整数规划问题的数学模型
运筹学 第05章 整数规划与分配问题

1
整数规划问题的提出
0 xj 1 表示项目j不被选中 表示项目j被选中 ( j 1,2,3,4,5)
解:决策变量:设
目标函数:期望收益最大
max z 10 x1 8 x 2 7 x3 6 x 4 9 x5
约束条件:投资额限制条件 6x1+4x2+2x3+4x4+5x515 项目A、C、E之间必须且只需选择一项:x1+x3+x5=1 项目B、D之间必须且只需选择一项:x2+x4=1 项目C的实施要以项目D的实施为前提条件: x3 x4 归纳起来,其数学模型为:
n
(i 1,2, , m) ( j 1,2, , n)
2
整数规划问题的分类
根据变量取整数的情况,将整数规划分为:
(1)纯整数规划,所有变量都取整数.
(2)混合整数规划,一部分变量取整数,一部分变量取实数 (3)0-1整数规划 ,所有变量均取0或1
2
整数规划问题的求解思考
1
整数规划问题与其松弛问题
2
匈牙利法
例:用匈牙利法求解下列指派问题,已知效率矩阵分别如下:
任务 A 2 10 9 7 B 15 4 14 8 C 13 14 16 11 D 4 15 13 9
人员
甲 乙 丙 丁
2
匈牙利法
2 10 9 7
15 4 14 8
13 14 16 11
4 15 13 9
例:其中(2,2)(3,1)点为最大值,Z=4。常用的求解整数规划的方法有: 割平面法和
分支定界法,对于0-1规划问题采用隐枚举法和匈牙利法。
3
分派问题与匈牙利法
1
整数线性规划

分枝定界法的理论基础:
1 2 k , i j (1) max cx max (max cx, max cx, , max cx)
x x1 x 2 x k
(2) 若 i j ,则 max cx max cx
xi xi x
分 枝
给定整数规划问题IP max z C T X
若x 的某个分量 xi 不是整数,
0
0
则将 IP分解为两个子问题
max z C X AX b X 0 X为整数向量 xi [ xi0 ]
T max z C X AX b X 0 X为整数向量 xi [ xi0 ] 1
记 z0 z
x1 4, x1 5
将问题B0分解为两个子问题B1和B2(分枝), 分别解B1,B2得 B1: x1=4, x2=2.10, z1=349 B2: x1=5, x2=1.57, z2=341
max z 40 x1 90 x2 max z 40 x1 90 x2 9 x1 7 x2 56 7 x 20 x 70 1 2 x1 4 B1 x1 , x2 0 9 x1 7 x2 56 7 x 20 x 70 1 2 x1 5 B2 x1 , x2 0
4、几点说明 (1)、如果要求目标的最大值
max z cij xij
令
bij M cij
i
j
其中
M max{ cij }
效率矩阵可变为B,将分配问题转换为一个极 小化问题
min z
'
b x
ij i j
ij
(2)、如果分配问题中,人员数 m 不等于工作数 n 时,可以类似于不平衡运输问题建立模型的 方法,增加虚拟人员或虚拟工作。
运筹学整数规划

运筹学整数规划运筹学是研究在资源有限的条件下,如何进行决策和优化的一门学科。
整数规划是运筹学中的一个重要分支,它解决的是决策变量必须为整数的问题。
整数规划在实际问题中具有广泛的应用,如生产计划、设备配置、选址问题等。
整数规划问题的数学模型可以表示为:max/min c^T xs.t. Ax ≤ bx ≥ 0x ∈ Z其中,c是目标函数的系数矩阵,x是决策变量的向量,A是约束条件的系数矩阵,b是约束条件的向量,Z表示整数集合。
