超声波探伤培训资料
超声波探伤培训教材

超声波探伤1 序言1.1 超声波检测技术的发展简史尽管自古就对声学开展了研究,但是直到十九世纪中后期人类才知道存在自己听不到的高频声音(即超声波)。
有趣的是,超声波的具体应用与 1912 年泰坦尼克号邮轮的沉没这一著名海难直接相关,当时所提出的及时发现水下冰山和障碍物的要求刺激了超声波的应用,其中英国科学家提出的利用超声波的束射性可以发现远距离水下目标的思想虽然未能付诸实施,但是直接推动了超声检测的研究和应用。
一次世界大战后期,为了探测另一类更为危险的水下障碍物――潜水艇,超声波技术的实际应用再一次得到了有力推动,当时所发展的压电超声发生装置和石英晶体换能器等一直是超声检测的技术基础。
超声波应用于材料的无损检测领域起源于二十世纪二十年代末三十年代初,苏联和德国的科学家几乎同时报导了超声波在材料检测方面的应用,从此开创了一个全新的领域。
二十世纪四十年代的整个十年都是在二次世界大战中度过的,战争对于技术发展的迫切要求再次成为超声检测技术进步的推动力。
探测潜艇的超声波声纳得以广泛应用,但是其回波检测的思想对于短距离材料检测而言实在是超越了当时的电子技术水平,因此只能采用连续波透射法,这种探伤方法有很大的局限性,仅限于一些专业学院作研究用途或装置在少数几个冶金研究室内。
战争以后,随着对超声波探伤原理和特性的不断深入了解,特别是脉冲反射法的应用、纵波、横波、板波和表面波相继发现并成功应用,超声波在无损检测方面优点也得以充分体现,因此在二十世纪四十年代末超声波探伤开始被用于解决一些严格的质量问题,并在冶金制造业得到了越来越广的应用。
二十世纪六七十年代,随着半导体技术和计算机信息技术的进步,超声波探伤仪器和装备不断小型化,并出现了由电池供电的便携式超声波探伤仪器,同时新材料技术的发展也使新型的性能更为优越的压电材料得以广泛应用,相关的探伤方法、探伤标准和基准等也趋于成熟,因此超声波探伤在对产品质量有严格要求的航空航天、原子能工业、石油化工业、锅炉和压力容器行业、冶金制造业以及建筑业等得到了全面应用,成为最为重要和广泛应用的无损检测方法。
超声波探伤培训知识.doc

超声波探伤问答题:1、什么是机械振动和机械波?二者有何关系?答:物体沿着直线或曲线在某一平衡位置附近作往复周期性的运动,称为机械运动。
机械振动在弹性介质中的传播过程称机械波。
二者是相互联系的,振动是产生波动的根源,波动是振动状态的传播过程,也是振动能量的传播过程。
2、什么是超声波的近场区与近场长度?近场长度与哪些因素有关?为什么要尽量避免在近场区探伤?答:波源附近由于波的干涉而出现一系列声压极大值极小值的区域称超声波的近场区。
波源轴线上最后一个声压极大值与波源的距离称近场长度,用N表示。
D S 2E S4λπλ,可知近场长度与波源面积成正比,与波长成反比。
近场区对探伤定量是不利的,处于声压极小值处的较大缺陷回波可能较低,处于声压极大值处的较小缺陷回波可能较高,这样易引起误判,甚至漏检。
因此应尽量避免在近场区探伤。
3、超声波探伤仪主要由哪几部分组成?简述A型脉冲反射式超声波探伤仪的工作过程。
答:超声波探伤仪主要由以下几个部分组成:同步电路、扫描电路、发射电路、接收放大电路,显示电路和电源电路等组成。
A型脉冲反射式探伤仪的工作过程如下:同步电路的触发脉冲同时加至扫描电路和发射电路。
扫描电路受触发产生锯齿波电压,加至示波管水平偏转板,使电子束发生水平偏转,在荧光屏上产生一条水平扫描线。
