数学教育概论-第二章
数学教育心得及体会

数学教育心得及体会数学教育概论》这本书是由张奠宙、宁乃庆主编的,是普通高等教育十五国家级规划教材数学系列教材之一,它带附带有一个光盘,由高等教育出版社出版。
这是一个关于数学教育基本理论与实践的概述,目的是帮助具有数学专业知识的学生获得有关数教育的基本知识和技能。
它不再只是教材教法的说明书式的记叙,而是阐述数学教育的规律,具有自己怕学科体系。
全书分为实践篇和理论篇。
首先从观赏、分析大量的数学教学案例入手,帮助学生编制教案,走上讲台。
然后概略地介绍当代数学教育的基本理论,探讨数学教学的目的、学生应具备的数学能力、数学教学模式、数学教育的德育功能等基本课题,同时研究数学思想方法的价值,以及数学史、数学教育技术、数学教育心理等有关问题。
书中设专章介绍和研究《全日制义务教育数学课程标准》和《普通高中数学课程标准》的制定和实验,并就数解题和数学考试、数学教育研究等问题进行阐述。
数学是人类文明的火车头。
古希腊文明时期的数学著作──欧几里得的《几何原本》成为人类理性精神的典范。
它在西方国家的印刷数量,仅次于圣经。
当历史经过中世纪的漫漫长夜之后,是笛卡尔、费马、牛顿、一莱布尼茨创立的微积分,宣告了资本主义文明的科学黄金时代的来临。
19世纪发现的非欧几何、高斯---黎曼建立的微分几何进入爱因斯坦的相对论,缔造了物理学革命,成为20世纪文明的标志之一。
现在,当人们在普遍享受信息文明的时候,自然会想起为它奠基的数学家的贡献:冯诺依曼设计的电子计算机,连同维纳的控制论、仙农的信息论,人类终于迎来了航天飞行和手机普及的时代。
数学无处不在,数学无往不利。
人类的进步一时一刻也不能离开数学。
就单个个人而言,由于数的严谨与抽象,经过烽学的学习和训练,人的思维能力就获得一次升华。
学习数学,不仅为学习其他学科打下了扎实基础,而且能够培养人们不迷信权威,不感情用事,不停留于表面现象的思维品质,甚至从数学这无声的音乐、无色的图画中,领略到美的崇高境界。
1.2学习数学教育的意义和方法

7. 《邱学华与尝试教育》, 2003 年 19. 《小学数学尝试教学法课例》, 1993年
8. 《尝试教学法新进展》, 1992 年 20. 《新编小学数学备课指导》, 1993 年
9. 《尝试教学理论研究》, 1994 年 21. 《小学数学尝试学习准备与测
10. 《尝试 成功 发展》, 1996 年
顾泠沅是青浦教师进修学校数学教研员,在上海青 浦县主持长达十五年的数学教育改革实验,并进行了近 十年的后续研究。使青浦县农村中小学数学教学水平处 于全市先进水平。主编《 21 世纪数学教育探索丛书》, 对中国数学教育的理论与实践问题,作了系统的总结与 提炼,提出了“变式教学”。
4. 数学:邱学华——尝试教学
马芯兰( 1946——)
2. 陈重穆——主持“ GX” 实验
陈重穆, 1978 年晋升为教授, 1986 年任基础数学博 士导师。曾任数学系系主任,西南师范大学校长,四 川省政协第六届委员,中国数学会理事,四川省数学 会副理事长,重庆市数学会理事长,四川大学兼职教 授。著有《有限群论基础》。
主持“提高教堂效益的初中数学教改实验”, 简称“ GX” 实验,长达十六年之久。主编《新编初中 代数》《内地版》《高层次》《 GX 初中数学教材》等 5 套中小学教材成为国内外中小学数学教材编写和实 验最有影响的专家之一。《中国教育报》( 1994 年 2
对引例 3 的分析
a b 2 a2 2ab b2
方法一:依平方定义进行多项式乘法; 方法二:借助正方形,分割,面积守衡
a
b
b
a
