高二文科数学期中考试
高二下期期中考试文科数学试题(选修1-2)(含答案)

集合集合的概念 集合的表示集合的运算基本运算基本关系高二下期期中考试 数学(文科)试题第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列各数72+,i 72,0,85+i ,)31(-i ,618.0中,纯虚数的个数有A .0个B .1个C .2个D .3个2.复数i z +=31,i z -=12,则复数21z z ⋅在复平面内的对应点位于A .第一象限B .第二象限C .第三象限D .第四象限3.右图是《集合》的知识结构图,如果要加入 “子集”,则应该放在A .“集合的概念”的下位B .“集合的表示”的下位C .“基本关系”的下位D .“基本运算”的下位4.在两个变量y 与x 的回归模型中,分别选择了4个不同的模型,它们的相关指数2R 如下,其中拟合效果最好的模型是A .模型1的相关指数2R 为98.0 B .模型2的相关指数2R 为80.0 C .模型3的相关指数2R 为56.0 D .模型4的相关指数2R 为25.0 5.设复数i 2321+-=ω,则=+ω1 A .ω- B .ω1-C .2ω D .21ω6.下列结构图中,体现要素之间是逻辑先后关系的是A .B .C .D .7些复数是实数,c 是复数,则c 是实数”,则A .大前提错误B .小前提错误C .推理形式错误D .推理正确 8.下列推理正确的是A .把)(c b a +与)(log y x a +类比,则有:y x y x a a a log log )(log +=+B .把)(c b a +与)sin(y x +类比,则有:y x y x sin sin )sin(+=+C .把nab )(与nb a )(+类比,则有:nnny x y x +=+)( D .把c b a ++)(与z xy )(类比,则有:)()(yz x z xy = 9.甲乙两个班级进行计算机考试,按照学生考试成绩优秀和不优秀统计后,得到如下的列联表.利用独立性检验估计,你认为成绩与班级 A .有%95的把握有关 B .无关 C .有%99的把握有关 D .无法确定 10.用反证法证明:“a ,b 至少有一个为0”,应假设A .a ,b 没有一个为0B .a ,b 只有一个为0。
高二数学文科期中试卷及答案

2019-2020学年第二学期高二数学期中测试卷(文科)(本试卷满分150)一、选择题(每小题5分,共60分)1.[2016·北京高考]已知集合A ={x ||x |<2},B ={-1,0,1,2,3},则A ∩B =( )A .{0,1}B .{0,1,2}C .{-1,0,1}D .{-1,0,1,2}答案 C解析 由题意得A =(-2,2),A ∩B ={-1,0,1},选C.2.[2016·北京高考]复数1+2i 2-i =( )A .iB .1+iC .-iD .1-i 答案 A解析 1+2i 2-i =(1+2i )(2+i )(2-i )(2+i )=2+i +4i +2i 24-i 2=5i 5=i ,故选A.3.[2017·安徽模拟]“(2x -1)x =0”是“x =0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 答案 B解析 “x =12或x =0”是“x =0”的必要不充分条件,选B. 4.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的解析式是( ) A .2x +1 B .2x -1 C .2x -3 D .2x +7 答案 B解析 因为g (x +2)=f (x )=2x +3=2(x +2)-1,所以g (x )=2x -1.5.[2014·湖北高考]根据如下样本数据:得到的回归方程为y=bx+a,则()A.a>0,b>0 B.a>0,b<0C.a<0,b>0 D.a<0,b<0答案 B解析由表中数据画出散点图,如图,由散点图可知b<0,a>0.6.复数z=2sin θ+(cos θ)i的模的最大值为()A.1B.2C. 3D. 5解:选B|z|=(2sin θ)2+cos2θ=3sin2θ+1.当sin2θ=1时,|z|max=3×1+1=2.故选B.7、给出下面一段演绎推理:有理数是真分数,大前提整数是有理数,小前提整数是真分数.结论结论显然是错误的,是因为()A.大前提错误 B.小前提错误C.推理形式错误D.非以上错误解析:选 A.推理形式没有错误,小前提也没有错误,大前提错误.举反例,如2是有理数,但不是真分数.8、.已知f′(1)=-2,则limΔx→0f(1-2Δx)-f(1)Δx的值为()A.-2 B.2 C.-4 D.4 解析:选D.解析:limΔx→0f(1-2Δx)-f(1)Δx=(-2)×limΔx→0f(1-2Δx)-f(1)-2Δx=(-2)×(-2)=4.9.[2016·山东高考]执行上边的程序框图,若输入n的值为3,则输出的S的值为________.答案 1解析执行程序框图:i=1,S=2-1,1≥3不成立;i=2,S=3-1,2≥3不成立;i=3,S=4-1=1,此时3≥3成立,结束循环,输出S的值为1.10.[2017·大连模拟]PM2.5是指大气中直径小于或等于2.5微米的颗粒物,一般情况下PM2.5浓度越大,大气环境质量越差.如图所示的茎叶图表示的是某市甲、乙两个监测站连续10日内每天的PM2.5浓度读数(单位:μg/m3),则下列说法正确的是()A.甲、乙监测站读数的极差相等B.乙监测站读数的中位数较大C.乙监测站读数的众数与中位数相等D.甲、乙监测站读数的平均数相等答案 C解析因为甲、乙监测站读数的极差分别为55,57,所以A错误;甲、乙监测站读数的中位数分别为74,68,所以B错误;乙监测站读数的众数与中位数都是68,所以C正确,因此选C.11.