与此同时,发射电路受触发产生高频电脉冲,加至探头,激励压电晶片振动,在工件中产生超声波。
超声波在工件中传播,遇缺陷或底面发生反射,返回探头时又被压电晶片转变为电信号,经接收电路放大和检波,加至示波管垂直偏转板上,使电子束发生垂直偏转,在水平扫描线相应位置上产生缺陷波和底波。
根据缺陷波的位置和幅度,为缺陷定位和定量。
4、如何选择探头频率?答:频率的高低对探伤有较大的影响。
频率高,灵敏度和分辨率高,指向性好,对探伤有利。
但频率高,近场区长度大,衰减大,对探伤不利。
实际探伤中要全面分析各方面的因素,合理选择频率。
一般在保证探伤灵敏度的前提下尽可能选择较低的频率。
超声波探伤培训教程

超声波探伤培训教程超声波探伤技术是一种通过超声波在材料内部传播和反射的方式来检测材料中存在的缺陷或者异物的非破坏性检测技术。
在工业领域得到了广泛应用,尤其是在航空、航天、核能、石油等行业。
本教程将系统介绍超声波探伤的原理、设备以及操作技巧,帮助读者全面了解和掌握超声波探伤技术。
一、原理1. 超声波的生成和传播超声波是指频率超过20kHz的声波。
其生成通常是通过压电晶体的压电效应来实现,当施加电压时,压电晶体会振动并产生超声波。
超声波在材料中的传播是一种机械波的传播方式,它具有直线传播、可传递到深层、能量损失小等特点。
2. 超声波的反射和散射当超声波遇到材料中的缺陷或者界面时,会发生反射和散射。
根据反射和散射的信号,可以判断材料中的缺陷类型、位置、尺寸等信息。
常用的探伤方法包括脉冲回波法和相位数组法。
二、设备1. 超声波探伤仪超声波探伤仪是进行超声波探伤的核心设备,它包括发射装置、接收装置、信号处理系统等部分。
发射装置用于产生超声波信号,接收装置用于接收反射和散射的信号,信号处理系统则对接收到的信号进行处理和显示。
2. 探头探头是超声波探伤仪的重要部件,其质量和性能直接影响到探伤的效果。
常见的探头类型有直探头、斜探头、浸润式探头等。
不同类型的探头适用于不同的检测对象和环境。
三、操作技巧1. 检测准备在进行超声波探伤之前,需要对设备和探头进行校准和检查,确保其正常工作。
同时,还需要根据待检测材料的类型和要求选择合适的探头,并对材料表面进行清洁和处理。
2. 检测步骤(1)将探头与被检测材料紧密接触,确保超声波能够传播到材料内部。
(2)调节探测范围和增益,以保证检测到的信号具有足够的强度。
(3)进行扫描或者点检测,记录检测到的信号并分析。
(4)根据检测结果判断材料的质量,如果发现缺陷,需进一步分析和评估。
四、应用案例超声波探伤技术在各个行业都有广泛的应用。
以下是几个实际案例:1. 航空领域在航空器制造和维修过程中,通过超声波探伤可以检测飞机结构中的隐蔽缺陷,如裂纹、孔洞等。
超声波探伤复习题及答案

超声波探伤初级培训班复习题(一)选择题(共39题)1. 超过人耳听觉范围的声波,它的频率高于A)2MH z B )0.2MH z C) 20000H z D) 2KH z2. 超声波传播速度与频率之比等于:A)波长, B)波幅,C)声阻抗,D)波型3. 用声速和频率描述波长的方程为:A).波长=声速>频率;B).波长=2(频率泌度);C).波长=速度/频率;D).波长=频率/速度4. 超声波从一种介质进入另一种介质后其声束与法线所成的夹角称为:A)入射角B).折射角C).扩散角D).反射角5. 声束与缺陷主反射面所成的夹角叫做:A).入射角B).折射角C).缺陷取向D).上述三种都不对6. 