2 、有利于促进学生数学的学习发展 怎样让学生学好数学是数学教师的核心任务。通过学习数学 教育学,教师可以根据数学教育学的相关理论自觉而有效指 导学生的数学学习。
总结版:中学数学教学概论

中学数学教学概论第一章中学数学教学的目的与任务1.1 确定中学数学教学目的的依据* 一、确定中学数学教学目的的依据①教育方针②普通中学的性质和任务③数学学科的特点④学生的年龄特征* 二、普通中学的性质和任务性质:普通中学进行的是基础教育而不是职业(专业)教育任务:要交给学生为继续升学或参加生产劳动所必需的、较系统的科学文化知识;必须联系生产、生活实际,注意培养学生的实践能力和生产劳动的技能技巧,培养学生进入社会后的必要的生存和发展能力。
二、数学学科的特点①数学的抽象性与严谨性②数学的广泛应用性③数学的思辨性和结论的确定性1.2 中学数学教学目的一、“标准”中规定的教学目的1.2011年《全日制义务教育数学课程标准(实验稿)》总目标:①获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能②初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识③体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心④具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展新课程标准的四个方面:①知识技能②数学思考③解决问题④情感态度* 2. 2003年《普通高中课程标准(实验)》总目标:使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要具体目标:①获得必要的数学基础知识和基本技能②提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力③提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力④发展数学应用意识和创新意识⑤提高学习数学的兴趣,树立学好数学的信心,形成契而不舍的钻研精神和科研态度⑥具有一定的数学视野三维目标:①知识与技能②过程与方法③情感、态度与价值观二、关于基础知识和基本技能基础知识:指“大纲”或“标准”中规定的代数、几何、统计与概率、微积分初步等的概念、法则、性质、公式、定理、公理以及由其内容所反映出来的数学思想和方法基本技能:指按照一定的程序与步骤进行运算、处理数据(包括使用计算器、计算机等信息技术工具)、简单的推理、画图以及绘制图表等基础知识教学中要注意的问题:①要有整体观念②要过程与结论并重③要注意循序渐进、螺旋上升④要注意训练的适度性第二章中学数学教学改革2.1 20世纪中学数学教育改革综述一、克莱因——贝利运动1.克莱因(F.Klein)——主张“以函数为中心”2. 贝利——主张“数学教育应该面向大众”二、新数运动20世纪50年代后期,“数学教育现代化运动”开始(“新数”——新的数学课程)1.新数运动产生的重要原因①社会发展对人的数学素养提出高要求②数学教育中存在着一些亟待解决的问题③20世纪数学的飞速发展④心理学理论的发展⑤高等学校数学教育的发展2.对“新数”的反对意见的体现①升学和就业②具体和抽象③归纳与演绎④理论与实际⑤传统与现代3.新数运动受到挫折的根本原因脱离实际,急于求成。
数学教育概论课件

• 内容之间有何联系?
教(学)到什么程度?
——教学目标的确定 • 教学:教学是学习者发生预期变化的过程
• 教学目标:教学中师生所预期达到的学习效 果和标准——是教学的根本指向和核心任务, 是教学设计的关键 范例1、2、3
哪些重要,难教(学)?