已知函数f(x)=x3-3x2-9x,则函数f(x)的单调递增区间是()A.(3,9) B.(-∞,-1),(3,+∞)C.(-1,3) D.(-∞,3),(9,+∞)解析:选B.因为f(x)=x3-3x2-9x,所以f′(x)=3x2-6x-9=3(x2-2x-3).令f′(x)>0,得x>3或x<-1.即函数f(x)的单调递增区间是(-∞,-1),(3,+∞).12.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:以下说法正确的是()A.没有充足的理由认为课外阅读量大与作文成绩优秀有关B .有0.5%的把握认为课外阅读量大与作文成绩优秀有关C .有99.9%的把握认为课外阅读量大与作文成绩优秀有关D .有99.5%的把握认为课外阅读量大与作文成绩优秀有关 解析:选D.根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为课外阅读量大与作文成绩优秀有关,即有99.5%的把握认为课外阅读量大与作文成绩优秀有关.附:二、填空题(每小题5分,共20分)13、用反证法证明命题“三角形的内角中至多有一个钝角”,正确的假设是________.答案:三角形的内角中至少有两个钝角14.设f (x )=2xx +2,x 1=1,x n =f (x n -1)(n ≥2),则x 2,x 3,x 4分别为________.猜想x n =________.解析:x 2=f (x 1)=21+2=23,x 3=f (x 2)=2×2323+2=12=24,x 4=f (x 3)=2×1212+2=25,所以x n =2n +1.答案:23,24,25 2n +115.[2017·重庆模拟]在等差数列{a n }中,若公差为d ,且a 1=d ,那么有a m +a n =a m +n ,类比上述性质,写出在等比数列{a n }中类似的性质:______________________.答案 在等比数列{a n }中,若公比为q ,且a 1=q ,则a m ·a n =a m+n解析 等差数列中两项之和类比等比数列中两项之积,故在等比数列中,类似的性质是“在等比数列{a n }中,若公比为q ,且a 1=q ,则a m ·a n =a m +n .”16.[2017·太原十校联考]已知命题“∀x ∈R ,x 2-5x +152a >0”的否定为假命题,则实数a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫56,+∞ 解析 由“∀x ∈R ,x 2-5x +152a >0”的否定为假命题,可知原命题必为真命题,即不等式x 2-5x +152a >0对任意实数x 恒成立.设f (x )=x 2-5x +152a ,则其图象恒在x 轴的上方.故Δ=25-4×152a <0,解得a >56,即实数a 的取值范围⎝ ⎛⎭⎪⎫56,+∞. 三、解答题(17题10分,其余各12分,共计70分) 17..当实数m 为何值时,复数z =m 2+m -6m +(m 2-2m )i 为 (1)实数;(2)虚数;(3)纯虚数.解:(1)当⎩⎪⎨⎪⎧m 2-2m =0,m ≠0,即m =2时,复数z 是实数; (2)当m 2-2m ≠0,即m ≠0且m ≠2时,复数z 是虚数;(3)当⎩⎨⎧m 2+m -6m =0,m 2-2m ≠0,即m =-3时,复数z 是纯虚数.18.设集合A ={x |x 2-x -6<0},B ={x |x -a ≥0}. (1)若A ∩B =∅,求实数a 的取值范围;(2)是否存在实数a ,使得A ∩B ={x |0≤x <3}?若存在,求出a 的值及对应的A ∪B ;若不存在,说明理由.解 A ={x |-2<x <3},B ={x |x ≥a }. (1)如图,若A ∩B =∅,则a ≥3, 所以a 的取值范围是[3,+∞).(2)存在如图,由A ∩B ={x |0≤x <3}得a =0, A ∪B ={x |x >-2}.19、设函数f (x )=2x 3+3ax 2+3bx +8c 在x =1及x =2时取得极值.(1)求a ,b 的值;(2)若对于任意的x ∈[0,3],都有f (x )<c 2成立,求c 的取值范围. [解] (1)f ′(x )=6x 2+6ax +3b ,因为函数f (x )在x =1及x =2时取得极值, 所以f ′(1)=0,f ′(2)=0,即⎩⎪⎨⎪⎧6+6a +3b =0,24+12a +3b =0,解得⎩⎪⎨⎪⎧a =-3,b =4.(2)由(1)可知,f (x )=2x 3-9x 2+12x +8c , f ′(x )=6x 2-18x +12=6(x -1)(x -2). 当x ∈(0,1)时,f ′(x )>0; 当x ∈(1,2)时,f ′(x )<0; 当x ∈(2,3)时,f ′(x )>0.所以,当x =1时,f (x )取极大值f (1)=5+8c , 又f (0)=8c ,f (3)=9+8c .所以当x ∈[0,3]时,f (x )的最大值为f (3)=9+8c . 因为对于任意的x ∈[0,3],有f (x )<c 2恒成立, 所以9+8c <c 2,解得c <-1或c >9. 因此c 的取值范围为(-∞,-1)∪(9,+∞).20.某城市100户居民的月平均用电量(单位:度),以[160, 180),[180, 200),[200, 220),[220, 240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?解 (1)依题意,20×(0.002+0.0095+0.011+0.0125+x +0.005+0.0025)=1,解得x =0.0075.(2)由图可知,最高矩形的数据组为[220,240), ∴众数为220+2402=230. ∵[160,220)的频率之和为(0.002+0.0095+0.011)×20=0.45,依题意,设中位数为y ,∴0.45+(y -220)×0.0125=0.5.