当多路复用器、选择器等电路的功能。
译码器的分类按照其输入和输出的码制不同,可以分为译码器、BCD译码器、灰码译
码器等。
其中,最常见的是2-4译码器、3-8译码器、4-16译码器等。
二、数据选择器
数据选择器是一种多路选择器,根据控制信号选择输入端中的一个数据输出到输出端。
选择器的控制信号通常由一个二进制码输入到它的控制端,二进制码的大小由选择器的通
道数决定。
数据选择器广泛用于控制、多媒体处理、信号处理等方面。
数据选择器与译码器相比,最主要的区别在于其输出可以不仅限于数字信号。
数据选
择器可以处理模拟信号、复合信号等多种形式的信号,因为它可以作用于信号的幅度、相位、频率等方面。
数据选择器按照输入和输出的端口取数的不同,可以分为单路选择器和多路选择器。
常见的有2-1选择器、4-1选择器、8-1选择器、16-1选择器等。
实验三组合逻辑电路的设计

实验三组合逻辑电路的设计组合逻辑电路是由与门、或门、非门等基本逻辑门组成的电路,其输出取决于输入信号的组合方式。
本实验旨在通过设计一个具体的组合逻辑电路,来强化学生对组合逻辑电路的理解和应用能力。
一、实验目的1.掌握组合逻辑电路的基本原理和设计方法;3.进一步理解与门、或门、非门等基本逻辑门的逻辑运算。
二、实验器材1.教学实验箱;2.相关实验电路元器件。
三、实验内容1.根据给定的逻辑功能要求,设计一个组合逻辑电路;2.使用门电路组合搭建所设计的组合逻辑电路;3.利用数字电路实验箱进行电路的搭建和测试;4.验证电路的功能是否符合设计要求。
四、实验步骤1.确定逻辑功能要求。
在本实验中,我们以设计一个4位二进制加法器为例。
4位二进制加法器是由4个全加器和一个或门组成的。
全加器的功能是将三位输入(被加数、加数和进位)相加得到两位输出(和和进位)。
2.进行真值表的列写和逻辑方程的列写。
为了完成4位二进制加法器的设计,我们首先需要根据功能要求列写真值表,包括所有的输入和输出组合。
然后,我们可以通过观察真值表,得出逻辑方程,并将其转化为门电路的连接方式。
3.根据真值表和逻辑方程进行卡诺图化简。
卡诺图是一种用于化简逻辑方程的方法。
通过将逻辑方程的输入和输出用二进制表示,在卡诺图上标记出函数值为1的格子,然后将格子组合成最简化的表达式。
在本实验中,通过化简后的逻辑方程,我们可以确定需要使用的与门、或门、非门的数量和连接方式。
根据实验器材的要求,选择相应的门电路元器件进行电路的搭建。
5.利用数字电路实验箱进行电路的搭建和测试。
根据门电路的设计,使用数字电路实验箱中的元器件进行电路的搭建。
搭建完成后,仔细检查电路连接是否正确,确保没有接错导线或插错元器件。
6.验证电路的功能是否符合设计要求。
根据真值表的结果,对经过测试的电路进行验证。
观察输出是否符合预期,如果输出结果与设计要求一致,则说明电路的功能实现正确。
五、实验注意事项1.在进行实验之前,应仔细阅读实验内容和操作步骤,理解实验的目的和要求;2.在进行电路连接时,应注意电路元器件的极性和连接方式,确保电路连接正确;3.在进行电路测试时,应注意接线的稳固性和安全性,避免触电事故的发生;4.实验结束后,应及时关闭电源,避免给他人和设备带来危险。
组合逻辑电路实验报告

组合逻辑电路实验报告组合逻辑电路实验报告引言组合逻辑电路是数字电路中的一种重要类型,它由多个逻辑门组成,能够根据输入信号的不同组合产生相应的输出信号。