——教学内容的重点和难点
• 教学目标确定后,具体实行起来必须抓重点,解决主要矛 盾,同时,要分析数学内容的难点,设法克服 • 教学重点是教材中为了达到教学目的而着重指导学生必须 熟练掌握的内容。通常教材中的公式,定义,定理,法则, 数学思想方法等都是数学教学重点 • 教学难点是教材中那些对于学生来说不易理解的内容,或 者说是那些太抽象、离生活实际太远的、过程太复杂的教 学内容。有些难点是理解上的困难,如:无理数,复数, 指数;有些难点是技巧性的,如:因式分解,三角恒等变换 等 • 多种情况下重点与难点是相同的。有时难点不见得是重点, 但必须突破难点才有利于重点的解决。还有时,难点与重 点无关。 • 要注意,重点和难点的确定,一定要站在学生的角度去考 虑。教师认为易学好懂的地方,学生不一定感到好学。
概念间的关系(概念外延间的同异关系) 1、相容关系 (1)同一关系(全同关系或重合关系)
外延完全重合,内涵可以不同。 例如:数0是扩大的自然数集中最小的数,又是正数 与负数的分界数,在数的运算中它又是两个相等数 的差等; 等腰三角形底边上的高线、中线以及顶角的平分线 的外延都是同一条线段,而内涵也各不相同。 注:研究概念间的同一关系,可以对概念所反映的对 象得到较深刻、较全面的认识。另外,在推理证明中 具有全同关系的概念可以互相代换,使得论证简明。
数学概念产生和发展的途径
(1)从现实模型直接得来; (2)经过多级抽象概括得来; (3)从数学内部需要产生出来;
数学教育概论

《数学教育概论》复习资料第二章与时俱进的数学教育1,数学发展史上的四个高峰:①以《几何原本》为代表的古希腊的公理化数学(公元前700-300)(严密性);②以牛顿发明微积分为代表的无穷小算法数学(17-18世纪中叶)(有用性);③以希尔伯特为代表的现代公理化数学(19-20世纪中叶)(形式化);④以现代计算机技术为代表的信息时代数学(20世纪中叶-今天)2,四个数学发展阶段,显示出“数学应用”和严密的“公理化”这两种思潮是交互出现的:①古希腊“公理化”时期;②牛顿的不严密的无穷小算法时期;③希尔伯特的严密的现代公理化时期;④信息时代的计算机算法时期。
3,核心数学的发展趋势至少有以下特点:①从线性到非线性,混沌、分形、动力系统等研究迅速发展;②从交换到非交换,矩阵、算子的乘法都是不可交换的;③从一维数学到高维数学,特别是四维和无穷维;④随机数学和确定性数学、离散和连续、局部性质和整体性质间的对立与整合。
4,数学观的变化:①公理化方法、形式演绎仍然是数学的特征之一,但是数学不等于形式;②在计算机技术的支持下,数学注重应用;③数学不等于逻辑,要做“好”的数学。
5,20世纪我国数学教育观发生了哪些变化?①由关注教师“教”转向关注学生的“学”;②从“双基”与“三大能力”观点的形成,发展到更宽广的能力观和素质观;③从听课、阅读、演题,到提倡试验、讨论、探索的学习方式;④从看重数学的抽象和严谨,到关注数学文化、数学探究和数学应用。
第三章数学教育的基本理论1,弗赖登塔尔的数学教育理论1)弗赖登塔尔所认识的数学教育主要特征是什么?①情境问题是教学的平台;②数学化是数学教育的目标;③学生通过自己的努力得到的结论和创造是教育内容的一部分;④“互动”是主要学习方式;⑤学科交织是数学教育内容的呈现方式。
(概括:现实、数学化、再创造)2)现实:弗赖登塔尔认为,数学是来源于现实,存在于现实,并且应用于现实,而且每个学生有各自不同的“数学现实”。
数学教育概论 第二章(共28张PPT)

〔二〕东西数学教育的比较
西方
平衡点考试严厉
学生建构
教师中心
强调理解
熟能生巧
根底松散〔 美国 -- 西欧 -- 俄国 -- 日本 -- 港台 -- 大陆〕扎实根底
非形式化
形式演绎
适当演练
反复演练
个性开展
进度一致
轻松学习
负担过重
〔三〕对国际数学教育大会〔ICME〕的介绍
数学教师的教育观念又包括三个方面 :教师的数学观 ,教 师的教学观和教师的学习观。
一、20世纪数学观的变化
数学观的开展与变化
①数学是一门经验科学
②所有的数学都是可以由公理定理推陈出新导得出,是严 密的逻辑方法演绎出的知识体系
③数学是研究空间形式和数量关系的科学 ④数学是一组相容的、独立的、完备的公理系,按一定方式推
数学是美的; 优势:重视学生创新精神和实践能力培养的教学行为正在逐步形成。
一、20世纪数学观的变化 它通过逻辑将知识组织成一个彼此联系的结构。
数学离不开应用; 〔四〕 改革中的中国数学教育
3 小明去食堂吃午饭,他觉察今天食堂提供四种菜,主食可选择米饭、面条或饼。 某些实验班的教师缺乏教学参考资料,只有本学期的一本教科书,对实验教材前后相关的教学内容缺乏整体的了解;
探究和数学应用.