解得y =224, ∴中位数为224.(3)月平均用电量在[220,240)的用户在四组用户中所占比例为0.01250.0125+0.0075+0.005+0.0025=511,∴月平均用电量在[220,240)的用户中应抽取11×511=5(户).21.某城市随机抽取一年(365天)内100天的空气质量指数API 的监测数据,结果统计如下:质量指数API(记为ω)的关系式为S =⎩⎪⎨⎪⎧0,0≤ω≤100,3ω-200,100<ω≤300,2000,ω>300.试估计在本年内随机抽取一天,该天经济损失S 大于400元且不超过700元的概率;(2)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面2×2列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关?附:K2=(a+b)(c+d)(a+c)(b+d)解大于400元且不超过700元”为事件A.由400<S≤700,即400<3ω-200≤700,解得200<ω≤300,其满足条件天数为20.所以P(A)=20100=15.(2)根据以上数据得到如下列联表:K2=85×15×30×70≈4.575>3.841,所以有95%的把握认为该市本年空气重度污染与供暖有关.22.将圆x2+y2=1上每一点的横坐标变为原来的2倍,纵坐标变为原来的3倍,得曲线Γ.(1)写出Γ的参数方程;(2)设直线l:3x+2y-6=0与Γ的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.解 (1)设(x 1,y 1)为圆上的点,在已知变换下变为Γ上的点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =2x 1,y =3y 1,即⎩⎪⎨⎪⎧x 1=x 2,y 1=y 3.由x 21+y 21=1,得⎝⎛⎭⎪⎫x 22+⎝ ⎛⎭⎪⎫y 32=1,即曲线Γ的方程为x 24+y 29=1.故Γ的参数方程为⎩⎪⎨⎪⎧x =2cos t ,y =3sin t (t 为参数).(2)由⎩⎨⎧x 24+y 29=1,3x +2y -6=0,解得⎩⎪⎨⎪⎧ x =2,y =0或⎩⎪⎨⎪⎧x =0,y =3.不防设P 1(2,0),P 2(0,3),则线段P 1P 2的中点坐标为⎝ ⎛⎭⎪⎫1,32,所求直线的斜率k =23.于是所求直线方程为y -32=23(x -1),即4x -6y +5=0,化为极坐标方程,得4ρcos θ-6ρsin θ+5=0.。
高二数学期中考试试卷(文科)

高二数学期中考试试卷(文科)考试范围:数学1(解析几何初步)、数学1—1(圆锥曲线)、数学1—2(全部)时间:120分钟 满分:150分一.选择题(共10题,每小题5分,满分50分) 1.y -+5=0的倾斜角为( )A .0150 B . 0120 C . 060 D .0302.如果直线022=++y ax 与直线023=--y x 垂直,那么a 等于( )A .3-B .6-C .23-D .323.在研究两个分类变量x 、y 的关系时进行独立性检验常常使用统计变量2χ,如果我们有99.9%的把握认为x 、y 有关系,那么2χ值应在的临界值为( ) A .2.706 B .3.841 C .6.635 D .10.8284.已知圆的方程为222610x y ax ay +-+-=,则圆心的轨迹方程为( ) A .3y x =- B .3y x = C .3x y =- D .3x y =5.复数13z i =+,21z i =-,则复数12z z z =在复平面内的对应点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.把1,3,6,10,15,21,…这些数称为三角形数,这是因为这些数目的点子可以排成一个正三角形(如下图):则第10个三角形数为( ) A .45 B .55 C .50 D .56 7.以下是计算201614121++++ 的值的一个 程序框图,其中判断框内填入的条件是( )A .10>iB .10<iC .20>iD .20<i1 3 158.若过原点的直线与圆2x +2y +x 4+3=0相切,若切点在第三象限,则该直线的方程是 ( )A .x y 3=B .x y 3-=C .x y 33=D .x y 33-= 9.椭圆192522=+y x 上一点M 到左焦点1F 的距离为2,N 是1MF 的中点,O 为坐标原点,则ON =( )A .2B .4C .8D .2310.已知抛物线的顶点在坐标原点,对称轴为坐标轴,焦点在直线2470x y -+=上,则抛物线的方程为( )A .214y x =-B .22147y x x y =-=或C .27x y =D .22147y x x y ==-或 二.填空题(共4题,每小题5分,满分20分)11.在一组随机变量x 、y 的两个回归摸型中,残差的平方和越 大的模型拟合的效果越 (填好或差).12.阅读所给的算法流程图,则输出的结果是S= ; 13.椭圆12222=+b y a x (a >b>0)离心率为23,则双曲线12222=-by a x 的离心率为 .14. 设P 为抛物线x y 42=上的点,则P 到直线3+=x y 的最短距离为 .三.解答题(共6题,满分80分) 15.(满分12分)直线l 过点A (-2,3)且与两坐标轴截得的线段恰好被点A 平分,求直线l 的方程。
高二下学期期中联考数学(文科)试题级答案(Word版)