整数规划问题与线性规划问题相似,但整数规划问题的约束条件多了一个整数限制,使得问题的解空间变得更为复杂。
由于整数规划问题的NP-hard性质,求解整数规划问题是一项困难的任务。
求解整数规划问题的常用方法有分支定界法、割平面法和启发式算法等。
分支定界法是一种穷举搜索的方法,它通过将整数规划问题不断分割成更小的子问题,从而逐步搜索解空间,直到找到最优解。
分支定界法对于规模较小的问题比较有效,但对于大规模复杂问题,效率较低。
割平面法是一种通过添加新的约束条件来减少解空间的方法。
它利用线性松弛问题(将整数约束条件放宽为线性约束条件)的解来构造有效的割平面,从而逐步缩小解空间,找到最优解。
割平面法通常比分支定界法更有效,但对于某些问题,可能需要添加大量的割平面才能收敛到最优解。
启发式算法是一种基于经验和启发式搜索的方法。
它通过设置初始解、搜索策略和邻域搜索等步骤,来快速找到近似最优解。
常见的启发式算法有遗传算法、模拟退火算法和禁忌搜索算法等。
启发式算法虽然不能保证找到全局最优解,但能够在可接受的时间内找到较优解。
综上所述,整数规划作为运筹学中的重要分支,解决的是决策变量必须为整数的问题。
整数规划问题具有广泛的应用,但由于其NP-hard性质,求解过程较为困难。
常用的求解方法包括分支定界法、割平面法和启发式算法等。
这些方法各有优劣,根据具体问题的特点选择合适的方法进行求解。
运筹学第5章:整数规划

则问题可表示为:
max z c j x j
j 1 n
n a j x j B j 1 x1 x2 0 s.t. x3 x4 1 x x x 2 7 5 6 x j 0或1 j 1,2, , n 【例5-3】工厂A1和A2生产某种物资,由于该种物资供不应 求,故需要再建一家工厂,相应的建厂方案有A3和A4两个。这 种物资的需求地有B1、B2、B3、B4四个。各工厂年生产能力、各 地年需求量、各厂至各需求地的单位物资运费cij(j=1,2,3,4) 见表5-2。
三、割平面法的算法步骤
步骤1:将约束条件系数及右端项化为整数,用单纯形法求 解整数规划问题(ILP)的松弛问题(LP)。设得到最优基B,相应 的基最优解为X*。 步骤2:判别X*的所有分量是否全为整数?如是,则X*即为 (ILP)的最优解,算法终止;若否,则取X*中分数最大的分 量 x * ,引入割平面(5.7)。
表5-2
Ai cij A1 A2 Bj B1 2 8 B2 9 3 B3 3 5 B4 4 7 生产能力 (千吨/年) 400 600
A3
A4 需求量(千吨/年)
7
4 350
6
5 400
1
2 30025 150200200工厂A3或A4开工后,每年的生产费用估计分别为1200万元或 1500万元。现要决定应该建设工厂A3还是A4,才能使今后每年 的总费用(即全部物资运费和新工厂生产费用之和)最少。
一般来说,整数线性规划可分为以下几种类型:
1. 纯整数线性规划(Pure Integer Linear Programming): 指全部决策变量都必须取整数值的整数线性规划,也称为全整 数规划。 2. 混合整数线性规划(Mixed Integer Linear Programming):指决策变量中一部分必须取整数值,而另一部 分可以不取整数值的整数线性规划。 3. 0-1整数线性规划(Zero-one Integer Linear Programming):指决策变量只能取0或1两个值的整数线性规划。
mip数学模型

mip数学模型
MIP(Mixed Integer Programming)是一种数学规划模型,也是最常用的整数规划方法之一。