三、国际视野下的中国数学教育
〔一〕中国数学学习者悖论
〔二〕东西数学教育的比较 〔三〕对国际数学教育大会
〔ICME〕的介绍
〔四〕 改革中的中国数学教育
〔一〕中国数学学习者悖论
一方面,中国〔包括大陆、台湾、香港等地区〕学生 的数学学习成绩十分优良。
另一方面, 西方的学者又认为中国的数学学习是“学生被 动地接受〞,“常规问题的反复演练〞, 教学观念陈旧。
数学教育概论
数学教育概论数学教育概论目录第一章绪论:为什么要学习数学教育学第一节数学教育成为一个专业的历史第二节数学教育成为一门科学学科的历史第三节数学教育研究热点的演变第四节几个数学教育研究的案例理论篇第二章与时俱进的数学教育第一节20世纪数学观的变化第二节作为社会文化的数学教育第三节20世纪我国数学教育观的变化第四节国际视野下的中国数学教育第五节改革中的中国数学教育附录:我国影响较大的几次数学教改实验第三章数学教育的基本理论第一节弗赖登塔尔的数学教育理论第二节波利亚的解题理论第三节建构主义的数学教育理论第四节我国“双基”数学教学第四章数学教育的核心内容第一节数学教育目标的确定第二节数学教学原则第三节数学知识的教学第四节数学能力的界定第五节数学思想方法的教学第六节数学活动经验第七节数学教学模式第八节数学教学的德育功能第五章数学教育研究的一些特定课题第一节数学教学中数学本质的揭示第二节学习心理学与数学教育第三节数学史与数学教育第四节数学教育技术第五节数学优秀生的培养与数学竞赛第六节数学学差生的诊断与转化附录:数学学差生诊断与转化个案第六章数学课程的制定与改革第九章数学课堂教学观摩与评析第一节师范生走向课堂执教时的困惑第二节案例学习——数学弄懂了还要知道怎么教第三节一些特定类型的课例赏析第四节一些案例(课堂教学片段)的评析第十章数学课堂教学基本技能训练第一节如何吸引学生第二节如何启发学生第三节如何与学生交流第四节如何组织学生第五节形成教学艺术风格第十一章数学教学设计第一节教案三要素第二节数学教学目标的确定第三节设计意图的形成第四节教学过程的展示第五节优秀教学设计的基本要求第一章绪论:为什么要学习数学教育学一、数学教育的沿革与发展(一)专业培养目标本专业主要培养学生掌握数学科学的基本理论与基本方法,能够运用数学知识解决实际中的一些问题,具有现代教育观念,适应教育改革需要,以及具有良好的知识更新能力。
就业面向九年制义务教育阶段中学数学师资和教育、教学管理工作人员、教学研究人员及其他教育工作者。
数学教育学概论——曹才翰
数学教育学概论曹才翰、蔡金法著序言在国际、国内的教育领域中,数学教育始终是最活跃的学科之一。
学术组织林立,专业会议频繁,各种新理论、新观点不断涌现,研究队伍不断扩大。
数学教育研究队伍中,不仅包括了专门从事数学教育理论和实验研究的数学教育家,而且还包括一些数学家、数学教师,甚至连从事其它专业,如心理学、教育学、教育心理学、计算机科学的专家,也越来越对数学教育感兴趣。
呈现出一派兴旺的景象。
出现这种状况的原因至少有下列三个方面:1.数学科学在社会中的作用数学的研究对象是客观世界的数量关系和空间形式,或者更一般地说是研究客现世界量的关系的科学。
数学的抽象程度之高,使它完全脱离了客观现实,并且其结论具有一般性。
因此,数学成了科学和技术的工具和语言,自然界中的许多现象和过程,常常需要借助于它来模拟、研究和预测。