在本次实验中,我们将研究和实验不同类型的组合逻辑电路,并通过实验结果来验证其功能和性能。
实验一:与门电路与门电路是最简单的组合逻辑电路之一,它的输出信号只有在所有输入信号都为高电平时才会输出高电平。
我们首先搭建了一个与门电路,并通过输入信号的变化来观察输出信号的变化。
实验结果显示,在输入信号都为高电平时,与门电路的输出信号为高电平;而只要有一个或多个输入信号为低电平,输出信号则为低电平。
这验证了与门电路的逻辑功能。
实验二:或门电路或门电路是另一种常见的组合逻辑电路,它的输出信号只有在至少一个输入信号为高电平时才会输出高电平。
我们搭建了一个或门电路,并通过改变输入信号的组合来观察输出信号的变化。
实验结果表明,只要有一个或多个输入信号为高电平,或门电路的输出信号就会为高电平;只有当所有输入信号都为低电平时,输出信号才会为低电平。
这进一步验证了或门电路的逻辑功能。
实验三:非门电路非门电路是一种特殊的组合逻辑电路,它只有一个输入信号,输出信号与输入信号相反。
我们搭建了一个非门电路,并通过改变输入信号的电平来观察输出信号的变化。
实验结果显示,当输入信号为高电平时,非门电路的输出信号为低电平;当输入信号为低电平时,输出信号则为高电平。
这进一步验证了非门电路的逻辑功能。
实验四:多选器电路多选器电路是一种复杂的组合逻辑电路,它具有多个输入信号和一个选择信号,根据选择信号的不同,将其中一个输入信号输出。
我们搭建了一个4选1多选器电路,并通过改变选择信号的值来观察输出信号的变化。
实验结果表明,当选择信号为00时,输出信号与第一个输入信号相同;当选择信号为01时,输出信号与第二个输入信号相同;依此类推,当选择信号为11时,输出信号与第四个输入信号相同。
这验证了多选器电路的功能和性能。
实验报告组合逻辑电(3篇)

第1篇一、实验目的1. 理解组合逻辑电路的基本概念和组成原理;2. 掌握组合逻辑电路的设计方法;3. 学会使用逻辑门电路实现组合逻辑电路;4. 培养动手能力和分析问题、解决问题的能力。
二、实验原理组合逻辑电路是一种在任意时刻,其输出仅与该时刻的输入有关的逻辑电路。
其基本组成单元是逻辑门,包括与门、或门、非门、异或门等。
通过这些逻辑门可以实现各种组合逻辑功能。
三、实验器材1. 74LS00芯片(四路2输入与非门);2. 74LS20芯片(四路2输入或门);3. 74LS86芯片(四路2输入异或门);4. 74LS32芯片(四路2输入或非门);5. 逻辑电平转换器;6. 电源;7. 连接线;8. 实验板。
四、实验步骤1. 设计组合逻辑电路根据实验要求,设计一个组合逻辑电路,例如:设计一个3位奇偶校验电路。
2. 画出逻辑电路图根据设计要求,画出组合逻辑电路的逻辑图,并标注各个逻辑门的输入输出端口。
3. 搭建实验电路根据逻辑电路图,搭建实验电路。
将各个逻辑门按照电路图连接,并确保连接正确。
4. 测试电路功能使用逻辑电平转换器产生不同的输入信号,观察输出信号是否符合预期。
五、实验数据及分析1. 设计的3位奇偶校验电路逻辑图如下:```+--------+ +--------+ +--------+| | | | | || A1 |---| A2 |---| A3 || | | | | |+--------+ +--------+ +--------+| | || | || | |+-------+-------+||v+--------+| || F || |+--------+```2. 实验电路搭建及测试根据逻辑电路图,搭建实验电路,并使用逻辑电平转换器产生不同的输入信号(A1、A2、A3),观察输出信号F是否符合预期。