高二(下)年级期中考试文科数学试题一.选择题:(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“”的否定是()A.,假命题B.,真命题C.,假命题D.,真命题2.已知为虚数单位,为实数,复数在复平面内对应的点为,则“”是“点在第四象限”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.函数的定义域为开区间导函数在内的图象如图所示,则函数在内的极大值点有()A.1个B.2个C.3个D.4个4.已知,若的必要条件是,则之间的关系是()A.B.C.D.5.若,且函数在处有极值,则的最大值等于()A.2B.3C.6D.96.已知集合,,则等于()A.B.C.D.7.已知命题,命题恒成立.若为假命题,则实数的取值范围是()A.B.C.D.8.设函数的图象关于直线对称,则的值为()A.-1B.2C.1D.39.若函数在区间上不是单调函数,则实数的取值范围是()A.B.C.D.不存在这样的实数10已知为抛物线上一个动点,为圆上一个动点,那么点到点的距离与点到抛物线的准线距离之和的最小值是()A.5B.8 C.17-1 D.5+2二、填空题(本大题共7小题,每小题5分,共35分.把答案填在答题卡相应位置上.) 11.已知复数(i为虚数单位),则=_____.12.在实数范围内,不等式的解集为________.13.若不等式对恒成立,则实数的取值范围是______. 14.已知,且,则的最小值是________.15.若双曲线的离心率是2,则的最小值为________.16.若双曲线的两个焦点为;为双曲线上一点,且,则该双曲线离心率的取值范围是________.17.已知函数在上是减函数,在上是增函数,函数在上有三个零点,且是其中一个零点.(1)的值为________;(2)的取值范围是________.三、解答题(本大题共5小题,共65分.解答应写出文字说明,证明过程或演算步骤.)18.(本小题满分12分)已知命题方程有两个不等的负实根,命题函数的定义域为,若为真,求实数的取值范围。
陕西省宝鸡市金台区2022-2023学年高二下学期期中文科数学试题

A. b c 0
B. (a c)(b c) 0
C. (a b)(a c) > 0
D. (a b)(b c) 0
7.在一次独立性检验中得到如下列联表:
A1 A2
总计
试卷第 1 页,共 5 页
B1 200 800
1000
B2 180 a
180+a
总计 380 800+a 1180+a
2i 平面内对应的点在第一象限. (1)求 z ; (2)求 a 的取值范围. 20.某车间为了规定工时定额,需要确定加共某零件所花费的时间,为此作了四次实验, 得到的数据如下:
零件的个数 x(个) 2 3 4 5
加工的时间 y(小时) 2.5 3 4 4.5
(1)求出 y 关于 x 的线性回归方程;
4.独立性检验中,假设:变量 X 与变量Y 没有关系,则在上述假设成立的情况下,估
算概率 P(K 2 6.635) 0.01,表示的意义是
A.变量 X 与变量Y 有关系的概率为1%
B.变量 X 与变量Y 没有关系的概率为 99.9%
C.变量 X 与变量Y 没有关系的概率为 99%
D.变量 X 与变量Y 有关系的概率为 99%
僧,大僧三个更无争,小僧三人分一个,大小和尚各几个?程序框图反映了对此题的一
个求解算法,则输出 n 的值为( )
A. 20
B. 25
C. 75
D. 80
10.已知 y 与 x 及 与 v 的对应数据如下表,且 y 关于 x 的线性回归方程为 $y 1.2x 0.6 ,
则 关于 v 的线性回归方程为( )
重要的地位.根据欧拉公式可知, ei 表示的复数在复平面内对应的点位于( )
A.第一象限
2023—2024学年陕西省咸阳市高二下学期期中数学(文科)试题(含答案)

2023-2024学年陕西省咸阳市高二下册期中数学(文)试题一、单选题1.复数23i z =-的虚部为()A .3B .3-C .3iD .i3-【正确答案】B【分析】直接求出虚部即可.【详解】虚部为3-.故选:B.2.为了调查中学生近视情况,某校160名男生中有90名近视,150名女生中有75名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力()A .平均数B .方差C .回归分析D .独立性检验【正确答案】D【分析】近视与性别时两类变量,根据分类变量的研究方法即可确定答案.【详解】解:近视与性别时两类变量,在检验两个随机事件是否相关时,最有说服力的方法时独立性检验.故选:D.3.对四组数据进行统计,获得如图所示的散点图,关于其相关系数的比较,正确的是()A .14320r r r r <<<<B .41320r r r r <<<<C .42310r r r r <<<<D .24130r r r r <<<<【正确答案】A【分析】根据题中给出的散点图,先判断是正相关还是负相关,然后根据散点图的集中程度分析相关系数的大小【详解】解:由图可知,图2和图3是正相关,图1和图4是负相关,囷1和图2的点相对更加集中,所以相关性更强,所以1r 接近于1-,2r 接近1,所以14320r r r r <<<<,故选:A4.下列的三句话,若按照演绎推理的“三段论”模式,排列顺序正确的应是()①()cos y x x R =∈是周期函数;②()cos y x x R =∈是三角函数;③三角函数是周期函数;A .①②③B .②①③C .②③①D .③②①【正确答案】D【分析】本题可根据“三段论”的相关性质得出结果.【详解】由“三段论”易知:三角函数是周期函数,()cos y x x R =∈是三角函数,()cos y x x R =∈是周期函数,故选:D.5.用反证法证明命题“a ,b ,R c ∈,若0a b c ++>,则a ,b ,c 中至少有一个正数”时,假设应为()A .a ,b ,c 均为负数B .a ,b ,c 中至多一个是正数C .a ,b ,c 均为正数D .a ,b ,c 中没有正数【正确答案】D【分析】由反证法的概念判断即可.