数学,不仅它的内容、意义和方法,而且它的思维方式,对工程技术、自然科学,甚至社会科学的学习、研究和应用,都有极大的作用。
既然数学如此重要,那就有一个如何使人们更快,更好地学习数学的问题,这个光荣而艰巨的任务只能由数学教育学去研究、解决。
2.数学学科的作用这表现在三个方面:(1)在中小学的课程体系中,数学是一门工具学科,是学习其它学科的基础,(2)具有数学特点的实际技能和技巧,对于学生的劳动和职业培训是必要的;(3)数学对学生能力的培养和个性道德品质的形成也起着积极的作用。
这就迫切需要解决选用什么教材,采用何种方法教好,数学要达到什么目的等问题。
3.数学的特点数学除了上面说到的具有广泛的应用性以外,还具有高度的抽象性和严密的逻辑性等特点。
正因为这些特点,使得心理学家开始对数学特别感兴趣,他们试图通过数学来研究学生学习过程中的思维过程和思维规律,回答人们是怎样进行思维的,对于数学又是怎样思维的等问题。
数学教育学应该以密切配合心理学家的研究,利用和研究数学教学规律,提高数学教学质量为己任。
这样,就形成了从多种角度研究数学教育的局面。
第1讲 数学教育概论
返回
《算经十书》
返回
初创阶段—数学教学法(1951-1985年)
返回
发展阶段—数学教学论(1986-1996年)
返回
提升阶段—数学教育学(1996年至今)
返回
培利(J.Perry,1850-1920爱尔兰 数学家、力学家)
主要著作(演讲报告):《数学的教学》、《数学教学 纲目》 特别强调:数学理论与实际应用的统一 主要观点:让学生自己去思考、发现和理解数学问题 注重培养学生的应用能力和逻辑思维能力
主要要求:从《几何原本》解放出来
返回
F.克莱因(F.Klein,1849-1925德国著名数学家) 国际数学教育委员会第一任主席(1908-1925) 主要著作:《中等学校的数学教育讲义》《高观点下的 初等数学》 主要观点:以函数概念为中心,统一中学数学内容的改 革思想,重视数学教育方法 主要工作:起草《数学教学要目》(“米兰大纲”), 其指导思想: 教材的选择和安排,应适应学生心理的自然发展 融合各个数学学科,密切数学与其他学科的联系 不过分强调形式的训练,应重视应用 以函数思想和空间观察能力作为数学教学的基础 “米兰大纲”的指导思想影响了整个20世纪的数学教育 返回
返回
常量数学→变量数学
● 笛卡尔(Descartes,1596-1650) 法国数学家、哲学家、解析几何创始人
● 牛顿(Newton,1642-1727,英国伟大 的科学家、数学家) 发现万有引力,创立微积分 名著《自然科学的数学原理》光照几百年 ● 莱布尼兹(Leibniz,1646-1716) 微积分的发明者之一,今天的微积分符号即由他 发明。 解析几何、微积分的发明与发展将大学的数学教育 提升到新阶段。 返回
数学教育概论
返回
《算经十书》
返回
G.波利亚(G.Polya,1887-1985,匈裔美籍数学家)
主要著作:《怎样解题》、《数学的发现》、《数学与猜想》 先后被译成14种文字多次出版,风行世界。20世纪80年代中期,三 本著作的中译本问世,数学解题理论成为数学教育研究的热点。 主要思想:倡导教会思考
培养创造精神
探索式教学 学习原则:主动学习原则
最佳动机原则