(1)当A1=0,A2=0,A3=0时,F=0,符合预期;(2)当A1=0,A2=0,A3=1时,F=1,符合预期;(3)当A1=0,A2=1,A3=0时,F=1,符合预期;(4)当A1=0,A2=1,A3=1时,F=0,符合预期;(5)当A1=1,A2=0,A3=0时,F=1,符合预期;(6)当A1=1,A2=0,A3=1时,F=0,符合预期;(7)当A1=1,A2=1,A3=0时,F=0,符合预期;(8)当A1=1,A2=1,A3=1时,F=1,符合预期。
组合逻辑电路实验报告

组合逻辑电路实验报告引言:组合逻辑电路是数字电路的重要组成部分,广泛应用于计算机、通信等领域。
本实验旨在通过设计和实现一个基本的组合逻辑电路,加深对数字电路的理解,同时掌握实验的步骤和方法。
一、实验目的本次实验的主要目的是设计并实现一个4位二进制加法器,通过对二进制数进行加法运算,验证组合逻辑电路的正确性。
二、实验原理1. 二进制加法二进制加法是指对两个二进制数进行相加的运算。
在这个过程中,我们需要考虑进位问题。
例如,对于两个4位二进制数A和B,加法的规则如下:- 当A和B的对应位都是0时,结果位为0;- 当A和B的对应位有一个位是1时,结果位为1;- 当A和B的对应位都是1时,结果位为0,并需要将进位加到它们的下一位。
2. 组合逻辑电路组合逻辑电路是由多个逻辑门组成的电路,根据输入信号的组合条件决定输出信号的状态。
在本实验中,我们将使用与门、或门、非门等基本逻辑门设计加法器电路。
三、实验步骤1. 设计电路根据二进制加法的原理,我们可以通过组合逻辑电路来实现一个4位二进制加法器。
设计原理如下:- 使用四个与门分别对应四个位的相加;- 使用四个异或门进行无进位相加;- 使用一个或门将各位相加后的进位输出;- 最后将四个位的和和进位进行合并得到最终结果。
2. 搭建电路实验装置根据设计步骤,将与门、异或门、或门等集成电路以及电阻、导线等连接在面包板上,搭建出电路实验装置。
3. 验证电路正确性输入两个4位的二进制数A和B,并将结果与预期结果进行对比,验证电路的正确性。
重复进行多组实验,确保电路的可靠性和稳定性。
四、实验结果与分析通过多次实验,我们得到了实验结果。
将结果与预期结果进行对比,并计算误差,可以得出结论。
在实验中,我们还观察到了实验结果的稳定性和可靠性,并对实验结果的波形进行了分析。
五、实验总结通过本次实验,我们了解了组合逻辑电路的基本原理和设计方法,并通过设计和搭建4位二进制加法器电路,实践了电路设计的过程。
实验三 组合逻辑电路

(2) 若用74LS138译码器实现数据分配器,应选择74LS138的哪个引脚作为数据分配器的数据输入端?
应选E1或E2端作为输入端,由Y1、Y2、Y3三个端口确定数据分配器的输出端。
组合逻辑电路设计的一般步骤为:(1)明确实际问题的逻辑功能,确定输入、输出变量数计表示符号。(2)根据电路逻辑功能的要求,列出真值表。(3)由真值表写出逻辑表达式。(4)简化和变换逻辑表达式,从而画出逻辑图以及电路原理图。
七、思考题解答:
(1) 3-8线译码器74LS138在正常工作状态下,输入 时,哪一个译码输出端为有效电平?由此说明A、B、C中哪一个为高位输入端?