MIP模型包含了线性约束条件和整数变量,目标是找到最优解来最小化或最大化某个优化函数。
MIP模型可以表示为如下形式:
min/max c^T * x
subject to A * x <= b
x_j为整数变量
x_j >= 0, x_j为非负变量
其中,c是一个n维列向量表示目标函数的系数,x是一个n 维列向量表示决策变量,A是一个m×n维矩阵表示线性约束条件,b是一个m维列向量表示约束条件的右侧常数。
MIP模型可以通过数学规划求解器,如CPLEX、Gurobi等进行求解。
这些求解器使用了一系列特定的算法和技术,在合理的时间内找到最优解或接近最优解。
MIP模型在实际应用中广泛存在,例如生产调度、库存管理、路径优化等问题。
通过使用整数变量,MIP模型可以更好地处理离散决策问题,提供更优的决策方案。
第4章 整数规划

整数规划
整数规划问题的提出
整数规划模型与一般的线性规划模型 的区别仅在于: 的区别仅在于:整数规划的变量要求 部分的或全部的为整数。例如: 部分的或全部的为整数。例如:
m Z = x + x2 ax 1 14 1 x +9x2 ≤ 51 −6x +3x2 ≤1 1 x , x ≥ 0且 整 为 数 1 2
(纯整数规划问题) 纯整数规划问题)
解:设xi为第i天开始上班的人数: 为第i天开始上班的人数: Min: Min:z=x1+x2+x3+x4+x5+x6+x7 s.t. x1 +x4+x5+x6+x7≥17 +x5+x6+x7≥13 x1+x2 x1+x2+x3 +x6+x7≥15 x1+x2+x3+x4+ +x7≥19 x1+x2+x3+x4+x5 ≥14 x2+x3+x4+x5+x6 ≥16 x3+x4+x5+x6+x7≥11 xi≥0 ( i=1,2,…,7) i=1,2,…,7)
例:某市6 例:某市6个区,希望设 置最少消防站以便节省 费用。条件:
必须保证在城区任何地方发 生火警时,消防车能在15 生火警时,消防车能在15分 15分 钟之内赶到现场。各区之间 消防车行驶的时间见右表。
请确定设站方案。
布点问题的数学模型: 0-1规划 布点问题的数学模型:
设0−1为决策变量,当表示i地区设站,表示i 为决策变量,当表示i地区设站,表示i 地区不设站。这样根据消防车15分钟赶到现 地区不设站。这样根据消防车15分钟赶到现 场的限制,可得到如下模型
整数规划

15
16
1、0-1整数规划的应用
¾ 投资分析
关于固定投资的资金预算决策是一个是或否的决 策,其表达形式如下: 每个是或否的决策: 是否应该在固定投资项目上投资?
决策变量
=
⎧1, ⎩⎨0,
是 否
17
¾ 选址
每个可选地点的选择都是一个是或否的决策,其 表达形式如下: 每个是或否的决策: 是否应该选择该地建新设施?
引入N个辅助0-1变量yj。
yj
=
⎧0, ⎩⎨1,
if Constraint j is chosen if Constraint j is not chosen
2、产品互斥的约束以及xj和yj关系的约束 y1+y2≤1 x1 ≤ My1 x2 ≤ My2
3、决策变量的约束
x1 ≥ 0, x2 ≥ 0 且为整数; y1, y2都是0-1变量。
41
42
7
该问题的整数规划模型为:
Max s.t.
z=300x1+500x2 x1≤ 4
2x2 ≤ 12 3x1+2x2 ≤ 18
6
1
每架飞机的年利润 飞机的单位购价 最多购买数量
小型飞机
$100万 $500万
2
大型飞机
$500万 $5000万
−
可获得的资 金总额
$1亿
问题:为了获得最大的利润,公司应该购买多 少飞机,各种型号又该如何组合呢?