【详解】由题,“至少有一个”相对的情况就是“一个都没有”,故应假设a ,b ,c 中没有正数,故选:D6.已知x ,y 的取值如下表所示:x234y546如果y 与x 呈线性相关,且线性回归方程为72y bx =+,则b 等于()A .12-B .12C .110-D .110【正确答案】B【分析】求出x 、y 的值,将点(),x y 的坐标代入回归直线方程,即可求得实数b 的值.【详解】由表格中的数据可得23433x ++==,54653y ++==,将点(),x y 的坐标代入回归直线方程得7352b +=,解得12b =.故选:B.7.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸到正品的条件下,第二次也摸到正品的概率是()A .35B .59C .15D .110【正确答案】B【分析】根据给定条件,以第一次摸到正品的事件为样本空间,利用古典概率公式计算作答.【详解】用A 表示事件“第一次摸到正品”,B 表示“第二次摸到正品”,在事件A 发生的条件下,事件B 发生的概率,相当于以A 为样本空间,事件B 就是积事件AB ,显然()9n A =,()5n AB =,所以在第一次摸到正品的条件下,第二次也摸到正品的概率是()5(|)()9n AB P B A n A ==.故选:B8.设,R a b ∈,“复数i a b +是纯虚数”是“0a =”的()A .充分而不必要条件;B .必要不充分条件;C .充分必要条件;D .既不充分也不必要条件.【正确答案】A【分析】根据纯虚数的定义,结合充分性、必要性的定义进行求解即可.【详解】当i a b +是纯虚数时,一定有0a =,但是当0a =时,只有当0b ≠时,i a b +才能是纯虚数,所以“复数i a b +是纯虚数”是“0a =”的充分而不必要条件,故选:A9.已知复数1z ,2z 在复平面内对应的点分别为()1,2A ,()1,3B -,则复数12z z 在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限【正确答案】D【分析】由123,12i 1i =+=-+z z ,代入复数12z z ,利用复数的除法运算和几何意义可得答案.【详解】因为复数1z ,2z 在复平面内对应的点分别为()1,2A ,()1,3B -,所以123,12i 1i =+=-+z z ,则复数()()()()1212i 13i 12ii 3111213i 1i 23i +--+-+-+-=-==-z z ,在复平面内对应的点1122,⎛⎫- ⎪⎝⎭位于第四象限.故选:D.10.若实数,a b满足12a b+=ab 的最小值为AB .2C.D .4【正确答案】C【详解】121200a b ab a b a b +=∴=+≥=∴≥ >,>,(当且仅当2b a =时取等号),所以ab的最小值为 C.基本不等式【名师点睛】基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解.11.如图所示的是某小朋友在用火柴拼图时呈现的图形,其中第1个图形用了3根火柴,第2个图形用了9根火柴,第3个图形用了18根火柴, ,按此规律,则第2022个图形用的火柴根数为()A .20192022⨯B .20192023⨯C .30332021⨯D .30332023⨯【正确答案】D【分析】根据已知条件,进行归纳推理即可求解.【详解】由图可知第1个图形用了31(11)32⨯⨯+=根火柴第2个图形用了32(21)92⨯⨯+=根火柴,第3个图形用了33(31)182⨯⨯+=根火柴,……归纳得,第n 个图形用了3(1)3(123)2n n n +++++= 根火柴,当2022n =时,3(1)303320232n n +=⨯.故选:D.12.学校开设了多种体有类的校本选修课程,以更好的满足学生加强体有锻炼的需要.该校学生小明选择确定后,有三位同学根据小明的兴趣爱好,对他选择的体育类的校本课程进行猜测.甲说“小明选的不是游泳,选的是武术”,乙说“小明选的不是武术,选的是体操”,丙说“小明选的不是武术,也不是排球”,已知这三人中有两个人说的全对,有一个人只说对了一半,则由此推断小明选择的体育类的校本课程是()A .游泳B .武术C .体操D .排球【正确答案】C【分析】根据题意,分别分析甲乙说的全对,甲丙全对,乙丙全对三种情况,分析即可得答案.【详解】若甲说的全对,则小明选的是武术,若乙说的全对,则小明选的是体操,矛盾,若甲说的全对,则小明选的是武术,若丙说的全对,则小明选的不是武术,矛盾,若乙说的全对,则小明选的是体操,若丙说的全对,不是武术也不是排球,满足题意,此时甲说的不是游泳正确,是武术错误,所以甲说的半对,满足题意,所以小明选择的是体操,故选:C 二、填空题13.若复数21iz =+,z 是其共轭复数,则z =_______.【正确答案】1i +/1i +【分析】根据复数的四则运算法则化简计算z ,再由共轭复数的概念写出z .【详解】化简()()()21i 222i 1i 1i 1i 1i 2z --====-++-,所以1i z =+.故1i+14.在等差数列{}n a 中,若50a =,则有1290a a a +++= 成立.类比上述性质,在等比数列{}n b 中,若91b =,则存在的等式为______.【正确答案】12171b b b = 【分析】由29117n n b b b +-=⋅,利用类比推理即可得出.【详解】利用类比推理,借助等比数列的性质可知29117n n b b b +-=⋅,即291172168101b b b b b b b ===== ,可知存在的等式为12171b b b = .故12171b b b = 15.执行下面的程序框图,若输入的0k =,0a =,则输出的k 为_______.