经过实验验证,实验结果符合预期,电路实现了故障诊断的逻辑功能。
五、实验的注意事项及主要经验教训
本次实验操作性较强,实验前要做好预习。进行实验前,要仔细检查导线和芯片,确保其功能正常。实验中仔细对照实验原理图和芯片引脚正确连接实验电路,确认电路无误后,认真做好实验结果的记录和验证。实验过程要注意保护实验器材,实验完成时,切断电源并整理好实验器材。当然,本实验也给我留下了一些教训:在实现一位全加器时,没有考虑到实验器材的实际情况,采取了教材的全加器模型,实现过程中出现了很多困难,也出现了逻辑错误,之后转换了方案,采用了另一种电路形式,最终取得了理想的实验结果。通过这次经历,我认识到:对于组合数字逻辑电路,实现相同逻辑功能时,可以有不同的电路形式,这要综合考虑选用的芯片和逻辑单元以及功耗、精度等一系列因素,在电路设计是应该灵活把握。
四、实验结果及数据分析
1.实现一位全加器
(1)列真值表
A
B
C-1
S
C0
实验三 组合逻辑电路

实验三组合逻辑电路(常用门电路、译码器和数据选择器)一、实验目的1.掌握组合逻辑电路的设计方法2.了解组合逻辑电路的冒险现象与消除方法3.熟悉常用门电路逻辑器件的使用方法4.熟悉用门电路、74LS138和74LS151进行综合性设计的方法二、实验原理及实验资料(一)组合电路的一般设计方法1.设计步骤根据给出的实际逻辑问题,求出实现这一逻辑功能的最简单逻辑电路,这就是设计组合逻辑电路时要完成的工作。
组合逻辑电路的一般设计步骤如图3.1所示。
图3.1 组合逻辑电路的一般设计步骤设计组合逻辑电路时,通常先将实际问题进行逻辑抽象,然后根据具体的设计任务要求列出真值表,再根据器件的类型将函数式进行化简或变换,最后画出逻辑电路图。
2. 组合电路的竞争与冒险(旧实验指导书P17~20)(二)常用组合逻辑器件1.四二输入与非门74LS0074LS00为双列直插14脚塑料封装,外部引脚排列和内部逻辑结构如图3.2所示。
它共有四个独立的二输入“与非”门,每个门的构造和逻辑功能相同。
图3.2 74LS00引脚排列及内部逻辑结构2.二四输入与非门74LS2074LS20为双列直插14脚塑料封装,外部引脚排列和内部逻辑结构如图3.3所示。
它共有两个独立的四输入“与非”门,每个门的构造和逻辑功能相同。
图3.3 74LS20引脚排列及内部逻辑结构3.四二输入异或门74LS8674LS86为双列直插14脚塑料封装,外部引脚排列和内部逻辑结构如图3.4所示。
它共有四个独立的二输入“异或”门,每个门的构造和逻辑功能相同。
图3.4 74LS86引脚排列及内部逻辑结构3.3线-8线译码器74LS13874LS138是集成3线-8线译码器,其功能表见表3.1。
它的输出表达式为i A B iY G G G m 122(i =0,1,…7;m i 是最小项),与基本门电路配合使用,它能够实现任何三变量的逻辑函数。
74LS138为双列直插16脚塑料封装,外部引脚排列如图3.5所示。
组合逻辑电路设计实验报告

一、实验目的1. 理解组合逻辑电路的基本原理和组成。
2. 掌握组合逻辑电路的设计方法,包括逻辑表达式的推导和门电路的选择。
3. 学习使用逻辑门电路实现基本的逻辑功能,如与、或、非、异或等。
4. 通过实验验证组合逻辑电路的设计和功能。
二、实验原理组合逻辑电路是一种数字电路,其输出仅取决于当前的输入,而与电路的历史状态无关。
常见的组合逻辑电路包括逻辑门、编码器、译码器、多路选择器等。
三、实验设备1. 74LS系列逻辑门芯片(如74LS00、74LS02、74LS04、74LS08等)2. 逻辑电平显示器3. 逻辑电路开关4. 连接线四、实验内容1. 半加器设计(1)设计要求:实现两个一位二进制数相加,不考虑进位。
(2)设计步骤:a. 根据真值表,推导出半加器的逻辑表达式:S = A ⊕ B,C = A ∧ B。
b. 选择合适的逻辑门实现半加器电路。