超声波从一种介质进入另一种不同介质而改变传播方向的现象叫做:A).折射B).扩散C).角度调整D).反射7. 一般地说,如果频率相同,则在粗晶材料中穿透力最强的振动波型是:A).纵波B).切变波C).横波D).上三种型式的穿透力相同8. 两种材料的声速比叫做:A).界面声阻抗;B).杨氏模量;C).泊松比;D).折射率9. 液体中能存在的波型是:A).纵波B).横波C) . 1和2两种波型都存在D).表面波.10. 压缩波或疏密波因为其质点位移平行于传播方向,所以称为:A).纵波;B).横波;C).兰姆波;D).表面波.11. 如果超声波频率增加,则一定直径晶片的声束扩散角将:A).减小;B).保持不变;C).增大;D).随波长均匀变化.12. 钢中声速最大的波型是:A).纵波B).横波C).表面波D).在一定材料中声速与所有波型无关13. 在金属凝固过程中未逸出的气体所形成的孔洞叫做:A).破裂;B).冷隔;C).分层;D)气孔.14. 脉冲反射式超声波探伤仪的水平线性标准是:A)大于2% B)小于2% C)大于等于2% D)小于等于2%15. 两个超声波在空间某点相遇时,如两者相位相同,贝U该点振幅:A)保持不变,B)加强, C)削弱,D)抵消16. 超声波传播速度与波长及介质厚度有关的波型是:A)纵波,B)横波,C)表面波,D)板波17. 在一秒钟内通过一定点的完整波型的个数叫作A)波长,B)波幅,率,D)波形18. 超声波束的指向角在晶片给定时,频率愈咼,指向角A)愈大,愈小,C)不变,D)以上都不对19. 紧接压电晶片,声压分布最不均匀的超声场之一个区域称为:A)远场,E)未扩散区,C)近场区,D)非工作区20、制造厂家所标的斜探头入射角度在探测其它村料时将:A).变小、B).变大C).改变D).不变21、超声波探伤中最常用的换能器是利用:A)磁致伸缩原理B)压电原理C)波形转换原理D)上述都不对22、反射声压的大小,可以用(A.回波高度B.声强C).回波宽度)类比。
焊缝的超声波探伤知识讲解-2022年学习资料

超声波探伤仪-西防以司-43a.-界A-记幕-4/福日-XU7-350B+-全康守南楼是严试探码权
超声波探伤仪-同步电路-扫描电路-发射电路-接收-放大电路-电源-缺陷-工件-8
超声波探头焊缝的超声波探伤知识讲解
超声波探头-探头线-外壳-电气适配器-吸收块-插头-晶片-阻尼块-延迟块-纵波-012-横波-保护膜
超声波探伤用试块-1跨距-探头焊缝距离-入射点-前沿x=100-L-0*-60-一次反-直线法-射法-1跨 点-匹ndt.Ch-R100-声程S-0.5跨距点-护陌-调节:探头的前沿、K值、声速
超声波探伤用试块-其余9-导-分-公-司-子-⑧-7-⑦1X6短惜孔-中-40-R10-RLO-300-C K-IIIA
超声波的反射、折射、波形转换-●在有机玻璃与钢的介面:-27.2°-第一临界角为a=27.2°,Bs=33 3°-第二临界角为a=56.7°,Bs=90°-56.7%-用于焊缝检测的超声波斜探头的入射-钢板-角必须 于第一临界角而小于第二临-界角。-我国习惯:斜探头的横波折射角用横-波折射角度的正切值表-示,如K=2
超声波探头参数表示-基本频率-晶片材料-晶片尺寸-探头种类-特征-2.5B20Z-5P6×6K3一K值为3 直探头-LK表示折射角-园晶片直径20mm-矩形晶片6×6mm-钛酸钡陶瓷-钛酸铅陶瓷-频率2.5MHz率5MHz
超声波探伤用试块-●