【正确答案】4【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出k 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,即可求得答案.【详解】输入0k =,0a =,则第一次循环:1a =,1k =,不符合判断框条件,继续循环;第二次循环:3a =,2k =,不符合判断框条件,继续循环;第三次循环:7a =,3k =,不符合判断框条件,继续循环;第四次循环:15a =,4k =,此时满足判断框条件10a >,退出循环,输出4k =.故416.在复平面内,平行四边形ABCD 的三个顶点A 、B 、C 对应的复数分别是1+3i,-i,2+i,则点D 对应的复数为_________【正确答案】3+5i【详解】试题分析:,,A B C 三点对应的复数分别是13,,2i i i +-+,(1,3),(0,1),(2,1)A B C ∴-,设(,)D x y ,则:(1,4),(2,1)AB DC x y =--=--,在平行四边形ABCD 中,有AB DC =,即(1,4)(2,1)x y --=--,213{{145x x y y -=-=∴⇒-=-=,即(3,5)D 对应的复数为.35i +故答案应填:35i +.复的几何意义.三、解答题17.计算:(1)(1)(1)(1)i i i +-+-+;(2)2020121()341i i i i+++--【正确答案】(1)1i +(2)4255i +【分析】(1)根据复数的运算法则可得结果;(2)根据复数的除法运算和乘法运算可得结果.【详解】(1)原式2111111i i i i =--+=+-+=+.(2)原式()()()()()()()2020212341343411i i i i i i i ⎛⎫+++ ⎪=+ ⎪-+-+⎝⎭()505451025ii -+=+12155i =-++4255i =+.18.当实数m 取何值时,在复平面内复数()()222334i z m m m m =--+--对应的点满足下列条件:(1)在实轴上;(2)z 是纯虚数.【正确答案】(1)1m =-或4m =(2)3m =【分析】(1)由虚部为0得出m 的值;(2)由纯虚数的定义得出m 的值.【详解】(1)复数z 在复平面内的坐标为22(23,34)m m m m ----因为复数z 对应的点在实轴上,所以2340m m --=,解得1m =-或4m =即1m =-或4m =(2)因为z 是纯虚数,所以2230m m --=且2340m m --≠,解得1m =-(舍)或3m =故3m =19.某机械厂制造一种汽车零件,已知甲机床的正品率是0.9,乙机床的次品率是0.2,现从它们制造的产品中各任意抽取一件.(1)求两件产品都是正品的概率;(2)求恰好有一件是正品的概率;(3)求至少有一件是正品的概率.【正确答案】(1)0.72(2)0.26(3)0.98【分析】(1)根据相互独立事件概率计算公式,计算出所求概率.(2)根据相互独立事件、互斥事件概率计算公式,计算出所求概率.(3)由(1)(2)求得至少有一件是正品的概率.【详解】(1)两件产品都是正品的概率为()0.910.20.72⨯-=.(2)恰好有一件是正品的概率为()()0.90.210.910.20.26⨯+-⨯-=.(3)由(1)(2)得至少有一件是正品的概率为0.720.260.98+=20.证明:(1)>(2)如果0,0,a b >>则ln ln ln22a b a b++≥.【正确答案】(1)证明见解析(2)证明见解析【分析】(1)由不等式的性质结合分析法证明即可;(2)由基本不等式结合ln y x =的单调性证明即可.【详解】(1>只需证22>即证1414+>+即证即证126>因为126>(2)当0,0a b >>时,a b +≥2a b+≥a b =时,等号成立ln y x = 在(0,)+∞上单调递增ln2a b+∴≥即11ln ln (ln ln )222a b ab a b +≥=+ln ln ln22a b a b ++∴≥21.甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别抽查了两台机床生产的产品,产品的质量情况统计如下表:一级品二级品合计甲机床30乙机床40合计90200(1)请将上述22⨯列联表补充完整;(2)能否有99.9%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.100.050.0100.0050.001k 2.706 3.841 6.6357.87910.828【正确答案】(1)列联表见解析(2)有99.9%的把握认为甲机床的产品质量与乙机床的产品质量有差异【分析】(1)直接计算补充列联表即可;(2)先计算2K ,再和10.828比较作出判断即可.【详解】(1)补充完整的22⨯列联表如下:一级品二级品合计甲机床3070100乙机床6040100合计90110200(2)∵()222003040706018.1810.82890110100100K ⨯⨯-⨯=≈>⨯⨯⨯,∴有99.9%的把握认为甲机床的产品质量与乙机床的产品质量有差异.22.“俯卧撑”是日常体能训练的一项基本训练,坚持做可以锻炼上肢、腰部及腹部的肌肉.某同学对其“俯卧撑”情况作了记录,得到如表数据.分析发现他能完成“俯卧撑”的个数y (个)与坚持的时间x (周)线性相关.x1245y5152535(1)求y 关于x 的线性回归方程y b x a ∧∧∧=+;(2)预测该同学坚持10周后能完成的“俯卧撑”个数.参考公式:121()()()niii nii x x y y b x x ∧==--=-∑∑,a y b x ∧∧=-,其中x ,y 表示样本平均值.【正确答案】(1)71y x ∧=-;(2)69个.【分析】(1)根据数据求得均值,代入公式求得回归方程;(2)令10x =代入预测出函数值.