c. 通过实验验证半加器的功能。
2. 全加器设计(1)设计要求:实现两个一位二进制数相加,考虑进位。
(2)设计步骤:a. 根据真值表,推导出全加器的逻辑表达式:S = A ⊕ B ⊕ Cin,Cout = (A ∧ B) ∨ (B ∧ Cin) ∨ (A ∧ Cin)。
b. 选择合适的逻辑门实现全加器电路。
c. 通过实验验证全加器的功能。
3. 译码器设计(1)设计要求:将二进制编码转换为相应的输出。
(2)设计步骤:a. 选择合适的译码器芯片(如74LS42)。
b. 根据输入编码和输出要求,连接译码器电路。
c. 通过实验验证译码器的功能。
4. 多路选择器设计(1)设计要求:从多个输入中选择一个输出。
(2)设计步骤:a. 选择合适的多路选择器芯片(如74LS157)。
b. 根据输入选择信号和输出要求,连接多路选择器电路。
c. 通过实验验证多路选择器的功能。
五、实验结果与分析1. 半加器实验结果通过实验验证,设计的半加器电路能够实现两个一位二进制数相加,不考虑进位的功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三组合逻辑电路
一、实验目的
1.掌握组合逻辑电路的设计方法
2.熟悉常用组合逻辑器件的使用方法
3.熟悉用逻辑门电路、74LS138和74LS151进行综合性设计的方法
二、试验设备和器件
设备:数字电子技术试验箱
器件:74LS00,74LS20,74LS86,74LS138,74LS151
三、实验内容
1.实现一位全加器
(1) 按照组合逻辑电路的一般设计步骤,用基本门电路(74LS00,74LS86)实现
一位全加器;
(2) 用1片74LS138和1片74LS20实现一位全加器。
2. 设计一个监测信号灯工作状态的逻辑电路,每一组信号灯由红、黄、绿三盏构成,仅有红灯R亮、仅有绿灯G亮、黄灯Y和绿灯G同时亮为正常工作状态,其余为故障状态。
故障状态时要发出报警信号。
要求用74LS151实现。
(1) 逻辑抽象。
红黄绿三盏信号灯的状态为输入变量,分别用R、Y、G表示,并规定灯亮时为1,灭时为0;故障信号为输出变量,用Z表示,并规定正常工作状态下Z为0,发生故障时Z为1;
(2) 列真值表于表3-1;
(3) 根据真值表写出用最小项表示的Z的逻辑表达式;
(4) 按照逻辑表达式进行电路连接,画出电路连接图,并对电路进行测试。
3. 设计并实现实验指导书中四、3的电话程控系统(选作)
四、实验报告
1.实验预习
(1) 熟练掌握组合逻辑电路的一般设计步骤;
(2) 了解74LS00,74LS20,74LS86,74LS138,74LS151的功能表,引脚图和使用注意事项,熟练掌握使用它们实现逻辑函数的方法;
(3) 完成实验的预习报告,包括:实验目的、试验设备、布置的实验内容及步骤、原始数据记录表格及设计电路。
2. 实验及数据处理
(1) 根据布置的实验内容认真完成实验中的各项任务,仔细观察实验中的各种现象并加以分析;
(2) 完成真值表,记录实验数据并进行分析。
3. 思考题
(1) 3-8线译码器74LS138在正常工作状态下,输入011
ABC 时,哪一个译码输出端为有效电平?由此说明A、B、C中哪一个为高位输入端?
(2) 若用74LS138译码器实现数据分配器,应选择74LS138的哪个引脚作为数据分配器的数据输入端?
4.实验的注意事项及主要经验教训
实验三:组合逻辑电路1.全加器实验
(1)基本门电路(74LS00、74LS86)实现的全加器
(电路图)(实验结果真值表) (2)74138(3线8线译码器)和7420(四输入的与非门)实现的全加器(电路图)(实验结果真值表) 2.信号灯工作状态监测电路(用8选1数据选择器74151实现)(电路图)(实验结果真值表)
3.简单电话程控系统(选作)
数据记录表
(电路图)
传输波形图
输入:
输出:。