超声波探伤用试块-125-120-g好-其余-k2.0k2.3k3.0-R1阳-a-81.5-35-k1. -k1.5-15-140-200-050-044-040-300-有机坡鸦-CSK-IA
超声波特性-束射特性-反射特性-传播特性-波型转换特性-人们正是利用了超声波的这些特性,发展了超声波探伤技 。
2020年超声波探伤培训资料精编版

脉冲波:周期性的发射不连续且频率不变的波。
反射式:通过接收反射回波信号。
(2)探头
在超声波探伤中,超声波的发射和接收是通过探头来实现的。
探头又称换能器,其核心部件是压电晶体,又称晶片。晶片的功能是把高频电脉冲转换为超声波,又可把超声波转换为高频电脉冲,实现电一声能量相互转换的能量转换器件。
(2)横波S:振动方向与传播方向垂直的波。只能在固体介质中传播。
(3)表面波R:沿介质表面传播的波。只能在固体表面传播。
(4)板波:在板厚与波长相当的薄板中传播的波。只能在固体介质中传播。
3、超声波的传播速度(固体介质中)
(1)E:弹性横量,ρ:密度,σ:泊松比,不同介质E、ρ不一样,
波速也不一样。
5、超声场的特征值
(1)超声场:充满超声波的空间或超声波振动所波及的部分介质。
(2)声阻抗Z:超声波中任一点的声压与该处质点振动速度之比。
(3)声强I:单位时间内垂直通过单位面积的声能称为声强。(J/cm2•s或w/ cm2)。
6、分贝
声强级:某处的声强I2与标准声强I1(I1=10-16瓦/厘米2)之比。
波的绕射和障碍物尺寸Df及波长λ的相对大小有关。当Df<<λ时,波的绕射强,反射弱,缺陷回波很低,容易漏检。超声探伤灵敏度约为λ/2,这是一个重要原因。当Df>>λ时,反射强,绕射弱,声波几乎全反射。
波的绕射对探伤即有利又不利。由于波的绕射,使超声波产生晶粒绕射顺利地在介质中传播,这对探伤是有利的。但同时由于波的绕射,使一些小缺陷回波显著下降,以致造成漏检,这对探伤不利。
(3)试块
试块:按一定用途设计制作的具有简单几何形状人工反射体的试样。
超声探伤中是以试块作为比较的依据,用试块作为调节仪器和定量缺陷的参考依据是超声探伤的一个特点。根据使用目的和要求的不同,通常将试块分成以下两大类:标准试块和对比试块。
锻件与铸件超声波探伤详细教程(附实例解析)重点讲义资料

第六章锻件与铸件超声波探伤第六章锻件与铸件超声波探伤锻件和铸件是各种机械设备及锅炉压力容器的重要毛坯件。
它们在生产加工过程中常会产生一些缺陷,影响设备的安全使用。
一些标准规定对某些锻件和铸件必须进行超声波探伤。
由于铸件晶粒粗大、透声性差,信噪比低,探伤困难大,因此本章重点计论锻件探伤问题,对铸件探伤只做简单介绍。
第一节锻件超声波探伤一、锻件加工及常见缺陷锻件是由热态钢锭经锻压变形而成。
锻压过程包括加热、形变和冷却。
锻件的方式大致分为镦粗、拔长和滚压。
镦粗是锻压力施加于坯料的两端,形变发生在横截面上。
拔长是锻压力施加于坯料的外圆,形变发生在长度方向。
滚压是先镦粗坯料,然后冲孔再插入芯棒并在外圆施加锻压力。
滚压既有纵向形变,又有横向形变。
其中镦粗主要用于饼类锻件。
拔长主要用于轴类锻件,而简类锻件一般先镦粗,后冲孔,再镦压。
为了改善锻件的绍织性能,锻后还要进行正火、退火或调质等热处理。
锻件缺陷可分为铸造缺陷、锻造缺陷和热处理缺陷。
铸造缺陷主要有:缩孔残余、疏松、夹杂、裂纹等。
锻造缺陷主要有:折叠、白点、裂纹等。
热处理缺陷主要有:裂纹等。