【详解】(1)由所给数据计算得1(1245)34x =⨯+++=,1(5152535)204y =⨯+++=,44211()()70,()10,i i i i i x x yy x x ==--=-=∑∑所以,41421()()70710()i i i i i x x y y b x x ∧==--===-∑∑1a yb x ∧∧=-=-故y 关于x 的线性回归方程是71y x ∧=-(2)令10x =,得710169,y ∧=⨯-=故预测该同学坚持10周后能完成69个“俯卧撑”.23.已知函数()ln 3f x a x x =+-.(1)若1a =,求曲线()y f x =在点()()1,1f 处的切线方程;(2)若()f x 的最小值为2-,求a 的值.【正确答案】(1)240x y --=(2)1a =-【分析】(1)求出函数的导数,根据导数的几何意义即可求得答案.(2)利用函数的导数判断函数的单调性,求得函数的最小值并令其等于-2,得到()1ln 10a a---=,构造函数()1ln 1x g x x =+-,利用导数确定a 的值.【详解】(1)∵()ln 3f x a x x =+-,∴()1a x a f x x x +'=+=,∴当1a =时,()12f =-,()12f '=,∴()221y x +=-,∴所求切线方程为240x y --=.(2)由(1)知,()x a f x x+'=,0x >.当0a ≥时,()0f x ¢>,()f x 在()0,∞+上单调递增,此时无最小值;当a<0时,令()0f x '=,得x a =-,当()0,x a ∈-时,()0f x '<;当(),x a ∈-+∞时,()0f x ¢>,∴()f x 在()0,a -上单调递减,在(),a -+∞上单调递增,∴()f x 的最小值为()()ln 32f a a a a -=---=-,则()1ln 10a a---=.令()1ln 1x g x x =+-,则()21x g x x -'=,∴当()0,1x ∈时,()0g x '<;当()1,x ∈+∞时,()0g x '>.∴()g x 在()0,1上单调递减,在()1,+∞上单调递增,∵()10g =,∴()0g x =有一个根1x =,∴1a -=,即1a =-.。
高二数学期中试题(含答案)

班级 姓名 学号 装 订 线高二年级文科数学试题一、选择题(本题共12个小题)1.下面四个命题(1) 0比i -大(2)两个复数互为共轭复数,当且仅当其和为实数(3) 1x yi i +=+的充要条件为1x y ==(4)如果让实数a 与ai 对应,那么实数集与纯虚数集一一对应, 其中正确的命题个数是 ( ) A .0 B .1 C .2 D .32.13()i i --的虚部为 ( ) A .8i B .8i - C .8 D .8-3.使复数为实数的充分而不必要条件是由 ( )A .z z -= B .z z = C .2z 为实数D .z z -+为实数4.设456124561212,,z i i i i z i i i i =+++++⋅⋅⋅⋅ 则12,z z 的关系是( ) A .12z z = B .12z z =- C .121z z =+ D .无法确定 5. 2020(1)(1)i i +--的值是 ( )A . 1024-B . 1024C . 0D .10246.已知2()(1,)n n f n i i i n N -=-=-∈集合{}()f n 的元素个数是( ) A. 2 B. 3 C. 4 D. 无数个7.正三棱锥的侧棱与底面的对边 ( ) A. 平行 B. 垂直 C.相交 D.以上皆错8.数列2,5,11,20,,47,x …中的x 等于 ( ) A .28 B .32 C .33 D .279.已知正六边形ABCDEF ,在下列表达式①EC CD BC ++;②DC BC +2;③ED FE +;④FA ED -2中,与AC 等价的有( )A .1个B .2个C .3个D .4个 10.函数]2,0[)44sin(3)(ππ在+=x x f 内 ( ) A .只有最大值 B .只有最小值C .只有最大值或只有最小值D .既有最大值又有最小值11.如果821,,a a a ⋅⋅⋅为各项都大于零的等差数列,公差0≠d ,则( ) A .5481a a a a > B .5481a a a a < C .5481a a a a +>+ D .5481a a a a = 12.函数xy 1=在点4=x 处的导数是 ( )A .81 B .81- C .161 D .161- 二、填空题(本题共4个小题)13.若(2)a i i b i -=-,其中a 、b R ∈,i 使虚数单位,则22a b +=_________。
高二文科上学期期中考试数学含参考答案

高二数学(文科)上学期期中考试—、选择题(每小题5分,共60分)1、在半径为R 的圆内随机撒一粒黄豆,它落在圆内接正三角形内的概率是:() A 、B 、C 、D 、2、已知一组正数x 1,x 2,x 3,x 4的方差S 2=(x 12+x 22+x 32+x 42-16),则数据x 1+2,x 2+2,x 3+2,x 4+2的平均数为:() A 、2B 、3C 、4D 、63、有3个兴趣小组,甲乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一兴趣小组的概率为:() A 、B 、C 、D 、4、一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终与正方体6个面的距离大于1称其为“安全飞行”,则蜜蜂安全飞行的概率为:() A 、B 、C 、D 、 5、已知m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题正确的是()A 、若m ∥α,n ∥α,则m ∥nB 、若α⊥β,m ⊥β,m ⊄α,则m ∥αC 、若α⊥β,m //α,则m ⊥βD 、若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β43π433ππ43π433414332213181161271836、直线l 经过l 1:x +y -2=0与l 2:x -y -4=0的交点P ,且过线段AB 的中点Q ,其中A (-1,3),B (5,1),则直线l 的方程是()A 、3x -y -8=0B 、3x +y +8=0C 、3x +y -8=0D 、3x -y +8=07、如图,在正方体ABCD -A 1B 1C 1D 1中,下列结论正确 的是()A 、A 1C 1∥ADB 、C 1D 1⊥ABC 、AC 1与CD 成45︒角D 、A 1C 1与B 1C 成60︒角8、用与球心O 距离为1的截面去截球,所得截面的面积为9π,则球的表面积为() A 、4πB 、10πC 、20πD 、40π 9、若直线l 1:y =kx -与l 2:2x +3y -6=0的交点M 在第一象限,则l 1的倾斜角的取值范围是()A 、(30︒,60︒)B 、(30︒,90︒)C 、(45︒,75︒)D 、(60︒,90︒)10、已知正方体的棱长为1,则它的内切球与外接球半径的比值为() A 、B 、C 、D 、11、已知圆锥的母线长为2cm ,底面直径为3cm ,则过该圆锥两条母线的截面面积的最大值为()A 、4cm 2B 、cm 2C 、2cm 2D 、cm 212、若直线a ∥平面α,直线b ⊥直线a ,则直线b 与平面α的333323332273473ABCD A 1B 1C 1D 1(第7题)位置关系是()A 、b ∥αB 、b ⊂αC 、b 与α相交D 、以上均有可能 二.填空题:(本题共4小题,每小题5分,共20分)13.椭圆的焦距为,则=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
职教中心2013—2014学年度下学期期中考试
高二文数学试题
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)
1.已知函数x
x
x
f
y-
=
=2
3
)
(则
)1(
f'=()
A.2
B.3
C.4
D.5
2.函数y=f(x)在区间[a,b]上的最大值是M,最小值是m,若M=m,则f′(x) ( )
A.等于0
B.大于0
C.小于0
D.以上都有可能
3曲线y=4x- x3在点(-1,-3)处的切线方程为()
A.y=7x+4,
B. y=7x+2,
C. y=x-4,
D. y=x-2,
4. 下列说法正确的是( )
A.函数的极大值就是函数的最大值
B.函数的极小值就是函数的最小值
C.函数的最值一定是极值
D.在闭区间上的连续函数一定存在最值
5.函数y=3x-x3的单调增区间是()
A.(-∞,-1) (1,+∞)B.(-1,1)
C.(-∞ -1)和(1,+∞)D.(1,+∞)
6.函数f(x)= x3-3x+1在[-3,0]上最大值,最小值分别为()
A.1,-1
B.1,-17
C.3,-17
D.9,-19
7.将8分为两数之和,使其立方和为最小,则分法为()
A.2和6
B. 4和4
C. 3和5
D. 1和7
8观察下列各式:55=3125,56=15625,57=78125,…,则52011的末尾数为( )
A.3125
B. 5625
C.0625,
D. 8125 9已知回归直线的斜率的估计值是1.23,样本点的中心为(4, 5),则回归直线的方程为( )
A.y=1.23x+4 B.y=1.23x+5
C.y=1.23x+0.08 D.y=0.08x+1.23
10通过调查发现,某班学生患近视的概率为0.4,现随机抽取该班的2名学生进行体检,则他们患近视的概率为()
A.0.24 B.0.36 C.0.16 D.0.48
澄城县职教中心2012—2013学年度下学期期中考试
11综合文数学试卷
一、单项选择题
二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上 11观察图中一个定义在闭区间[]b a ,上的函数y=)(x f 的图象.图中__________与__________是极小值,__________是极大值.函数)(x f 在[]b a ,上的最大值是__________,最小值是__________.
12函数f (x )=x 2-2x +4在区间__________内是增函数,区间__________内是减函数. 13线性回归方程y=bx+a 必定过定点__________ 14观察下列等式
1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49
…
照此规律,第10个等式为__________
三、解答题:本大题共5小题,共50分.解答应写出文字说明、证明过程或演算步
骤.
15已知1x 和2x 是一元二次方程)04,0(022≥-≠=++ac b a c bx ax 的两个根。
求证:
a
c
x x a b x x =-=+2121,.
16四个射手独立地进行射击,设每个人中靶的概率都是0.9,试求下列各事件的概率:(1)4人都中靶;(2)4人都没中靶。
17求函数y=f(x)=x 3-2x 2+5在区间[]2,2-上的最大值与最小值
18已知函数d ax bx x x f +++=23)(的图象过点P (0,2),且在点M ))1(,1(--f 处的切线方程为076=+-y x .(Ⅰ)求函数)(x f y =的解析式;(Ⅱ)求函数)(x f y =的单调区间。
19如图、已知BE ,CF 分别为△ABC 的边AC ,AB 上的高,G 为EF 的中点,H 为BC 的中点
.
求证:HG ⊥EF .
图1 图2
图3。