7
整数规划模型:
决策变量: S=购买小型机的数量 L=购买大型机的数量
Max Z=S+5L (百万美元) s.t. 5S+50L≤ 100
5
6.1 范例
例1、TBA航空公司
整数规划模型

整数规划模型整数规划模型是一种数学模型,用于解决优化问题。
在整数规划中,决策变量必须是整数。
这种模型广泛应用于工程、科学、运筹学和管理等领域。
整数规划模型的一般形式如下:\[\text{maximize} \quad c^Tx\]\[\text{subject to} \quad Ax \leq b\]\[x_j \text{整数} , j = 1,2,...,n\]其中,c是一个n维向量,表示目标函数的系数;x是n维向量,表示决策变量;A是m×n维矩阵,表示约束条件的系数矩阵;b是一个m维向量,表示约束条件的上界。
整数规划模型的目标是找到一个满足约束条件的决策变量向量x,使得目标函数值最大或最小。
由于决策变量必须是整数,所以整数规划模型要比普通的线性规划模型更复杂。
整数规划模型可以应用于许多实际问题。
例如,一个公司要决定生产哪种产品以最大化利润,但每种产品有一定的生产限制,需要整数规划模型来确定生产量;一个配送中心要决定如何分配物流资源以最小化成本,但每个分配决策都必须是整数,需要整数规划模型来求解。
求解整数规划模型可以使用多种算法。
例如,分支定界算法通过将问题分解为一个个子问题,并通过剪枝策略来减少搜索空间,最终找到最优解;约简与延迟约束算法通过线性松弛将整数规划转化为一个松弛线性规划问题,并通过迭代加入约束条件来逼近整数解。
整数规划模型的求解过程需要注意一些问题。
首先,由于整数规划是一个NP难问题,没有通用的多项式时间算法可以解决所有情况。
其次,整数规划模型可能有多个最优解,求解算法可能只能找到其中一个最优解。
最后,整数规划模型的求解过程可能需要大量的计算资源和时间。
总之,整数规划模型是一种重要的数学模型,可以用于解决各种实际优化问题。
但由于其复杂性和求解困难,需要合理选择算法和求解策略来获得满意的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ 在前面所研究的线性规划问题中,一般问题 的最优解可以是非整数,即为分数或小数.
❖ 但在许多实际问题中,决策变量常常要求必 须取整数,即称为整数解.例如,若问题的 解表示的是安排上班的人数、机器设备的台 数、裁剪钢材的根数等,分数或小数解显然 就不符合实际了.
❖ 整数规划是近几十年来发展起来的规划论的 一个分支,要求全部或部分决策变量取整数 ,包括整数线性规划和整数非线性规划.
52
丙
38
58
35
41
丁
31
56
27
49
指派问题之例
例3.1.3
工作 人
甲 乙 丙 丁
完成每项工作的时间(小时)
A
B
C
D
x3121
x4012
x2813
x4124
x4261
x4232
x3203
x5224
x3831
x5382
35
x 33
41 x 34
x3411
x5462
x2473
x4494
指派问题之例
cij xij
i1 j1
n
xij 1, i 1, 2,..., n
j1
n
s.t. xij 1, j 1, 2,..., n
i1
xij
0或1, (i,
j
1, 2..., n)
(3.1.1) (3.1.2)
一般指派问题的数学模型
可行解的形式:
x11 x12 ... x1n
X
(xij )nn
问题:指派哪个对象完成哪项任务,能使完成各项任务
的总效益最佳?
指派问题之例
例3.1.3
工作 人
完成每项工作的时间(小时)
A
B
C
D
甲
32
40
28
42
乙
46
43
30
52
丙
38
58
35
41
丁
31
56
27
49
指派问题之例
例3.1.3
工作 人
完成每项工作的时间(小时)
A
B
C
D
甲
32
40
28
42
乙
46
43
30
x31
x32
x33
x34
1
x41 x42 x43 x44 1
s.t.
x11
x21
x31
x41
1
x12
x22
x32
x42
1
x13 x23 x33 x43 1
x14
x24
x34
x44
1
xij 0或1, (i, j 1, 2, 3, 4)
一般指派问题的数学模型
nn
min Z
75x1 90x2 100x3 85x4 80x5 95x6 110x7 105x8 120x9 115x10 85x11 75x12 100x13 120x14 95x15 90x16 1000
x1
x2
x3
x4
2
s.t.