缩孔残余是铸锭中的缩孔在锻造时切头量不足残留下来的,多见于锻件的端部。
疏松是钢锭在凝固收缩时形成的不致密和孔穴,锻造时因锻造比不足而末全焊合,主要存在于钢锭中心及头部。
夹杂有内在夹杂、外来菲金属夹杂栩金属夹杂。
内在夹杂主要集中于钢锭中心及头部。
裂纹有铸造裂纹、锻造裂纹和热处理裂纹等。
奥氏体钢轴心晶间裂纹就是铸造引起的裂纹。
锻造和热处理不当,会在锻件表面或心部形成裂纹。
白点是锻件含氢最较高,锻后冷却过快,钢中溶解的氢来不及逸出,造成应力过大引起的开裂,白点主要集中于锻件大截面中心。
合金总量超过3.5~4.0%和Cr、Ni、Mn的合金钢大型锻件容易产生白点。
白点在钢中总是成群出现。
二、探伤方法概述按探伤时间分类,锻件探伤可分为原材料探伤和制造过程中的探伤,产品检验及在役检验。
超声波探伤培训资料

超声波探伤培训资料
超声波探伤是利用超声波在物质中的传播、反射和衰减等物理特性来发现缺陷的一种探伤方法。与射线探伤相比,超声波探伤具有灵敏度高、探测速度快、成本低、操作方便、探测厚度大、对人体和环境无害,特别对裂纹、未熔合等危险性缺陷探伤灵敏度高等优点。但也存在缺陷评定不直观、定性定量与操作者的水平和经验有关、存档困难等缺点。在探伤中,常与射线探伤配合使用,提高探伤结果的可靠性。超声波检测主要用于探测试件的内部缺陷。1、超声波:频率大于20KHZ的声波。它是一种机械波。探伤中常用的超声波频率为0.5~10MHz,其中2~2.5MHz被推荐为焊缝探伤的公称频率。机械振动:物体沿着直线或曲线在某一平衡位置附近作往复周期性的运动,称为机械振动。振幅A、周期T、频率f。。波动:振动的传播过程称为波动。C=λ*f
超声波具有以下几个特性:
(1)束射特性。超声波波长短,声束指向性好,可以使超声能量向一定方向集பைடு நூலகம்辐射。
(2)反射特性。反射特性正是脉冲反射法的探伤基础。
(3)传播特性。超声波传播距离远,可检测范围大。
(4)波型转换特性。超声波在两个声速不同的异质界面上容易实现波型转换。2、波的类型:(1)纵波L:振动方向与传播方向一致。气、液、固体均可传播纵波。(2)横波S:振动方向与传播方向垂直的波。只能在固体介质中传播。(3)表面波R:沿介质表面传播的波。只能在固体表面传播。(4)板波:在板厚与波长相当的薄板中传播的波。只能在固体介质中传播。3、超声波的传播速度(固体介质中)(1)E:弹性横量,ρ:密度,σ:泊松比,不同介质E、ρ不一样,波速也不一样。(2)在同一介质中,纵波、横波和表面波的声速各不相同
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超声波探伤培训资料
超声波探伤是利用超声波在物质中的传播、反射和衰减等物理特性来发现缺陷的一种探伤方法。
与射线探伤相比,超声波探伤具有灵敏度高、探测速度快、成本低、操作方便、探测厚度大、对人体和环境无害,特别对裂纹、未熔合等危险性缺陷探伤灵敏度高等优点。
但也存在缺陷评定不直观、定性定量与操作者的水平和经验有关、存档困难等缺点。
在探伤中,常与射线探伤配合使用,提高探伤结果的可靠性。
超声波检测主要用于探测试件的内部缺陷。
1、超声波:频率大于20KHZ的声波。
它是一种机械波。
探伤中常用的超声波频率为0.5~10MHz,其中2~2.5MHz被推荐为焊缝探伤的公称频率。
机械振动:物体沿着直线或曲线在某一平衡位置附近作往复周期性的运动,称为机械振动。
振幅A、周期T、频率f。
波动:振动的传播过程称为波动。