阶段序进原则 波利亚的“怎样解题表”:提出问题、拟定计划、实行计划、 回顾
返回
《九章算术》
经过张苍(约公元前200年)和耿寿昌(约公元前50年))整理成书,
是我国现存最早的数学著作 应用问题集的形式,全书共九章,共246个问题,每个问题有问、
答案,每类问题还有算法(“术”),全书共202个“术”。但既无任
碑。
在近2000年里用世界各种文字出了1000多版,成为最主要的数学 教科书,对数学教育意义重大,除《圣经》以外最有影响的著作。
返回
● 夸美纽斯(Johan Amos Comenius,1592-1670,捷 克著名教育家、世界教学论鼻祖) 主要著作:《大教学论》、《母育学校》、《泛智学校 》 主要观点:“教育适应自然”;提倡“泛智”教育;提 出直观、循序渐进、启发自觉和巩固性等数学教学原则; 并指出和制定了富有特色的各类学校的数学教学大纲 ● 卢梭(Jean Jacques Rousseau,1712-1778,法国 思想家和教育家) 在《爱弥儿》中指出:儿童学习几何的方法;提倡将数 学学习生活化、游戏化和实践化
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、20世纪我国数学教育观的变化
如果问小学生或初中生以下这些问题,你估计他们会怎样 回答?为什么?
Q3.1 如果有一天小云用彩纸拼出一个心形,然后做成一个贺年卡。你说 小云是不是在做数学呢?
Q3.2 有一天下大雨,小华坐在车中望着外面正在下雨的窗口。你说小华 是不是在用数学?
教师的数学观应该逐步体现在数学教育过程 当中.
二、20世纪我国数学教育观的变化
数学教学理念的发展
由关心教师的“教”转向也关注学生的“学” 从“双基”与“三力”观点的形成,发展到更宽广
的能力观和素质观 从听课、阅读、演题,到提倡实验、讨论、探索的
学习方式 从看重数学的抽象和严谨,到关注数学文化、数学
Q3.3 小明去食堂吃午饭,他发觉今天食堂提供四种菜,主食可选择米饭、 面条或饼。你觉得小明去选午餐吃什么的时候,他是不是在用数学呢?
Q3.4 何先生每天外出前,必先收听天气预报,以估计用不用带雨伞。你认 为何先生每天这样做算不算在用数学呢?
Q3.5 小强和小珍在大会堂的旋转楼梯拍照,照片冲洗出来后,他们发现这 个旋转楼梯看上去很像一条正弦曲线。你觉得他们看相片的时候,是不 是在用数学呢?
一、20世纪数学观的变化
对数学价值的认识
1. 数学是自然科学和一切重大技术革命的基础; 2. 数学是一种工具; 3. 数学是一门语言,具有广泛的应用性。在提高人的推理
能力、抽象能力方面有独特作用并为其他科学提供了语 言(内部的和外部的)、思想和方法的数学是一门国际 通用语言,有助于提高人们选择、整理、交流、表达、 应用信息的能力; 4. 在内容、思想和方法等诸方面不断传承、创新的数学是 人类的一种文化,是现代文明的重要组成部分。
数学是由事实、法则、技巧构成的一套工具。受过训练的工 匠熟练地利用它达到一些外在的目的。数学是一堆彼此无关但却 很有用的事实和法则。
一、20世纪数学观的变化
合理的数学观
从静态的、形而上学的、绝对主义的、功利主 义的和科学主义的数学观向动态的、辩证的、发展 的、建构的、人文主义与科学主义相结合的数学观 的转变.