x5
x8
x6 x9
x7 x10
1 2
x11
x12
指派问题的特殊形式
例:
任务 I
人
II
III
IV
甲
8
4
6
20
乙
3
9
5
12
丙
6
13
11
18
丁
10
2
8
17
戊
9
7
17
15
指派问题的特殊形式
例:
任务 I
人
II III IV V
甲
8
4
6
20
0
乙
混合整数规划问题:若只要求一部分变量取整 数值,则称为混合整数规划问题.
0-1整数规划问题:若要求全部或部分变量取 值只限于0或1,则称为0-1整数规划问题.
❖ 下面介绍整数规划问题的几个典型实例,通 过这几个问题来了解整数规划问题的数学模 型.
一. 纯整数规划问题的数学模型
例3.1.1 某工厂在一个计划期内,用两种原材料A和B 生产两种产品I和II,有关数据见下表,问工厂应如何
安排生产才能获得最大利润?
产品I(件) 产品II(件)
原材料A(kg)
5
4
原材料B(kg)
6
7
利润(元)
15
12
可供量 39 48
一. 纯整数规划问题的数学模型
max Z 15x1 12x2
5x1 4x2 39
s.t.
6x1
x1
,
x2
7ቤተ መጻሕፍቲ ባይዱx2 0
48
x1, x2为整数
❖ 纯整数线性规划问题数学模型的一般形式为 n max(min) z c j x j
j 1
n
aij x j
(, )bi ,i 1, 2,...m
s.t.
j 1
xj
0,
j
1,
2,...n
x1
,
x2
,
...xn为整数
二.0-1整数规划模型
例3.1.2 令xj=1,选择在地点Bj建立储蓄所; xj=0,不在地点Bj建立储蓄所;
例3.1.2
max z 30x1 42x 2 20x 3 35x 4 40x 5 36x 7 48x 7 38x 8 50x 9 37x10 28x11 30x12 19x13 50x14 32x15 35x16
x21
x22
...
x2n
xn1
xn2
...
xnn
一般指派问题的数学模型
例3.1.3的一个可行解:
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
指派问题的特殊形式
1、对象数和任务数不相等的指派问题 对象数多于任务数:添加虚拟任务,费 用为0; 对象数少于任务数:添加虚拟对象,费 用为0;
aij x j
(, )bi , i
1, 2,...m
xj
0或1,
j
1, 2,...n
三.指派问题
有n项任务交给n个对象去完成,每个对象完成每项
任务的效益如下:
c11 c12 ... c1n
C
(cij
)
c21
c22
...
c2n
cn1
cn2
...
cnn
要求:每人仅能完成一项任务;
每项任务只能一个对象去完成。
例3.1.3 min Z 32x11 40x12 28x13 42x14 46x21 43x22 30x23 52x24
38x31 58x32 35x33 41x34 31x41 56x42 27x43 49x44
x11
x12
x13
x14
1
x21 x22 x23 x24 1
1
x13 x14 x15 x16 3
x
j
0,1;( j
1, 2,...16)
❖ 该问题的决策变量仅限于取0或1两个值,因 此为0-1整数规划问题. 0-1规划可以是线 性的,也可以是非线性的,0-1线性规划的 一般模型为:
n
max(min) Z cj xj j 1
s.t.
n j 1
❖ 由于整数非线性规划尚无一般算法,因此本 章介绍的整数规划仅指整数线性规划.
整数规划问题与线性规划问题的关系
任何一个整数线性规划问题都可以看做是一个线性 规划问题再加上整数约束。将整数规划问题去掉整 数约束得到的线性规划问题称为线性规划问题的松 弛问题。
整数规划问题的分类
纯整数规划问题:在求解实际问题时,若要求 所有的变量都取整数,称为纯整数规划问题.