C=λ*f
超声波具有以下几个特性:
(1)束射特性。
超声波波长短,声束指向性好,可以使超声能量向一定方向集中辐射。
(2)反射特性。
反射特性正是脉冲反射法的探伤基础。
(3)传播特性。
超声波传播距离远,可检测范围大。
(4)波型转换特性。
超声波在两个声速不同的异质界面上容易实现波型转换。
2、波的类型:(1)纵波L:振动方向与传播方向一致。
气、液、固体均可传播纵波。
(2)横波S:振动方向与传播方向垂直的波。
只能在固体介质中传播。
(3)表面波R:沿介质表面传播的波。
只能在固体表面传播。
(4)板波:在板厚与波长相当的薄板中传播的波。
只能在固体介质中传播。
3、超声波的传播速度(固体介质中)
(1) E:弹性横量,ρ:密度,σ:泊松比,不同介质E、ρ不一样,
波速也不一样。
(2)在同一介质中,纵波、横波和表面波的声速各不相同 CL>CS>CR
钢:CL=5900m/s,CS=3230m/s,CR=3007m/s
4、波的迭加、干涉、衍射
⑴波的迭加原理
当几列波在同一介质中传播时,如果在空间某处相遇,则相遇处质点的振动是各列波引起振动的合成,在任意时刻该质点的位移是各列波引起位移的矢量和。
几列波相遇后仍保持自己原有的频率、波长、振动方向等特性并按原来的传播方向继续前进,好象在各自的途中没有遇到其它波一样,这就是波的迭加原理,又称波的独立性原理。
⑵波的干涉
两列频率相同,振动方向相同,位相相同或位相差恒定的波相遇时,介质中某些地方的振动互相加强,而另一些地方的振动互相减弱或完全抵消的现象叫做波的干涉现象。
波的干涉是波动的重要特征,在超声波探伤中,由于波的干涉,使超声波源附近出现声压极大极小值。
⑶波的衍射(绕射)
波在传播过程中遇到与波长相当的障碍物时,能绕过障碍物边缘改变方向继续前进的现象,称为波的衍射或波的绕射。
波的绕射和障碍物尺寸Df及波长λ的相对大小有关。
当Df<<λ时,波的绕射强,反射弱,缺陷回波很低,容易漏检。
超声探伤灵敏度约为λ/2,这是一个重要原因。
当Df>>λ时,反射强,绕射弱,声波几乎全反射。
波的绕射对探伤即有利又不利。
由于波的绕射,使超声波产生晶粒绕射顺利地在介质中传播,这对探伤是有利的。
但同时由于波的绕射,使一些小缺陷回波显著下降,以致造成漏检,这
对探伤不利。
5、超声场的特征值
(1) 超声场:充满超声波的空间或超声波振动所波及的部分介质。
(2) 声阻抗Z:超声波中任一点的声压与该处质点振动速度之比。
(3) 声强I:单位时间内垂直通过单位面积的声能称为声强。
(J/cm2•s或w/ cm2)。
6、分贝
声强级:某处的声强I2与标准声强I1(I1=10-16瓦/厘米2)之比。
*当超声波探伤仪的垂直线性较好时,仪器示波屏上的波高(H)与声压(P)成正比。
7、超声波垂直入射到界面时的反射和透射
声压的反射率r和透射率t (单一平界面)
(1) 当Z1>>Z2(如钢/空气界面或固/空气界面)
(钢:Z=4.53×106g/cm2 s ,有机玻璃:Z=0.33×106g/cm2 s空气:Z=0.00004×106g/cm2 s)r=-1
t=0
几乎全反射,无透射。
☆探伤中,探头和工件间如不施加耦合剂,则形成固(晶片)/气界面,超声波将无法进入工件。
(2) 当Z1=Z2时
r=0
t=1
几乎全透射,无反射。
☆若母材与填充金属结合面没有任何缺陷,便不会产生界面回波。
8、超声波斜入射到界面时的反射和折射