一、20世纪数学观的变化
20世纪数学观出现了以下的变化:
公理化方法、形式演绎仍然是数学的特征之一,但 是数学不等于形式。
在计算机技术的支持下,数学注重应用。 数学不等于逻辑,要做“好”的数学。
一、20世纪数学观的变化
当代中国数学教师数学观的特点
“自然主义+实用主义+功利主义+科学主义”
香港中文大学黄毅英教授 “中国内地中学教师的数学观”
Q1.3 小平很喜欢同小狗玩。于是他整天都去隔壁小云家看他家那只小狗。 你说小平这样做是不是在用数学呢?
Q1.4 小明说一块糖果的一半比三分之一好。你认为小明这样讲,是不是在用 数学或在做数学呢?
Q1.5 如果有一天你同桌拿出格尺来量他的书桌有多长。你认为是不是在用 数学?
Q2.1 如果弟弟用计算器把3和2相加,然后得出5。弟弟这样做,你认为他是不 是在那里做数学或用数学呢?
观 ,教师的教学观和教师的学习观。
一、20世纪数学观的变化
数学观的发展与变化
①数学是一门经验科学 ②所有的数学都是可以由公理定理推陈出新导得出,是
严密的逻辑方法演绎出的知识体系 ③数学是研究空间形式和数量关系的科学 ④数学是一组相容的、独立的、完备的公理系,按一定
方式推理出来的一堆‘形式’,与它表示的内容无关 ⑤数学是模式和秩序的科学
二、20世纪我国数学教育观的变化
数学教育观
对数学教育的内容、方法、目标、作用等的看法。
二、20世纪我国数学教育观的变化
数学教育观的核Leabharlann 内容数学教育的目标是什么? 数学学习与数学教学活动的本质是什么?
二、20世纪我国数学教育观的变化
数学教育观与数学观的关系
教师的数学观对其数学教育观的形成和发展 有着深刻的影响.
二、20世纪我国数学教育观的变化
部分数学家提出的与数学有关的观点
数学发现的动力不是推理,而是想像; 数学美的要素之一是惊奇感; 数学和逻辑其实没有什么关系; ……
人类的发明与创造,它不是一个一成不变的成品,因为它的结果是 开放的,仍然会发生变化的。 柏拉图主义的观点(the Platonist view)
数学是一个静态的永恒不变的学科。它通过逻辑将知识组织 成一个彼此联系的结构。数学是发现而不是发明。 工具主义的观点(the instrumentalist view)
“尽管教师认为数学与社会实践、日常生活之间有联系, 但却把在日常生活中有广泛应用的数学(如估算、记录、观 察、数学决定等)看成是与数学无关的。于是在实际教学中 学生所体验到的数学仍是一堆法则的集合”。
一、20世纪数学观的变化
英国学者Paul Ernest将教师的教学观分成三类
问题解决的观点(the problem-solving view) 数学是一个动态的、由问题而推动发展的学科。数学是体现
探究和数学应用
二、20世纪我国数学教育观的变化
如果问小学生或初中生以下这些问题,你估计他们会怎样 回答?为什么?
Q1.1 假设你喜欢阅读报纸,有一天你买了一份报纸,并估计这份报纸头版有 多少字。你认为你这样做是否正在用数学?
Q1.2 哥哥喜欢画画,每天起床后,都用笔画一个时钟来显示他昨晚睡了几个 小时。你说哥哥这样做,是不是在做数学?
课程改革背景下研究数学教师数学观的重要性
英 Paul Ernest 的观点: “教育改革首先要从更新教师的教学观念入手 。改变
数学教师的数学观是数学课程改革的必要条件”。 影响教师教学实践的因素有三个方面 :教师的教育观
念,社会背景和教师的思考与反思。 数学教师的教育观念又包括三个方面 :教师的数学
第二章 与时俱进的数学教育
琼州学院教育科学学院
第二章 与时俱进的数学教育
20世纪数学观的变化 20世纪我国数学教育观的变化 国际视野下的中国数学教育 改革中的中国数学教育
一、20世纪数学观的变化
数学观
对数学及数学与客观世界关系的总的看法,也就是 对数学的本质的认识。
一、20世纪数学观的变化