波型转换:超声波倾斜入射到界面时,除产生同种类型的反射与折射波外,还会产生不同类型的反射和折射波。
这种现象称为波型转换。
有机玻璃中:CL1=2730m/s
钢中 CL2=5900m/s
CS2=3230m/s
9、超声波的衰减
超声波的衰减:超声波在介质中传播时,随着距离的增加,超声波能量逐渐减弱的现象。
10、仪器、探头、试块
超声波探伤设备一般由超声波探伤仪、探头和试块组成。
(1) 仪器
常用超声波探伤仪为A型脉冲反射式超声波探伤仪。
A型显示:一种波形显示。
脉冲波:周期性的发射不连续且频率不变的波。
反射式:通过接收反射回波信号。
(2) 探头
在超声波探伤中,超声波的发射和接收是通过探头来实现的。
探头又称换能器,其核心部件是压电晶体,又称晶片。
晶片的功能是把高频电脉冲转换为超声波,又可把超声波转换为高频电脉冲,实现电一声能量相互转换的能量转换器件。
压电晶片:发射和接收超声波。
压电效应:在交变拉压应力作用下产生交变电场或者在交变电场作用下产生伸缩变形。
机械能转换为电能,电能转换成机械能。
按波型分:纵波探头、横波探头、表面波探头、板波探头。
按晶片数分:单晶探头、双晶探头。
a,直探头(纵波探头)
直探头用于发射和接收纵波。
☆直探头主要用于探测与探测面平行的缺陷。
b,斜探头
横波斜探头是利用横波探伤,主要用于探测与探测面垂直或成一定角度的缺陷,如焊缝探伤等。
横波斜探头的标称方式常用两种:①一种是以横波折散角βs来标称。
如βs=40º,45º,60º等;②另一种是以折射角的正切值(K=tgβs)来标称。
K=1.0,1.5,2.0,2.5等。
c,双晶探头
探头型号:1、2.5B20Z ;2、5P6×6K3
(3) 试块
试块:按一定用途设计制作的具有简单几何形状人工反射体的试样。
超声探伤中是以试块作为比较的依据,用试块作为调节仪器和定量缺陷的参考依据是超声探伤的一个特点。
根据使用目的和要求的不同,通常将试块分成以下两大类:标准试块和对比试块。
a,标准试块:权威或法定机构制定的试块。
如GB11345—1989规定CSK—ZB试块为焊缝超声波探伤用标准试块。
主要用于测定斜探头的入射点、调整探测范围和扫描速度、测定仪器探头以及系统的性能等。
b,对比试块:对比试块又称参考试块,它是由各专业部门按某些具体探伤对象规定的试块。
GB11345—1989规定,RB—1(适应8—25mm板厚)、RB—2(适应8~100mm板厚)和RB—3(适用8—150mm板厚)为焊缝探伤用对比试块。
RB试块组主要用于绘制距离—波幅曲线、调整探测范围和扫描速度、确定探伤灵敏度和评定缺陷大小,它是焊缝评级判定的依据。
试块的作用:a. 确定探伤灵敏度;b. 测试仪器和探头的性能;
c. 调整扫描速度; d .评判缺陷的大小。
12、仪器和探头性能
(1) 仪器的性能
垂直线性、水平线性、动态范围等。
(2) 探头的性能
入射点、K值、双峰、主声束偏离等。
(3) 仪器和探头的综合性能
分辨力、盲区、灵敏度余量等。
△仪器的性能
垂直线性:仪器示波屏上的波高与探头接收的信号成正比的程度。
垂直线性好坏影响缺陷的定量精度。
GB11345—1989规定,仪器的垂直线性误差D≤5%。
水平线性:仪器示波屏上时基线显示的水平刻度值与实际声程之间呈正比的程度。
GB11345—1989规定,仪器的水平线性误差≤1%。
水平线性的好坏影响缺陷的定位。
动态范围:仪器示波屏容纳信号大小的能力。
(从100%某波高衰减到刚能识别的最小值所。